Last updated: 2023-12-14
Checks: 7 0
Knit directory: bgc_argo_r_argodata/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20211008)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 64fd104. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: output/
Untracked files:
Untracked: code/doxy_vertical_align.Rmd
Untracked: code/nitrate_vertical_align.Rmd
Untracked: nitrate_align_climatology.Rmd
Unstaged changes:
Modified: analysis/_site.yml
Modified: analysis/combined_cluster_analysis.Rmd
Deleted: analysis/doxy_vertical_align.Rmd
Deleted: analysis/nitrate_vertical_align.Rmd
Deleted: code/doxy_align_climatology.Rmd
Deleted: code/load_clim_doxy_woa.Rmd
Modified: code/start_background_job.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown
(analysis/temp_ph_SO_cluster_analysis.Rmd
) and HTML
(docs/temp_ph_SO_cluster_analysis.html
) files. If you’ve
configured a remote Git repository (see ?wflow_git_remote
),
click on the hyperlinks in the table below to view the files as they
were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | f110b74 | ds2n19 | 2023-12-13 | Build site. |
html | 087d6fe | ds2n19 | 2023-12-07 | Build site. |
Rmd | 9e185d7 | ds2n19 | 2023-12-07 | Revised menu structure. |
Rmd | c5005d7 | ds2n19 | 2023-12-07 | Revised menu structure. |
html | e60ebd2 | ds2n19 | 2023-12-07 | Build site. |
Rmd | 83269d5 | ds2n19 | 2023-12-06 | changes to extreme temp |
This markdown file carries out cluster analysis on previously created bgc temperature anomaly profiles.
The cluster_analysis_determine_k chunk is used to give an indication of an appropriate number of clusers and this can then set the option opt_num_clusters. Chunk cluster_analysis_cluster_details carried out the cluster analysis and the results are used in subsequent figures.
location of pre-prepared data
Define options that are used to determine what analysis is done
# Options
# opt_analysis_type
# opt_analysis_type = 1 do analysis to determine number of clusters to use
# opt_analysis_type = 2 do cluster analysis and further analysis on the identified clusters
opt_analysis_type <- 2
# opt_num_clusters
# How many clusters are used in the cluster analysis for each depth 1 (600 m), 2 (1000 m) and 3 (1500 m)
opt_num_clusters_min <- c(8, 8, 4)
opt_num_clusters_max <- c(8, 8, 5)
# What is the max depth of each profile_range
opt_max_depth <- c(600, 1000, 1500)
# Which profile range is used
opt_profile_range <- 3
# opt_measure_label, opt_xlim and opt_xbreaks are associated with formatting
opt_measure_label <- "temperature anomaly (°C)"
opt_xlim <- c(-4.5, 4.5)
opt_xbreaks <- c(-4, -2, 0, 2, 4)
# adjusted to be in scale -1 to 1
opt_measure_label_adjusted <- "adjusted temperature anomaly"
opt_xlim_adjusted <- c(-1, 1)
opt_xbreaks_adjusted <- c(-1.0, -0.5, 0, 0.5, 1.0)
# options relating to cluster analysis
opt_n_start <- 15
opt_max_iterations <- 500
opt_n_clusters <- 14 # Max number of clusters to try when determining optimal number of clusters
# opt_extreme_determination
# 1 - based on the trend of de-seasonal data - we believe this results in more summer extremes where variation tend to be greater.
# 2 - based on the trend of de-seasonal data by month. grouping is by lat, lon and month.
opt_extreme_determination <- 2
# Options associated with profiles under surface extreme conditions
# Carried out for 1500m profiles
opt_profile_range = 3
extreme_type <- c('L', 'N', 'H')
opt_num_clusters_ext_min <- c(4, 4, 4)
opt_num_clusters_ext_max <- c(5, 5, 5)
# Option related to normalising the anomaly profiles.
# TRUE - anomaly profiles are normalised by the surface anomaly. Every depth anomaly is divided by the surface anomaly.
# - The is only carried out for profiles where the abs(surface temp) > 1.
# - This analysis is carried out in addition to the analysis on base anomaly profiles.
# FALSE - The normalisation process is not carried out.
opt_norm_anomaly <- TRUE
theme_set(theme_bw())
map <-
read_rds(paste(path_emlr_utilities,
"map_landmask_WOA18.rds",
sep = ""))
Prepare data for cluster analysis
# SO pH
# Add restrictions to ensure SO and there is also a pH profile
# read data
temp_anomaly_va <- read_rds(file = paste0(path_argo_preprocessed, "/temp_anomaly_va.rds")) %>%
filter (lat < -30)
bgc_ph <- read_rds(file = paste0(path_argo_preprocessed, "/pH_bgc_va.rds"))
temp_anomaly_va <- inner_join(temp_anomaly_va, bgc_ph %>% distinct(file_id))
# select profile based on profile_range and he appropriate max depth
temp_anomaly_va <- temp_anomaly_va %>%
filter(profile_range == opt_profile_range & depth <= opt_max_depth[opt_profile_range])
# Simplified table ready to pivot
temp_anomaly_va_id <- temp_anomaly_va %>%
select(file_id,
depth,
anomaly,
year,
month,
lat,
lon)
# wide table with each depth becoming a column
temp_anomaly_va_wide <- temp_anomaly_va_id %>%
select(file_id, depth, anomaly) %>%
pivot_wider(names_from = depth, values_from = anomaly)
# Drop any rows with missing values N/A caused by gaps in climatology data
temp_anomaly_va_wide <- temp_anomaly_va_wide %>%
drop_na()
# Table for cluster analysis
points <- temp_anomaly_va_wide %>%
column_to_rownames(var = "file_id")
# normalisation?
if (opt_norm_anomaly) {
surf_anomaly <- abs(temp_anomaly_va_id %>%
filter (depth == 5) %>%
select (file_id, abs_sa = anomaly))
# Get the maximum anomaly for each profile - the normalisation will then fit max to 1
surf_anomaly <- temp_anomaly_va_id %>%
group_by(file_id) %>%
summarise(abs_sa = max(abs(anomaly))) %>%
ungroup() %>%
select (file_id, abs_sa)
temp_anomaly_va_id_normalised <- left_join(temp_anomaly_va_id, surf_anomaly)
#temp_anomaly_va_id_normalised <- temp_anomaly_va_id_normalised %>%
# mutate(anomaly = if_else(abs_sa > 1.0, anomaly/abs_sa, anomaly))
temp_anomaly_va_id_normalised <- temp_anomaly_va_id_normalised %>%
mutate(anomaly = anomaly/abs_sa)
# wide table with each depth becoming a column
temp_anomaly_va_wide <- temp_anomaly_va_id_normalised %>%
select(file_id, depth, anomaly) %>%
pivot_wider(names_from = depth, values_from = anomaly)
# Drop any rows with missing values N/A caused by gaps in climatology data
temp_anomaly_va_wide <- temp_anomaly_va_wide %>%
drop_na()
# Table for cluster analysis
points_normalised <- temp_anomaly_va_wide %>%
column_to_rownames(var = "file_id")
}
if (opt_analysis_type == 1) {
# cluster analysis - What k? try between 1 and opt_n_clusters clusters
kclusts <-
tibble(k = 1:opt_n_clusters) %>%
mutate(
kclust = map(k, ~kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, points)
)
# cluster analysis data
# clusters <-
# kclusts %>%
# unnest(cols = c(tidied))
#
# assignments <-
# kclusts %>%
# unnest(cols = c(augmented))
clusterings <-
kclusts %>%
unnest(cols = c(glanced))
# What cluster works best?
clusterings %>%
ggplot(aes(k, tot.withinss)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = c(2, 4, 6, 8, 10, 12, 14)) +
labs(
title = paste0('within ss by number of clusters: ', opt_max_depth[i_range], ' m profiles'),
x = 'number of clusters',
y = 'within ss'
)
}
Based on all floats regardless of surface condition.
if (opt_analysis_type == 2) {
for (iType in 1:2) {
for (inum_clusters in opt_num_clusters_min[opt_profile_range]:opt_num_clusters_max[opt_profile_range]) {
if (iType == 1) {
set.seed(1)
kclusts <-
tibble(k = inum_clusters) %>%
mutate(kclust = map(k, ~ kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, points)
)
profile_id <-
kclusts %>%
unnest(cols = c(augmented)) %>%
select(file_id = .rownames,
cluster = .cluster) %>%
mutate(file_id = as.numeric(file_id),
cluster = as.character(cluster))
# Add cluster to temp_anomaly_va
temp_anomaly_cluster <-
full_join(temp_anomaly_va_id, profile_id)
# Add profile_type field
temp_anomaly_cluster <- temp_anomaly_cluster %>%
mutate(profile_type = 'base')
# Check null clusters
temp_anomaly_cluster <- temp_anomaly_cluster %>%
filter(!is.na(cluster))
# Create table to be used for later analysis and Set the number of clusters field
if (!exists('temp_anomaly_cluster_all')) {
temp_anomaly_cluster_all <- temp_anomaly_cluster %>%
mutate(num_clusters = inum_clusters)
} else {
temp_anomaly_cluster_all <-
rbind(
temp_anomaly_cluster_all,
temp_anomaly_cluster %>%
mutate(num_clusters = inum_clusters)
)
}
} else if (iType == 2 & opt_norm_anomaly) {
set.seed(1)
kclusts <-
tibble(k = inum_clusters) %>%
mutate(kclust = map(k, ~ kmeans(points_normalised, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, points)
)
profile_id <-
kclusts %>%
unnest(cols = c(augmented)) %>%
select(file_id = .rownames,
cluster = .cluster) %>%
mutate(file_id = as.numeric(file_id),
cluster = as.character(cluster))
# Add cluster to temp_anomaly_va
temp_anomaly_cluster_norm <-
full_join(temp_anomaly_va_id_normalised %>% select(-c(abs_sa)) ,
profile_id)
# Add profile_type field
temp_anomaly_cluster_norm <- temp_anomaly_cluster_norm %>%
mutate(profile_type = 'adjusted')
# Check null clusters
temp_anomaly_cluster_norm <- temp_anomaly_cluster_norm %>%
filter(!is.na(cluster))
# Create table to be used for later analysis and Set the number of clusters field
if (!exists('temp_anomaly_cluster_all')) {
temp_anomaly_cluster_all <- temp_anomaly_cluster_norm %>%
mutate(num_clusters = inum_clusters)
} else {
temp_anomaly_cluster_all <-
rbind(
temp_anomaly_cluster_all,
temp_anomaly_cluster_norm %>%
mutate(num_clusters = inum_clusters)
)
}
}
}
}
# Plot cluster mean
anomaly_cluster_mean <- temp_anomaly_cluster_all %>%
group_by(profile_type, num_clusters, cluster, depth) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_cluster_mean_year <- temp_anomaly_cluster_all %>%
group_by(profile_type, num_clusters, cluster, depth, year) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_year_mean <- temp_anomaly_cluster_all %>%
group_by(profile_type, num_clusters, cluster, year) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_year_mean <- anomaly_year_mean %>%
group_by(profile_type, num_clusters, year) %>%
summarise(anomaly_mean = mean(anomaly_mean, na.rm = TRUE)) %>%
ungroup ()
# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_all %>%
count(profile_type, num_clusters, file_id, cluster, year,
name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>%
count(profile_type, num_clusters, cluster, year,
name = "count_cluster")
# total of each type of cluster
cluster_count <- cluster_by_year %>%
group_by(profile_type, num_clusters, cluster) %>%
summarise(count_profiles = sum(count_cluster)) %>%
ungroup()
anomaly_cluster_mean <- left_join(anomaly_cluster_mean, cluster_count)
# create figure of cluster mean profiles
anomaly_cluster_mean %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x,) +
geom_path(aes(x = anomaly_mean,
y = depth)) +
geom_ribbon(
aes(
xmax = anomaly_mean + anomaly_sd,
xmin = anomaly_mean - anomaly_sd,
y = depth
),
alpha = 0.2
) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
coord_cartesian(xlim = opt_xlim) +
scale_x_continuous(breaks = opt_xbreaks) +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = opt_measure_label,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
# repeat for adjusted profiles profiles
anomaly_cluster_mean %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x,) +
geom_path(aes(x = anomaly_mean,
y = depth)) +
geom_ribbon(
aes(
xmax = anomaly_mean + anomaly_sd,
xmin = anomaly_mean - anomaly_sd,
y = depth
),
alpha = 0.2
) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
coord_cartesian(xlim = opt_xlim_adjusted) +
scale_x_continuous(breaks = opt_xbreaks_adjusted) +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = opt_measure_label_adjusted,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
if (opt_analysis_type == 2) {
# cluster means by year
anomaly_cluster_mean_year %>%
filter (profile_type == "base") %>%
mutate(year = as.factor(year)) %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x, ) +
geom_path(aes(
x = anomaly_mean,
y = depth,
col = year
)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ cluster) +
coord_cartesian(xlim = opt_xlim) +
scale_x_continuous(breaks = opt_xbreaks) +
scale_color_viridis_d() +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = opt_measure_label,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
# Repeat for adjusted profiles
anomaly_cluster_mean_year %>%
filter (profile_type == "adjusted") %>%
mutate(year = as.factor(year)) %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x, ) +
geom_path(aes(
x = anomaly_mean,
y = depth,
col = year
)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ cluster) +
coord_cartesian(xlim = opt_xlim_adjusted) +
scale_x_continuous(breaks = opt_xbreaks_adjusted) +
scale_color_viridis_d() +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = opt_measure_label_adjusted,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
Cluster climatology
# A nice short alternative, uses the package ggpmisc
anomaly_year_mean %>%
ggplot(aes(x = year,
y = anomaly_mean)) +
stat_poly_line() +
stat_poly_eq(use_label(c("eq", "R2","P", "n"))) +
geom_point()
count of each cluster by year
if (opt_analysis_type == 2) {
year_min <- min(cluster_by_year$year)
year_max <- max(cluster_by_year$year)
# create figure
cluster_by_year %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x, aes(
x = year,
y = count_cluster,
col = cluster,
group = cluster
)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
title = paste0(
'Count of profiles by year and cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = 'year',
y = 'number of profiles',
col = 'cluster'
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
year_min <- min(cluster_by_year$year)
year_max <- max(cluster_by_year$year)
# create figure
cluster_by_year %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(data = .x, aes(
x = year,
y = count_cluster,
col = cluster,
group = cluster
)) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
title = paste0(
'Count of profiles by year and cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = 'year',
y = 'number of profiles',
col = 'cluster'
)
)
}
[[1]]
[[2]]
count of each cluster by month of year
if (opt_analysis_type == 2) {
# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_all %>%
count(profile_type, num_clusters, file_id, cluster, month,
name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>%
count(profile_type, num_clusters, cluster, month,
name = "count_cluster")
# create figure
cluster_by_year %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(
data = .x,
aes(
x = month,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 12, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
title = paste0(
'Count of profiles by month and cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = 'month',
y = 'number of profiles',
col = 'cluster'
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure
cluster_by_year %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters) %>%
map(
~ ggplot(
data = .x,
aes(
x = month,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 12, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
title = paste0(
'Count of profiles by month and cluster \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
x = 'month',
y = 'number of profiles',
col = 'cluster'
)
)
}
[[1]]
[[2]]
location of each cluster on map, spatial analysis
if (opt_analysis_type == 2) {
# create figure
temp_anomaly_cluster_all %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
lims(y = c(-85,-30)) +
scale_fill_brewer(palette = 'Dark2') +
labs(
title = paste0(
'cluster spatial distribution \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure
temp_anomaly_cluster_all %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
lims(y = c(-85,-30)) +
scale_fill_brewer(palette = 'Dark2') +
labs(
title = paste0(
'cluster spatial distribution \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
),
)
)
}
[[1]]
[[2]]
location of each cluster on separate maps, spatial analysis
if (opt_analysis_type == 2) {
# create figure
map +
geom_tile(data = temp_anomaly_cluster,
aes(x = lon,
y = lat,
fill = cluster)) +
lims(y = c(-85, -30)) +
scale_fill_brewer(palette = 'Dark2') +
facet_wrap( ~ cluster, ncol = 2) +
labs(title = 'cluster spatial distribution')
}
count of measurements for each cluster on separate maps, spatial analysis
if (opt_analysis_type == 2) {
# Count profiles
cluster_by_location <- temp_anomaly_cluster_all %>%
count(profile_type, num_clusters, file_id, lat, lon, cluster,
name = "count_cluster")
# create figure
cluster_by_location %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters) %>%
map(
~ map +
geom_tile(data = .x %>%
count(lat, lon, cluster),
aes(
x = lon,
y = lat,
fill = n
)) +
lims(y = c(-85,-30)) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log10") +
facet_wrap(~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure
cluster_by_location %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters) %>%
map(
~ map +
geom_tile(data = .x %>%
count(lat, lon, cluster),
aes(
x = lon,
y = lat,
fill = n
)) +
lims(y = c(-85,-30)) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log10") +
facet_wrap(~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution \n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
location of each cluster on map, spatial analysis by year
if (opt_analysis_type == 2) {
# create figure
temp_anomaly_cluster_all %>%
group_split(profile_type, num_clusters, year) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
#lims(y = c(-85, -30))+
scale_fill_brewer(palette = 'Dark2') +
facet_wrap(~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution ', unique(.x$year), '\n',
'type = ', unique(.x$profile_type), ', ',
'num clusters = ', unique(.x$num_clusters)
)
)
)
}
# ---------------------------------------------------------------------------------------------
# read data
# ---------------------------------------------------------------------------------------------
# load previously created OceanSODA extreme data. date, position and nature of extreme
if (opt_extreme_determination == 1){
temp_extreme <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds")) %>%
select(lon, lat, date, temp_extreme)
} else if (opt_extreme_determination == 2){
temp_extreme <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds")) %>%
select(lon, lat, date, temp_extreme)
}
# -------------------------------------------------------------------------------------------------------------
# Temp - review incidences of extremes based on method.
# -------------------------------------------------------------------------------------------------------------
#
# temp_extreme_info_01 <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_01.rds")) %>%
# select(lon, lat, date, temp_extreme)
#
# temp_extreme_info_01 <- temp_extreme_info_01 %>%
# group_by(temp_extreme, date) %>%
# summarise(n = n()) %>%
# ungroup()
#
# temp_extreme_info_01 %>%
# filter (temp_extreme %in% c('H', 'L') & date >= '2013-01-01') %>%
# ggplot(aes(
# x = date,
# y = n,
# col = temp_extreme
# )) +
# geom_point() +
# geom_line() +
# lims(y = c(0,3200)) +
# labs(
# x = 'date',
# y = 'number of extreme pixels',
# col = 'extreme type',
# title = paste0(
# 'Count of extreme pixels - single trend'
# )
# )
#
#
# temp_extreme_info_02 <- read_rds(file = paste0(path_argo_preprocessed, "/OceanSODA_SST_anomaly_field_02.rds")) %>%
# select(lon, lat, date, temp_extreme)
#
# temp_extreme_info_02 <- temp_extreme_info_02 %>%
# group_by(temp_extreme, date) %>%
# summarise(n = n()) %>%
# ungroup()
#
# temp_extreme_info_02 %>%
# filter (temp_extreme %in% c('H', 'L') & date >= '2013-01-01') %>%
# ggplot(aes(
# x = date,
# y = n,
# col = temp_extreme
# )) +
# geom_point() +
# geom_line() +
# lims(y = c(0,3200)) +
# labs(
# x = 'date',
# y = 'number of extreme pixels',
# col = 'extreme type',
# title = paste0(
# 'Count of extreme pixels - monthly trends'
# )
# )
#
# -------------------------------------------------------------------------------------------------------------
# SO pH
# Add restrictions to ensure SO and there is also a pH profile
# read data
temp_anomaly_va <- read_rds(file = paste0(path_argo_preprocessed, "/temp_anomaly_va.rds")) %>%
filter (lat < -30)
bgc_ph <- read_rds(file = paste0(path_argo_preprocessed, "/pH_bgc_va.rds"))
temp_anomaly_va <- inner_join(temp_anomaly_va, bgc_ph %>% distinct(file_id))
# date to match to ocean SODA
temp_anomaly_va <- temp_anomaly_va %>%
mutate(date = ymd(format(date, "%Y-%m-15")))
# Add the OceanSODA extreme condition
temp_anomaly_va <- left_join(temp_anomaly_va, temp_extreme)
# If temp_extreme is NA set it to N
temp_anomaly_va <- temp_anomaly_va %>% replace_na(list(temp_extreme = 'N'))
temp_anomaly_va <- temp_anomaly_va %>% mutate (profile_type = 'base')
# Create a replica data set with profile_type = adjusted
if (opt_norm_anomaly){
# mark as adjusted
temp_anomaly_va_norm <- temp_anomaly_va %>% mutate (profile_type = 'adjusted')
# Determine surface anomaly for each profile
# surf_anomaly <- abs(temp_anomaly_va_norm %>%
# filter (depth == 5) %>%
# select (file_id, abs_sa = anomaly))
# Get the maximum anomaly for each profile - the normalisation will then fit max to 1
surf_anomaly <- temp_anomaly_va %>%
group_by(file_id) %>%
summarise(abs_sa = max(abs(anomaly))) %>%
ungroup() %>%
select (file_id, abs_sa)
temp_anomaly_va_norm <- left_join(temp_anomaly_va_norm, surf_anomaly)
# Carry out the adjustment
#temp_anomaly_va_norm <- temp_anomaly_va_norm %>%
# mutate(anomaly = if_else(abs_sa > 1.0, anomaly/abs_sa, anomaly))
temp_anomaly_va_norm <- temp_anomaly_va_norm %>%
mutate(anomaly = anomaly/abs_sa)
#remove the surface anomaly field
temp_anomaly_va_norm <- temp_anomaly_va_norm %>% select(-c(abs_sa))
# Append to base profiles
temp_anomaly_va <- rbind(temp_anomaly_va, temp_anomaly_va_norm)
}
profile_types <- c('adjusted', 'base')
# loop through profile_type
for (iprofile_type in 1:2) {
sel_profile_type = profile_types[iprofile_type]
# loop through surface condition
for (i in 1:3) {
# ---------------------------------------------------------------------------------------------
# Preparation
# ---------------------------------------------------------------------------------------------
# select profile based on profile_range and he appropriate max depth
temp_anomaly_va_id <- temp_anomaly_va %>%
filter(profile_range == opt_profile_range & depth <= opt_max_depth[opt_profile_range] & temp_extreme == extreme_type[i] & profile_type == sel_profile_type)
# Simplified table ready to pivot
temp_anomaly_va_id <- temp_anomaly_va_id %>%
select(file_id,
depth,
anomaly,
year,
month,
lat,
lon)
# wide table with each depth becoming a column
temp_anomaly_va_wide <- temp_anomaly_va_id %>%
select(file_id, depth, anomaly) %>%
pivot_wider(names_from = depth, values_from = anomaly)
# Drop any rows with missing values N/A caused by gaps in climatology data
temp_anomaly_va_wide <- temp_anomaly_va_wide %>%
drop_na()
# Table for cluster analysis
points <- temp_anomaly_va_wide %>%
column_to_rownames(var = "file_id")
# ---------------------------------------------------------------------------------------------
# cluster analysis
# ---------------------------------------------------------------------------------------------
# loop through number of clusters
for (inum_clusters in opt_num_clusters_ext_min[i]:opt_num_clusters_ext_max[i]) {
set.seed(1)
kclusts <-
tibble(k = inum_clusters) %>%
mutate(
kclust = map(k, ~ kmeans(points, .x, iter.max = opt_max_iterations, nstart = opt_n_start)),
tidied = map(kclust, tidy),
glanced = map(kclust, glance),
augmented = map(kclust, augment, points)
)
profile_id <-
kclusts %>%
unnest(cols = c(augmented)) %>%
select(file_id = .rownames,
cluster = .cluster) %>%
mutate(file_id = as.numeric(file_id),
cluster = as.character(cluster))
# Add cluster to temp_anomaly_va
temp_anomaly_cluster <- full_join(temp_anomaly_va_id, profile_id)
# Plot cluster mean
temp_anomaly_cluster <- temp_anomaly_cluster %>%
filter(!is.na(cluster))
# cluster mean
anomaly_cluster_mean <- temp_anomaly_cluster %>%
group_by(cluster, depth) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_cluster_mean_year <- temp_anomaly_cluster %>%
group_by(cluster, depth, year) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_year_mean <- temp_anomaly_cluster %>%
group_by(cluster, year) %>%
summarise(
count_cluster = n(),
anomaly_mean = mean(anomaly, na.rm = TRUE),
anomaly_sd = sd(anomaly, na.rm = TRUE)
) %>%
ungroup()
anomaly_year_mean <- anomaly_year_mean %>%
group_by(year) %>%
summarise(anomaly_mean = mean(anomaly_mean, na.rm = TRUE)) %>%
ungroup ()
if (!exists('anomaly_cluster_mean_ext')) {
anomaly_cluster_mean_ext <-
anomaly_cluster_mean %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
anomaly_cluster_mean_year_ext <-
anomaly_cluster_mean_year %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
anomaly_year_mean_ext <-
anomaly_year_mean %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
temp_anomaly_cluster_ext <-
temp_anomaly_cluster %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
} else {
anomaly_cluster_mean_ext <-
rbind(
anomaly_cluster_mean_ext,
anomaly_cluster_mean %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
)
anomaly_cluster_mean_year_ext <-
rbind(
anomaly_cluster_mean_year_ext,
anomaly_cluster_mean_year %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
)
anomaly_year_mean_ext <-
rbind(
anomaly_year_mean_ext,
anomaly_year_mean %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
)
temp_anomaly_cluster_ext <-
rbind(
temp_anomaly_cluster_ext,
temp_anomaly_cluster_ext <-
temp_anomaly_cluster %>% mutate(
temp_extreme_order = i,
temp_extreme = extreme_type[i],
num_clusters = inum_clusters,
profile_type = sel_profile_type
)
)
}
}
}
}
# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>%
count(profile_type, num_clusters, temp_extreme, temp_extreme_order, file_id, cluster, year,
name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>%
count(profile_type, num_clusters, temp_extreme, temp_extreme_order, cluster, year,
name = "count_cluster")
# total of each type of cluster
cluster_count <- cluster_by_year %>%
group_by(profile_type, num_clusters, temp_extreme, temp_extreme_order, cluster) %>%
summarise(count_profiles = sum(count_cluster)) %>%
ungroup()
anomaly_cluster_mean_ext <- left_join(anomaly_cluster_mean_ext, cluster_count)
# create figure of cluster mean profiles
anomaly_cluster_mean_ext %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(data = .x, ) +
geom_path(aes(x = anomaly_mean,
y = depth)) +
geom_ribbon(
aes(
xmax = anomaly_mean + anomaly_sd,
xmin = anomaly_mean - anomaly_sd,
y = depth
),
alpha = 0.2
) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
#facet_wrap(~ cluster) +
facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
coord_cartesian(xlim = opt_xlim) +
scale_x_continuous(breaks = opt_xbreaks) +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
),
x = opt_measure_label,
y = 'depth (m)'
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure of cluster mean profiles
anomaly_cluster_mean_ext %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(data = .x, ) +
geom_path(aes(x = anomaly_mean,
y = depth)) +
geom_ribbon(
aes(
xmax = anomaly_mean + anomaly_sd,
xmin = anomaly_mean - anomaly_sd,
y = depth
),
alpha = 0.2
) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
#facet_wrap(~ cluster) +
facet_wrap(~ paste0(cluster, " (", formatC(count_profiles, big.mark=",") , ")")) +
coord_cartesian(xlim = opt_xlim_adjusted) +
scale_x_continuous(breaks = opt_xbreaks_adjusted) +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
),
x = opt_measure_label_adjusted,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
# cluster means by year
anomaly_cluster_mean_year_ext %>%
filter (profile_type == "base") %>%
mutate(year = as.factor(year)) %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(data = .x,) +
geom_path(aes(
x = anomaly_mean,
y = depth,
col = year
)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ cluster) +
coord_cartesian(xlim = opt_xlim) +
scale_x_continuous(breaks = opt_xbreaks) +
scale_color_viridis_d() +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster by year \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
),
x = opt_measure_label,
y = 'depth (m)'
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
# cluster means by year
anomaly_cluster_mean_year_ext %>%
filter (profile_type == "adjusted") %>%
mutate(year = as.factor(year)) %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(data = .x,) +
geom_path(aes(
x = anomaly_mean,
y = depth,
col = year
)) +
geom_vline(xintercept = 0) +
scale_y_reverse() +
facet_wrap(~ cluster) +
coord_cartesian(xlim = opt_xlim_adjusted) +
scale_x_continuous(breaks = opt_xbreaks_adjusted) +
scale_color_viridis_d() +
labs(
title = paste0(
'Overall mean anomaly profiles by cluster by year \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
),
x = opt_measure_label_adjusted,
y = 'depth (m)'
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
count of each cluster by year
# Determine profile count by extreme and cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>%
count(file_id, profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, year,
name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>%
count(profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, year,
name = "count_cluster")
year_min <- min(cluster_by_year$year)
year_max <- max(cluster_by_year$year)
# create figure
cluster_by_year %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(
data = .x,
aes(
x = year,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
x = 'year',
y = 'number of profiles',
col = 'cluster',
title = paste0(
'Count of profiles by year and cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure
cluster_by_year %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(
data = .x,
aes(
x = year,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(year_min, year_max, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
x = 'year',
y = 'number of profiles',
col = 'cluster',
title = paste0(
'Count of profiles by year and cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
count of each cluster by month of year
# Determine profile count by cluster and year
# Count the measurements
cluster_by_year <- temp_anomaly_cluster_ext %>%
count(file_id, profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, month,
name = "count_cluster")
# Convert to profiles
cluster_by_year <- cluster_by_year %>%
count(profile_type, num_clusters, temp_extreme_order, temp_extreme, cluster, month,
name = "count_cluster")
# create figure
cluster_by_year %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(
data = .x,
aes(
x = month,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 12, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
x = 'month',
y = 'number of profiles',
col = 'cluster',
title = paste0(
'Count of profiles by month and cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure
cluster_by_year %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ ggplot(
data = .x,
aes(
x = month,
y = count_cluster,
col = cluster,
group = cluster
)
) +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(1, 12, 2)) +
scale_color_brewer(palette = 'Dark2') +
labs(
x = 'month',
y = 'number of profiles',
col = 'cluster',
title = paste0(
'Count of profiles by month and cluster \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
location of each cluster on map, spatial analysis
# create figure combined
temp_anomaly_cluster_ext %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
lims(y = c(-85,-30)) +
scale_fill_brewer(palette = 'Dark2') +
labs(
title = paste0(
'cluster spatial distribution \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
# create figure combined
temp_anomaly_cluster_ext %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
lims(y = c(-85,-30)) +
scale_fill_brewer(palette = 'Dark2') +
labs(
title = paste0(
'cluster spatial distribution \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
location of each cluster on map, spatial analysis
# create figure by cluster
temp_anomaly_cluster_ext %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ map +
geom_tile(data = .x,
aes(
x = lon,
y = lat,
fill = cluster
)) +
lims(y = c(-85,-30)) +
scale_fill_brewer(palette = 'Dark2') +
facet_wrap( ~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
location of each cluster on map, spatial analysis
# Count profiles
cluster_by_location <- temp_anomaly_cluster_ext %>%
count(profile_type, num_clusters, temp_extreme_order, temp_extreme, file_id, lat, lon, cluster,
name = "count_cluster")
# create figure
cluster_by_location %>%
filter (profile_type == "base") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ map +
geom_tile(data = .x %>%
count(lat, lon, cluster),
aes(
x = lon,
y = lat,
fill = n
)) +
lims(y = c(-85,-30)) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log10") +
facet_wrap(~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
Adjusted profiles
if (opt_norm_anomaly) {
cluster_by_location %>%
filter (profile_type == "adjusted") %>%
group_split(profile_type, num_clusters, temp_extreme_order) %>%
map(
~ map +
geom_tile(data = .x %>%
count(lat, lon, cluster),
aes(
x = lon,
y = lat,
fill = n
)) +
lims(y = c(-85,-30)) +
scale_fill_gradient(low = "blue",
high = "red",
trans = "log10") +
facet_wrap(~ cluster, ncol = 2) +
labs(
title = paste0(
'cluster spatial distribution \n',
'profile type: ', unique(.x$profile_type), ', ',
'surface extreme: ', unique(.x$temp_extreme), ', ',
'number clusters: ', unique(.x$num_clusters)
)
)
)
}
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] yardstick_1.2.0 workflowsets_1.0.1 workflows_1.1.3 tune_1.1.2
[5] rsample_1.2.0 recipes_1.0.8 parsnip_1.1.1 modeldata_1.2.0
[9] infer_1.0.5 dials_1.2.0 scales_1.2.1 broom_1.0.5
[13] tidymodels_1.1.1 ggpmisc_0.5.4-1 ggpp_0.5.5 ggforce_0.4.1
[17] gsw_1.1-1 gridExtra_2.3 lubridate_1.9.0 timechange_0.1.1
[21] argodata_0.1.0 forcats_0.5.2 stringr_1.5.0 dplyr_1.1.3
[25] purrr_1.0.2 readr_2.1.3 tidyr_1.3.0 tibble_3.2.1
[29] ggplot2_3.4.4 tidyverse_1.3.2
loaded via a namespace (and not attached):
[1] googledrive_2.0.0 colorspace_2.0-3 ellipsis_0.3.2
[4] class_7.3-20 rprojroot_2.0.3 fs_1.5.2
[7] rstudioapi_0.15.0 furrr_0.3.1 listenv_0.8.0
[10] farver_2.1.1 MatrixModels_0.5-1 prodlim_2019.11.13
[13] fansi_1.0.3 xml2_1.3.3 codetools_0.2-18
[16] splines_4.2.2 cachem_1.0.6 knitr_1.41
[19] polyclip_1.10-4 polynom_1.4-1 jsonlite_1.8.3
[22] workflowr_1.7.0 dbplyr_2.2.1 compiler_4.2.2
[25] httr_1.4.4 backports_1.4.1 assertthat_0.2.1
[28] Matrix_1.5-3 fastmap_1.1.0 gargle_1.2.1
[31] cli_3.6.1 later_1.3.0 tweenr_2.0.2
[34] htmltools_0.5.3 quantreg_5.94 tools_4.2.2
[37] gtable_0.3.1 glue_1.6.2 Rcpp_1.0.10
[40] cellranger_1.1.0 jquerylib_0.1.4 RNetCDF_2.6-1
[43] DiceDesign_1.9 vctrs_0.6.4 iterators_1.0.14
[46] timeDate_4021.106 xfun_0.35 gower_1.0.0
[49] globals_0.16.2 rvest_1.0.3 lifecycle_1.0.3
[52] googlesheets4_1.0.1 future_1.29.0 MASS_7.3-58.1
[55] ipred_0.9-13 hms_1.1.2 promises_1.2.0.1
[58] parallel_4.2.2 SparseM_1.81 RColorBrewer_1.1-3
[61] yaml_2.3.6 sass_0.4.4 rpart_4.1.19
[64] stringi_1.7.8 highr_0.9 foreach_1.5.2
[67] lhs_1.1.6 hardhat_1.3.0 lava_1.7.0
[70] rlang_1.1.1 pkgconfig_2.0.3 evaluate_0.18
[73] lattice_0.20-45 labeling_0.4.2 tidyselect_1.2.0
[76] parallelly_1.32.1 magrittr_2.0.3 R6_2.5.1
[79] generics_0.1.3 DBI_1.1.3 pillar_1.9.0
[82] haven_2.5.1 whisker_0.4 withr_2.5.0
[85] survival_3.4-0 nnet_7.3-18 future.apply_1.10.0
[88] modelr_0.1.10 crayon_1.5.2 utf8_1.2.2
[91] tzdb_0.3.0 rmarkdown_2.18 grid_4.2.2
[94] readxl_1.4.1 git2r_0.30.1 reprex_2.0.2
[97] digest_0.6.30 httpuv_1.6.6 GPfit_1.0-8
[100] munsell_0.5.0 viridisLite_0.4.1 bslib_0.4.1