Last updated: 2023-12-13

Checks: 7 0

Knit directory: bgc_argo_r_argodata/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211008) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 4844d30. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Untracked files:
    Untracked:  code/load_clim_nitrate_woa.Rmd
    Untracked:  code/nitrate_align_climatology.Rmd

Unstaged changes:
    Modified:   code/load_clim_doxy_woa.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/load_broullon_DIC_TA_clim.Rmd) and HTML (docs/load_broullon_DIC_TA_clim.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd acb6523 ds2n19 2023-12-12 Added documentation added to tasks section at start of each script.
html e60ebd2 ds2n19 2023-12-07 Build site.
html 80c16c2 ds2n19 2023-11-15 Build site.
html 7b3d8c5 pasqualina-vonlanthendinenna 2022-08-29 Build site.
html bdd516d pasqualina-vonlanthendinenna 2022-05-23 Build site.
html ae0f995 jens-daniel-mueller 2022-05-12 Build site.
Rmd 018f4b4 jens-daniel-mueller 2022-05-12 scaled DIC to 2019 (rather than 2015)
html 4173c20 jens-daniel-mueller 2022-05-12 Build site.
Rmd 78acca9 jens-daniel-mueller 2022-05-12 run with DIC clim scaled to 2016
html dfe89d7 jens-daniel-mueller 2022-05-12 Build site.
html 710edd4 jens-daniel-mueller 2022-05-11 Build site.
Rmd 2f20a76 jens-daniel-mueller 2022-05-11 rebuild all after subsetting AB profiles and code cleaning

Task

Explore the Broullón et al. (2020) DIC / TA climatology

This climatology is not currently used. As this markdown file takes several hours to run it can be excluded from the website refresh process.

library(tidyverse)
library(lubridate)
library(stars)
library(seacarb)
library(gsw)
path_argo <- '/nfs/kryo/work/updata/bgc_argo_r_argodata'
path_argo_preprocessed <- paste0(path_argo, "/preprocessed_bgc_data")
path_emlr_utilities <- "/nfs/kryo/work/jenmueller/emlr_cant/utilities/files/"
path_emlr_preprocessing <- "/nfs/kryo/work/jenmueller/emlr_cant/observations/preprocessing/"
path_updata <- '/nfs/kryo/work/updata'
path_broullon_clim <- paste0(path_updata, "/broullon_co2_monthly_climatology")
path_woa13_temp <- paste0(path_updata, "/woa2013/temperature/decav/1.00/")
path_woa13_sal <- paste0(path_updata, "/woa2013/salinity/decav/1.00/")
theme_set(theme_bw())
map <- map <-
  read_rds(paste(path_emlr_utilities,
                 "map_landmask_WOA18.rds",
                 sep = ""))

nm_biomes <- read_rds(file = paste0(path_argo_preprocessed, "/nm_biomes.rds"))


# WOA 18 basin mask

basinmask <-
  read_csv(
    paste(path_emlr_utilities,
          "basin_mask_WOA18.csv",
          sep = ""),
    col_types = cols("MLR_basins" = col_character())
  )

basinmask <- basinmask %>%
  filter(MLR_basins == unique(basinmask$MLR_basins)[1]) %>% 
  select(-c(MLR_basins, basin))

Load Broullon data

DIC

DIC_clim <- tidync::hyper_tibble(paste0(path_broullon_clim, "/TCO2_NNGv2LDEO_climatology.nc"))

nc_depth <- read_ncdf(paste0(path_broullon_clim, "/TCO2_NNGv2LDEO_climatology.nc"),
                             var = c("depth"))

nc_depth <- as_tibble(nc_depth)

nc_depth <- nc_depth %>% 
  mutate(depth_level = depth_level+0.5)

DIC_clim <- full_join(DIC_clim, nc_depth)

DIC_clim <- DIC_clim %>% 
  rename(DIC = TCO2_NNGv2LDEO,
         month = time)

rm(nc_depth)
# table(unique(DIC_clim$latitude))
# table(unique(DIC_clim$longitude))
# table(unique(DIC_clim$time))
# table(unique(DIC_clim$depth))

# text <- read_file(paste0(path_broullon_clim, "/README_global_monthly_2020.txt"))

# Depth goes down to 5500 m, but below 1500 m DIC is an annual climatological value, rather than a monthly climatological value 

TA

TA_clim <- tidync::hyper_tibble(paste0(path_broullon_clim, "/AT_NNGv2_climatology.nc"))

nc_depth <- read_ncdf(paste0(path_broullon_clim, "/AT_NNGv2_climatology.nc"),
                   var = c('depth'))
nc_depth <- as_tibble(nc_depth)

nc_depth <- nc_depth %>% 
  mutate(depth_level = depth_level+0.5)

TA_clim <- full_join(TA_clim, nc_depth)

rm(nc_depth)

# read_file(paste0(path_broullon_clim, "/README_Global_monthly_2019.txt"))

TA_clim <- TA_clim %>% 
  rename(TA = AT_NNGv2,
         month = time)

# Depth goes down to 5500 m, but below 1500 m TA is an annual climatological value, rather than a monthly climatological value 
pco2_clim <- tidync::hyper_tibble(paste0(path_broullon_clim, "/pCO2_NNGv2LDEO_climatology.nc"))

pco2_clim <- pco2_clim %>% 
  mutate(depth_level = 1) %>% 
  rename(pco2 = pCO2_NNGv2LDEO,
         month = time)

Join data

broullon_clim <- full_join(DIC_clim, TA_clim)
# broullon_clim <- full_join(broullon_clim, pco2_clim)

rm(DIC_clim, TA_clim)

Load WOA13 data

months <- sprintf("%02d", seq(1,12,1))

for (i_month in months) {
  # i_month <- months[1]

  
  # read temperature climatology
  woa13_temp <-
    read_ncdf(
      paste0(path_woa13_temp, "woa13_decav_t", i_month, "_01.nc"),
      var = "t_an",
      make_units = FALSE,
      make_time = FALSE
    )
  
  
  woa13_temp <- woa13_temp %>%
    as_tibble()
  
  woa13_temp <- woa13_temp %>%
    mutate(month = i_month) %>%
    select(-time) %>%
    rename(temp = t_an) %>%
    drop_na()
  
  
  # read salinity climatology
  woa13_sal <-
    read_ncdf(
      paste0(path_woa13_sal, "woa13_decav_s", i_month, "_01.nc"),
      var = "s_an",
      make_units = FALSE,
      make_time = FALSE
    )
  
  woa13_sal <- woa13_sal %>%
    as_tibble()
  
  woa13_sal <- woa13_sal %>%
    mutate(month = i_month) %>%
    select(-time) %>%
    rename(sal = s_an) %>%
    drop_na()
  
  
  # join temperature and salinity climatology
  woa13_temp <- full_join(woa13_temp,
                           woa13_sal)
  
  # bind months into joined data frame
  if (exists("woa13")) {
    woa13 <- bind_rows(woa13, woa13_temp)
  }
  
  if (!exists("woa13")) {
    woa13 <- woa13_temp
  }
  
}


woa13 <- woa13 %>% 
  mutate(month = as.numeric(month))

rm(woa13_temp, woa13_sal, months, i_month)

Harmonise data

# put longitude and latitude labels to the center of the grid (.5º)

broullon_clim <- broullon_clim %>% 
  rename(lon = longitude, 
         lat = latitude) %>% 
  select(-depth_level) %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))

broullon_clim <- broullon_clim %>% 
  drop_na()
# put longitude and latitude labels to the center of the grid (.5º)

woa13 <- woa13 %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))

Join Broullon/WOA13

broullon_clim <- full_join(broullon_clim,
                                   woa13)

# remove grid cells with only one sal value to allow for interpolation
broullon_clim <- broullon_clim %>%
  group_by(month, lat, lon) %>%
  mutate(n = sum(!is.na(sal))) %>%
  ungroup()

broullon_clim <- broullon_clim %>%
  filter(n > 1) %>%
  select(-n)

# interpolate sal/temp to broullon depth levels
broullon_clim <- broullon_clim %>%
  group_by(lon, lat, month) %>%
  arrange(depth) %>%
  mutate(sal := approxfun(depth, sal, rule = 2)(depth),
         temp := approxfun(depth, temp, rule = 2)(depth)) %>%
  ungroup()

# remove sal/temp data on original woa13 depth levels
broullon_clim <- broullon_clim %>% 
  filter(!is.na(DIC))

Apply basin mask

# subset Southerh Ocean data
broullon_clim_SO <- broullon_clim %>% 
  filter(lat <= -30,
         depth <= 2000)

# join regional separations 

broullon_clim_SO <- inner_join(broullon_clim_SO, nm_biomes)

broullon_clim_SO <- inner_join(broullon_clim_SO, basinmask)

broullon_clim <- inner_join(broullon_clim, basinmask)

Write all data

broullon_clim %>% 
  write_rds(file = paste0(path_argo_preprocessed, "/broullon_TA_DIC_clim_all.rds"))

Load Gruber 2019

G19_dcant_3d <-
  read_csv(paste0(path_emlr_preprocessing,
                  "G19_dcant_3d.csv"))


G19_dcant_3d <- G19_dcant_3d %>% 
  select(lon, lat, depth, dcant = dcant_pos)


G19_dcant_3d <- inner_join(G19_dcant_3d,
                           nm_biomes %>% select(lon, lat))

Scale DIC to 2016

# unique(G19_dcant_3d$depth)
# unique(broullon_clim_SO$depth)

broullon_clim_SO <-
  full_join(broullon_clim_SO,
            G19_dcant_3d %>% filter(depth <= 2000))

# remove grid cells with only one sal value to allow for interpolation
broullon_clim_SO <- broullon_clim_SO %>%
  group_by(month, lat, lon) %>%
  mutate(n = sum(!is.na(dcant))) %>%
  ungroup()

broullon_clim_SO <- broullon_clim_SO %>%
  filter(n > 1) %>%
  select(-n)

# interpolate dcant to Broullon clim depth levels
broullon_clim_SO <- broullon_clim_SO %>%
  group_by(lon, lat, month) %>%
  arrange(depth) %>%
  mutate(dcant := approxfun(depth, dcant, rule = 2)(depth)) %>%
  ungroup()

# remove sal/temp data on original woa13 depth levels
broullon_clim_SO <- broullon_clim_SO %>% 
  filter(!is.na(DIC))

broullon_clim_SO <- broullon_clim_SO %>% 
  mutate(DIC = DIC + dcant * ((2019-1995)/(2007-1994))) %>% 
  select(-dcant)

Calculate pH

rm(broullon_clim, woa13)

# calculate pressure from depth
broullon_clim_SO <- broullon_clim_SO %>% 
  mutate(pressure = gsw_p_from_z(z = -depth,
                                 latitude = lat))

# broullon_clim_SO <- broullon_clim_SO %>% 
#   arrange(lon, lat)
# 
# # calculate pHT from DIC, TA and ancillary parameters
# for (i_lon in unique(broullon_clim_SO$lon)) {
#   print("***")
#   print(i_lon)
#   
#   broullon_clim_SO_lon <- broullon_clim_SO %>%
#     filter(lon == i_lon)
#   
#   for (i_lat in unique(broullon_clim_SO_lon$lat)) {
#     print(i_lat)
#     
#     broullon_clim_SO_lon_lat <- 
#       broullon_clim_SO_lon %>%
#       filter(lat == i_lat) %>%
#       mutate(
#         pH = carb(
#           flag = 15,
#           var1 = TA * 1e-6,
#           var2 = DIC * 1e-6,
#           S = sal,
#           T = temp,
#           P = pressure / 10,
#           Pt = phosphate * 1e-6,
#           Sit = silicate * 1e-6,
#           k1k2 = "l"
#         )[,6]
#       )
#     
#       # bind months into joined data frame
#   if (exists("broullon_clim_SO_pH")) {
#     broullon_clim_SO_pH <- bind_rows(broullon_clim_SO_pH, broullon_clim_SO_lon_lat)
#   }
#   
#   if (!exists("broullon_clim_SO_pH")) {
#     broullon_clim_SO_pH <- broullon_clim_SO_lon_lat
#   }
#     
#   }
# }
#
# rm(broullon_clim_SO_lon_lat, broullon_clim_SO_lon)

broullon_clim_SO_pH <-
  broullon_clim_SO %>%
  mutate(
    pH = carb(
      flag = 15,
      var1 = TA * 1e-6,
      var2 = DIC * 1e-6,
      S = sal,
      T = temp,
      P = pressure / 10,
      Pt = phosphate * 1e-6,
      Sit = silicate * 1e-6,
      k1k2 = "l"
    )[, 6]
  )

Write SO+pH data

broullon_clim_SO_pH %>% 
  write_rds(file = paste0(path_argo_preprocessed, "/broullon_TA_DIC_clim_SO_pH.rds"))

Plot data

pH

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = pH))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) pH clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
80c16c2 ds2n19 2023-11-15
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = pH,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = pH,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim pH, month: ', unique(.x$month)),
           x = 'pH')
  )
[[1]]

Version Author Date
80c16c2 ds2n19 2023-11-15
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
80c16c2 ds2n19 2023-11-15
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

DIC

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = DIC))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) DIC clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = DIC,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = DIC,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim DIC, month: ', unique(.x$month)),
           x = 'DIC')
  )
[[1]]

Version Author Date
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
ae0f995 jens-daniel-mueller 2022-05-12
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

TA

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = TA))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) TA clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = TA,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = TA,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim TA, month: ', unique(.x$month)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

Oxygen

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = oxygen))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) oxygen clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = oxygen,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = oxygen,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim oxygen, month: ', unique(.x$month)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

Nitrate

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = nitrate))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) nitrate clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = nitrate,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = nitrate,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim nitrate, month: ', unique(.x$month)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

Phosphate

broullon_clim_SO_pH %>% 
  group_split(depth) %>% 
  head(2) %>% 
  map(
    ~map +
      geom_tile(data = .x, 
                aes(x = lon, 
                    y = lat, 
                    fill = phosphate))+
      scale_fill_viridis_c()+
      lims(y = c(-85, -28))+
      facet_wrap(~month, ncol = 2)+
      labs(title = paste0('Broullon et al. (2020) phosphate clim, depth: ', unique(.x$depth)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11
broullon_clim_SO_pH %>% 
  # filter(depth <= 1500) %>% 
  group_split(month) %>% 
  head(2) %>% 
  map(
    ~ ggplot(data = .x,
             aes(x = phosphate,
                 y = depth))+
      geom_point(data = .x, 
                 aes(x = phosphate,
                     y = depth),
                 size = 0.2,
                 pch = 1)+
      scale_y_reverse()+
      facet_grid(biome_name~basin_AIP)+
      labs(title = paste0('Broullon et al. clim phosphate, month: ', unique(.x$month)))
  )
[[1]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

[[2]]

Version Author Date
4173c20 jens-daniel-mueller 2022-05-12
710edd4 jens-daniel-mueller 2022-05-11

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] seacarb_3.3.1    SolveSAPHE_2.1.0 oce_1.7-10       gsw_1.1-1       
 [5] stars_0.6-0      sf_1.0-9         abind_1.4-5      lubridate_1.9.0 
 [9] timechange_0.1.1 forcats_0.5.2    stringr_1.5.0    dplyr_1.1.3     
[13] purrr_1.0.2      readr_2.1.3      tidyr_1.3.0      tibble_3.2.1    
[17] ggplot2_3.4.4    tidyverse_1.3.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.2            bit64_4.0.5         httr_1.4.4         
 [4] rprojroot_2.0.3     tools_4.2.2         backports_1.4.1    
 [7] bslib_0.4.1         utf8_1.2.2          R6_2.5.1           
[10] KernSmooth_2.23-20  DBI_1.1.3           colorspace_2.0-3   
[13] withr_2.5.0         tidyselect_1.2.0    bit_4.0.5          
[16] compiler_4.2.2      git2r_0.30.1        cli_3.6.1          
[19] rvest_1.0.3         RNetCDF_2.6-1       xml2_1.3.3         
[22] labeling_0.4.2      sass_0.4.4          scales_1.2.1       
[25] classInt_0.4-8      proxy_0.4-27        digest_0.6.30      
[28] rmarkdown_2.18      pkgconfig_2.0.3     htmltools_0.5.3    
[31] highr_0.9           dbplyr_2.2.1        fastmap_1.1.0      
[34] rlang_1.1.1         tidync_0.3.0        readxl_1.4.1       
[37] rstudioapi_0.15.0   farver_2.1.1        jquerylib_0.1.4    
[40] generics_0.1.3      jsonlite_1.8.3      vroom_1.6.0        
[43] googlesheets4_1.0.1 magrittr_2.0.3      ncmeta_0.3.5       
[46] Rcpp_1.0.10         munsell_0.5.0       fansi_1.0.3        
[49] lifecycle_1.0.3     stringi_1.7.8       whisker_0.4        
[52] yaml_2.3.6          grid_4.2.2          parallel_4.2.2     
[55] promises_1.2.0.1    crayon_1.5.2        haven_2.5.1        
[58] hms_1.1.2           knitr_1.41          pillar_1.9.0       
[61] reprex_2.0.2        glue_1.6.2          evaluate_0.18      
[64] modelr_0.1.10       vctrs_0.6.4         tzdb_0.3.0         
[67] httpuv_1.6.6        cellranger_1.1.0    gtable_0.3.1       
[70] assertthat_0.2.1    cachem_1.0.6        xfun_0.35          
[73] lwgeom_0.2-10       broom_1.0.5         e1071_1.7-12       
[76] later_1.3.0         viridisLite_0.4.1   ncdf4_1.19         
[79] class_7.3-20        googledrive_2.0.0   gargle_1.2.1       
[82] workflowr_1.7.0     units_0.8-0         ellipsis_0.3.2