Last updated: 2021-01-25
Checks: 7 0
Knit directory: emlr_mod_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version bc7b183. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Unstaged changes:
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_predictor_preparation.Rmd
) and HTML (docs/mapping_predictor_preparation.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 8b97165 | Donghe-Zhu | 2021-01-25 | Build site. |
Rmd | c41c01f | Donghe-Zhu | 2021-01-25 | OXYGEN REPLACE AOU |
html | c569946 | Donghe-Zhu | 2021-01-24 | Build site. |
html | a2f0d56 | Donghe-Zhu | 2021-01-23 | Build site. |
html | 28509fc | Donghe-Zhu | 2021-01-23 | Build site. |
html | 4c28e4a | Donghe-Zhu | 2021-01-22 | Build site. |
html | 24cc264 | jens-daniel-mueller | 2021-01-22 | cleaned /docs before creating copies |
html | 88eb28f | Donghe-Zhu | 2021-01-21 | Build site. |
html | 2679490 | Donghe-Zhu | 2021-01-21 | Build site. |
html | 7891955 | Donghe-Zhu | 2021-01-21 | Build site. |
html | d4cf1cb | Donghe-Zhu | 2021-01-21 | Build site. |
html | 1f3e5b6 | jens-daniel-mueller | 2021-01-20 | Build site. |
Rmd | 30afcd9 | jens-daniel-mueller | 2021-01-20 | local rebuild after revision |
html | 0e7bdf1 | jens-daniel-mueller | 2021-01-15 | cleaning template repository |
html | 73cbef3 | jens-daniel-mueller | 2021-01-15 | Build site. |
html | 4571843 | jens-daniel-mueller | 2021-01-14 | revision and html deleted for template copying |
html | 23151cd | jens-daniel-mueller | 2021-01-14 | Build site. |
html | b3564aa | jens-daniel-mueller | 2021-01-14 | Build site. |
html | 8d032c3 | jens-daniel-mueller | 2021-01-14 | Build site. |
html | 022871c | Donghe-Zhu | 2021-01-13 | Build site. |
Rmd | d44f36f | Donghe-Zhu | 2021-01-13 | reorder analysis final |
html | 17dee1d | jens-daniel-mueller | 2021-01-13 | Build site. |
html | a076226 | Donghe-Zhu | 2021-01-11 | Build site. |
Rmd | 52eff18 | Donghe-Zhu | 2021-01-09 | Implemet model_run and subsetting |
html | 7cdea0c | jens-daniel-mueller | 2021-01-06 | Build site. |
Rmd | b5934dd | jens-daniel-mueller | 2021-01-06 | local rebuild after revision |
html | fa85b93 | jens-daniel-mueller | 2021-01-06 | Build site. |
html | e5cb81a | Donghe-Zhu | 2021-01-05 | Build site. |
Rmd | 608cc45 | Donghe-Zhu | 2021-01-05 | modification of analysis |
html | a499f10 | Donghe-Zhu | 2021-01-05 | Build site. |
Rmd | 715bdb4 | Donghe-Zhu | 2021-01-02 | model modification |
html | fb8a752 | Donghe-Zhu | 2020-12-23 | Build site. |
Rmd | 82e3c9c | Donghe-Zhu | 2020-12-23 | first build after creating model template |
html | 8fae0b2 | Donghe-Zhu | 2020-12-21 | Build site. |
Rmd | 00a1322 | Donghe-Zhu | 2020-12-21 | first build after creating model template |
html | c8b76b3 | jens-daniel-mueller | 2020-12-19 | Build site. |
Rmd | b5fedce | jens-daniel-mueller | 2020-12-19 | first build after creating model template |
Rmd | 8e8abf5 | Jens Müller | 2020-12-18 | Initial commit |
Currently, following data sets are used for mapping:
if (params_local$model_runs == "AD") {
climatology <- read_csv(paste(path_preprocessing, "climatology_runA_2007.csv", sep = ""))
}
if (params_local$model_runs == "CB") {
climatology <- read_csv(paste(path_preprocessing, "climatology_runC_2007.csv", sep = ""))
}
climatology <- climatology %>%
rename(aou = AOU, TCO2 = tco2, TAlk = talk)
predictors <- climatology %>%
select(lon, lat, depth, basin_AIP, gamma,
phosphate, oxygen,
any_of(params_local$MLR_predictors))
predictors_surface <- climatology %>%
select(lon, lat, depth, basin_AIP, gamma, sal, temp, TCO2, TAlk, phosphate, silicate)
The predictor field was split into two parts:
# predictors for deep waters
predictors <- predictors %>%
filter(depth >= params_local$depth_min | gamma >= params_local$gamma_min)
# predictors for surface waters
predictors_surface <- predictors_surface %>%
filter(depth < params_local$depth_min,
gamma < params_local$gamma_min)
Data outside the WOA18 basin mask were removed for further analysis.
predictors <- inner_join(predictors, basinmask)
predictors_surface <- inner_join(predictors_surface, basinmask)
Plots below are generated to control successful merging of data sets.
p_map_climatology(
df = predictors,
var = "phosphate")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_map_climatology(
df = predictors,
var = "temp")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_map_climatology(
df = predictors_surface,
var = "TAlk")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_map_climatology(
df = predictors_surface,
var = "TCO2")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_map_climatology(
df = predictors_surface,
var = "sal")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_map_climatology(
df = predictors_surface,
var = "temp")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Likewise, predictor profiles for the North Atlantic (40.5 / 335.5) are plotted to control successful merging of the data sets.
# subset data
N_Atl <- predictors %>%
filter(lat == params_global$lat_Atl_profile,
lon == params_global$lon_Atl_section)
# pivot table to long format
N_Atl <- N_Atl %>%
select(-c(basin, basin_AIP)) %>%
pivot_longer(c(any_of(params_local$MLR_predictors), gamma),
names_to = "parameter", values_to = "value")
# plot profiles
N_Atl %>%
ggplot(aes(value, depth)) +
geom_path() +
geom_point() +
scale_y_reverse() +
facet_wrap(~parameter,
scales = "free_x",
ncol = 2)
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
rm(N_Atl)
Additional predictor fields need to calculated from available climatologies
The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an erroneous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.
predictors <- predictors %>%
mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))
p_map_climatology(
df = predictors,
var = "phosphate_star",
col = "divergent")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
p_section_global(
df = predictors,
var = "phosphate_star",
col = "divergent")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
AOU was calculated as the difference between saturation concentration and observed concentration. CAVEAT: Algorithms used to calculate oxygen saturation concentration are not yet identical in GLODAP data set (fitting) and predictor climatologies (mapping).
if ("aou" %in% params_local$MLR_predictors){
p_map_climatology(
df = predictors,
var = "aou",
col = "divergent")
}
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
if ("aou" %in% params_local$MLR_predictors){
p_section_global(
df = predictors,
var = "aou",
col = "divergent")
}
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
The following boundaries for isoneutral slabs were defined:
Continuous neutral density (gamma) values based on WOA18 are grouped into isoneutral slabs.
predictors <- m_cut_gamma(predictors, "gamma")
Predictor sections along with lines are shown below for each (potential) predictor variable.
map +
geom_bin2d(data = predictors,
aes(lon, lat),
binwidth = c(1, 1)) +
geom_vline(xintercept = params_global$longitude_sections_regular,
col = "white") +
scale_fill_viridis_c(direction = -1,
name = "Number of depth levels") +
theme(legend.position = "bottom")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
for (i_var in append(params_local$MLR_predictors, "gamma")) {
print(
p_section_climatology_regular(
df = predictors,
var = i_var)
)
}
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
7891955 | Donghe-Zhu | 2021-01-21 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
8b97165 | Donghe-Zhu | 2021-01-25 |
c569946 | Donghe-Zhu | 2021-01-24 |
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
e5cb81a | Donghe-Zhu | 2021-01-05 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Predictor sections along with lines are shown below for each (potential) predictor variable.
map +
geom_bin2d(data = predictors_surface,
aes(lon, lat),
binwidth = c(1, 1)) +
geom_vline(xintercept = params_global$longitude_sections_regular,
col = "white") +
scale_fill_viridis_c(direction = -1, name = "Number of depth levels") +
theme(legend.position = "bottom")
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
7cdea0c | jens-daniel-mueller | 2021-01-06 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
vars <-
c(
"gamma",
"sal",
"temp",
"TCO2",
"TAlk"
)
# i_var <- vars[1]
for (i_var in vars) {
print(
p_section_climatology_regular(
df = predictors_surface,
var = i_var,
surface = "y")
)
}
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
Version | Author | Date |
---|---|---|
4c28e4a | Donghe-Zhu | 2021-01-22 |
24cc264 | jens-daniel-mueller | 2021-01-22 |
d4cf1cb | Donghe-Zhu | 2021-01-21 |
1f3e5b6 | jens-daniel-mueller | 2021-01-20 |
0e7bdf1 | jens-daniel-mueller | 2021-01-15 |
4571843 | jens-daniel-mueller | 2021-01-14 |
b3564aa | jens-daniel-mueller | 2021-01-14 |
8d032c3 | jens-daniel-mueller | 2021-01-14 |
a499f10 | Donghe-Zhu | 2021-01-05 |
8fae0b2 | Donghe-Zhu | 2020-12-21 |
c8b76b3 | jens-daniel-mueller | 2020-12-19 |
predictors %>%
write_csv(paste(path_version_data,
"predictors_M2007.csv",
sep = ""))
predictors_surface %>%
write_csv(paste(path_version_data,
"predictors_surface_M2007.csv",
sep = ""))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] gsw_1.0-5 testthat_3.0.1 marelac_2.1.10 shape_1.4.5
[5] metR_0.9.0 scico_1.2.0 patchwork_1.1.1 collapse_1.5.0
[9] forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4
[13] readr_1.4.0 tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.3
[17] tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 viridisLite_0.3.0 jsonlite_1.7.2
[4] here_1.0.1 modelr_0.1.8 assertthat_0.2.1
[7] blob_1.2.1 cellranger_1.1.0 yaml_2.2.1
[10] pillar_1.4.7 backports_1.1.10 lattice_0.20-41
[13] glue_1.4.2 RcppEigen_0.3.3.9.1 digest_0.6.27
[16] promises_1.1.1 checkmate_2.0.0 rvest_0.3.6
[19] colorspace_2.0-0 htmltools_0.5.0 httpuv_1.5.4
[22] Matrix_1.2-18 pkgconfig_2.0.3 broom_0.7.3
[25] seacarb_3.2.15 haven_2.3.1 scales_1.1.1
[28] whisker_0.4 later_1.1.0.1 git2r_0.27.1
[31] farver_2.0.3 generics_0.1.0 ellipsis_0.3.1
[34] withr_2.3.0 cli_2.2.0 magrittr_2.0.1
[37] crayon_1.3.4 readxl_1.3.1 evaluate_0.14
[40] fs_1.5.0 fansi_0.4.1 xml2_1.3.2
[43] RcppArmadillo_0.10.1.2.2 oce_1.2-0 tools_4.0.3
[46] data.table_1.13.6 hms_0.5.3 lifecycle_0.2.0
[49] munsell_0.5.0 reprex_0.3.0 isoband_0.2.3
[52] compiler_4.0.3 rlang_0.4.10 grid_4.0.3
[55] rstudioapi_0.13 labeling_0.4.2 rmarkdown_2.5
[58] gtable_0.3.0 DBI_1.1.0 R6_2.5.0
[61] lubridate_1.7.9 knitr_1.30 rprojroot_2.0.2
[64] stringi_1.5.3 parallel_4.0.3 Rcpp_1.0.5
[67] vctrs_0.3.6 dbplyr_1.4.4 tidyselect_1.1.0
[70] xfun_0.20