Last updated: 2024-04-26
Checks: 7 0
Knit directory:
bgc_argo_r_argodata/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version f37a13f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rproj.user/
Untracked files:
Untracked: analysis/draft.Rmd
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/child/cluster_analysis_base.Rmd
Modified: analysis/load_broullon_DIC_TA_clim.Rmd
Modified: code/Workflowr_project_managment.R
Modified: code/start_background_job.R
Modified: code/start_background_job_load.R
Modified: code/start_background_job_partial.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/load_biomes.Rmd
) and HTML
(docs/load_biomes.html
) files. If you’ve configured a
remote Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 780276c | mlarriere | 2024-04-19 | Build site. |
html | bc9a34e | mlarriere | 2024-04-12 | Build site. |
html | c076fba | mlarriere | 2024-04-12 | Build site. |
html | 91f08a6 | mlarriere | 2024-04-07 | Build site. |
html | db21f55 | mlarriere | 2024-04-06 | Build site. |
html | f343fbd | mlarriere | 2024-03-31 | Build site. |
Rmd | db78d61 | mlarriere | 2024-03-31 | load_biomes building test |
Rmd | da3be73 | ds2n19 | 2024-01-01 | rebuild after full refresh of Argo files Dec 2023. |
html | 07d4eb8 | ds2n19 | 2023-12-20 | Build site. |
html | fa6cf38 | ds2n19 | 2023-12-14 | Build site. |
Rmd | 64fd104 | ds2n19 | 2023-12-14 | revised coverage analysis and SO focused cluster analysis. |
html | f110b74 | ds2n19 | 2023-12-13 | Build site. |
Rmd | acb6523 | ds2n19 | 2023-12-12 | Added documentation added to tasks section at start of each script. |
html | e60ebd2 | ds2n19 | 2023-12-07 | Build site. |
html | 80c16c2 | ds2n19 | 2023-11-15 | Build site. |
html | 7b3d8c5 | pasqualina-vonlanthendinenna | 2022-08-29 | Build site. |
html | bdd516d | pasqualina-vonlanthendinenna | 2022-05-23 | Build site. |
html | dfe89d7 | jens-daniel-mueller | 2022-05-12 | Build site. |
html | 710edd4 | jens-daniel-mueller | 2022-05-11 | Build site. |
html | 6a6e874 | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | 2d44f8a | pasqualina-vonlanthendinenna | 2022-04-29 | Build site. |
html | e61c08e | pasqualina-vonlanthendinenna | 2022-04-27 | Build site. |
html | 10036ed | pasqualina-vonlanthendinenna | 2022-04-26 | Build site. |
Rmd | 3e1ac14 | pasqualina-vonlanthendinenna | 2022-04-26 | separated loading data pages, added mayot biomes, switched to pH and temp flag A |
Load in biome information and regional separations.
RECCAP2_region_masks_all_v20210412.nc
map_landmask_WOA18.rds
region_masks_all_seamask_1x1.rds
region_masks_all_seamask_2x2.rds
region_masks_all_1x1.rds
region_masks_all_2x2.rds
ph_surface_1x1.rds
ph_surface_2x2.rds
nm_biomes.rds
# load in the RECCAP biome separations
region_masks_all <-
stars::read_ncdf(paste(
path_basin_mask, "RECCAP2_region_masks_all_v20221025.nc", sep = "")) %>%
as_tibble() %>%
mutate(seamask = as.factor(seamask))
# harmonise the latitude longitude bands of the biomes to the pH data (2x2 grid)
region_masks_all_seamask_2x2 <- region_masks_all %>%
select(lat, lon, seamask) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(
lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
lon = as.numeric(as.character(lon))
)
region_masks_all_seamask_1x1 <- region_masks_all %>%
select(lat, lon, seamask) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(
lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
lon = as.numeric(as.character(lon))
)
region_masks_all <- region_masks_all %>%
select(-seamask) %>%
pivot_longer(open_ocean:southern,
names_to = 'region',
values_to = 'value') %>%
mutate(value = as.factor(value))
# harmonise the lat/lon of the regional separations to our pH data
region_masks_all_1x1 <- region_masks_all %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(
lat = cut(lat, seq(-90, 90, 1), seq(-89.5, 89.5, 1)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 1), seq(20.5, 379.5, 1)),
lon = as.numeric(as.character(lon))
)
region_masks_all_2x2 <- region_masks_all %>%
mutate(lon = if_else(lon < 20, lon + 360, lon)) %>%
mutate(
lat = cut(lat, seq(-90, 90, 2), seq(-89, 89, 2)),
lat = as.numeric(as.character(lat)),
lon = cut(lon, seq(20, 380, 2), seq(21, 379, 2)),
lon = as.numeric(as.character(lon))
)
# add the region names to the surface pH dataframes
ph_surface_1x1 <- read_rds(file = paste0(path_argo_preprocessed, "/ph_surface_1x1.rds"))
ph_surface_2x2 <- read_rds(file = paste0(path_argo_preprocessed, "/ph_surface_2x2.rds"))
ph_surface_2x2 <- inner_join(ph_surface_2x2, region_masks_all_2x2)
ph_surface_1x1 <- inner_join(ph_surface_1x1, region_masks_all_1x1)
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
# restrict base map to Southern Ocean
map <- map +
lims(y = c(-85, -30))
region_masks_all_1x1 <- region_masks_all_1x1 %>%
filter(region == 'southern',
value != 0) %>%
mutate(coast = as.character(coast))
map +
geom_tile(data = region_masks_all_1x1,
aes(x = lon,
y = lat,
fill = coast))+
scale_fill_brewer(palette = 'Dark2')
map+
geom_tile(data = region_masks_all_1x1,
aes(x = lon,
y = lat,
fill = value))+
scale_fill_brewer(palette = 'Dark2')+
labs(title = 'RECCAP biomes')
basemap(limits = -30)+
geom_spatial_tile(data = region_masks_all_1x1,
aes(x = lon,
y = lat,
fill = value),
col = NA)+
scale_fill_brewer(palette = 'Dark2')+
labs(title = 'RECCAP biomes')
region_masks_all_seamask_1x1 %>%
write_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_seamask_1x1.rds"))
region_masks_all_seamask_2x2 %>%
write_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_seamask_2x2.rds"))
region_masks_all_1x1 %>%
write_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_1x1.rds"))
region_masks_all_2x2 %>%
write_rds(file = paste0(path_argo_preprocessed, "/region_masks_all_2x2.rds"))
# joined RECCAP-biomes to surface pH data
ph_surface_1x1 %>%
write_rds(file = paste0(path_argo_preprocessed, "/ph_surface_1x1.rds"))
ph_surface_2x2 %>%
write_rds(file = paste0(path_argo_preprocessed, "/ph_surface_2x2.rds"))
nm_biomes <- tidync::hyper_tibble(paste0(path_argo, "/SouthernOcean_mask_NM.nc"))
# 1 degree lon/lat grid
# table(nm_regions$LATITUDE) # 1 degree intervals
# table((nm_regions$LONGITUDE)) # 1 degree longitude intervals
nm_biomes <- nm_biomes %>%
rename(lon = LONGITUDE,
lat = LATITUDE) %>%
mutate(lon = if_else(lon < 20, lon + 360, lon))
nm_biomes <- nm_biomes %>%
filter(ICE == 1 | STSS == 1 | SPSS == 1)
nm_biomes <- nm_biomes %>%
pivot_longer(cols = c(STSS, SPSS, ICE),
values_to = 'biome_mask',
names_to = 'biome_name')
nm_biomes <- nm_biomes %>%
filter(biome_mask==1,
lat <= -30)
map+
geom_tile(data = nm_biomes,
aes(x = lon,
y = lat,
fill = biome_name))+
scale_fill_brewer(palette = 'Dark2')+
labs(title = 'Mayot biomes')
basemap(limits = -30)+
geom_spatial_tile(data = nm_biomes,
aes(x = lon,
y = lat,
fill = biome_name),
col = NA)+
scale_fill_brewer(palette = 'Dark2')+
labs(title = 'Mayot biomes')
# write data to file
# nm_biomes %>%
# write_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.9.0 timechange_0.1.1 ggOceanMaps_1.3.4 ggspatial_1.1.7
[5] forcats_0.5.2 stringr_1.5.0 dplyr_1.1.3 purrr_1.0.2
[9] readr_2.1.3 tidyr_1.3.0 tibble_3.2.1 ggplot2_3.4.4
[13] tidyverse_1.3.2
loaded via a namespace (and not attached):
[1] fs_1.5.2 sf_1.0-9 RColorBrewer_1.1-3
[4] httr_1.4.4 rprojroot_2.0.3 tools_4.2.2
[7] backports_1.4.1 bslib_0.4.1 rgdal_1.6-2
[10] utf8_1.2.2 R6_2.5.1 KernSmooth_2.23-20
[13] rgeos_0.5-9 DBI_1.2.2 colorspace_2.0-3
[16] raster_3.6-11 withr_2.5.0 sp_1.5-1
[19] tidyselect_1.2.0 compiler_4.2.2 git2r_0.30.1
[22] cli_3.6.1 rvest_1.0.3 RNetCDF_2.6-1
[25] xml2_1.3.3 labeling_0.4.2 sass_0.4.4
[28] scales_1.2.1 classInt_0.4-8 ggOceanMapsData_1.0.1
[31] proxy_0.4-27 digest_0.6.30 rmarkdown_2.18
[34] pkgconfig_2.0.3 htmltools_0.5.8.1 highr_0.9
[37] dbplyr_2.2.1 fastmap_1.1.0 tidync_0.3.0
[40] rlang_1.1.1 readxl_1.4.1 rstudioapi_0.15.0
[43] farver_2.1.1 jquerylib_0.1.4 generics_0.1.3
[46] jsonlite_1.8.3 googlesheets4_1.0.1 magrittr_2.0.3
[49] ncmeta_0.3.5 Rcpp_1.0.10 munsell_0.5.0
[52] fansi_1.0.3 abind_1.4-5 lifecycle_1.0.3
[55] terra_1.7-65 stringi_1.7.8 whisker_0.4
[58] yaml_2.3.6 grid_4.2.2 parallel_4.2.2
[61] promises_1.2.0.1 crayon_1.5.2 lattice_0.20-45
[64] haven_2.5.1 stars_0.6-0 hms_1.1.2
[67] knitr_1.41 pillar_1.9.0 codetools_0.2-18
[70] reprex_2.0.2 glue_1.6.2 evaluate_0.18
[73] modelr_0.1.10 vctrs_0.6.4 tzdb_0.3.0
[76] httpuv_1.6.6 cellranger_1.1.0 gtable_0.3.1
[79] assertthat_0.2.1 cachem_1.0.6 xfun_0.35
[82] lwgeom_0.2-10 broom_1.0.5 e1071_1.7-12
[85] later_1.3.0 ncdf4_1.19 class_7.3-20
[88] googledrive_2.0.0 gargle_1.2.1 workflowr_1.7.0
[91] units_0.8-0 ellipsis_0.3.2