Last updated: 2022-11-14

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 40f357d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/presentation/
    Ignored:    output/publication/

Untracked files:
    Untracked:  code/results_publication_backup_incl_ensemble_uncertainty_20221111.Rmd

Unstaged changes:
    Deleted:    analysis/MLR_target_budgets.Rmd
    Deleted:    analysis/MLR_target_column_inventories.Rmd
    Deleted:    analysis/MLR_target_zonal_sections.Rmd
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/reoccupation_budgets.Rmd) and HTML (docs/reoccupation_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cc337dd jens-daniel-mueller 2022-11-11 Build site.
html ec60f68 jens-daniel-mueller 2022-11-07 Build site.
html e99640e jens-daniel-mueller 2022-07-29 Build site.
html 08c00b4 jens-daniel-mueller 2022-07-16 Build site.
html 692c937 jens-daniel-mueller 2022-07-16 Build site.
html 17cd1d1 jens-daniel-mueller 2022-07-13 Build site.
Rmd 1bf1708 jens-daniel-mueller 2022-07-13 rerun reoccupation
html b44c72a jens-daniel-mueller 2022-07-03 Build site.
html 6e173bf jens-daniel-mueller 2022-06-30 updated regional budget plots
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
html b52b159 jens-daniel-mueller 2022-06-27 Build site.
html 7600951 jens-daniel-mueller 2022-06-26 Build site.
html 09b0780 jens-daniel-mueller 2022-05-24 Build site.
html 25da2fb jens-daniel-mueller 2022-05-24 Build site.
html e09320d jens-daniel-mueller 2022-04-12 Build site.
html 8dca96a jens-daniel-mueller 2022-04-12 Build site.
html 2f20ea6 jens-daniel-mueller 2022-04-11 Build site.
html 209c9b6 jens-daniel-mueller 2022-04-10 Build site.
html acad2e2 jens-daniel-mueller 2022-04-09 Build site.
html c3a6238 jens-daniel-mueller 2022-03-08 Build site.
html de557de jens-daniel-mueller 2022-01-28 Build site.
Rmd 0a2d89a jens-daniel-mueller 2022-01-28 reoccupation filter implemented

version_id_pattern <- "o"
config <- "MLR_basins"

1 Read files

print(version_id_pattern)
[1] "o"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "o"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "o"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "o"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_point() +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_global_bias_all %>%
  group_by(period) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
period dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 0.4238318 2.3898333 2.402674 13.5478080
1994 - 2014 0.5635702 2.7901667 1.465036 7.2532148
2004 - 2014 0.5368968 0.0151667 2.577764 0.0728186

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_basins) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 48 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]
Warning: Removed 28 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[3]]
Warning: Removed 108 rows containing missing values (position_stack).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 0.3045672 0.5560000 6.317512 11.5328770
1994 - 2004 N_Atlantic 0.0797596 0.2230000 4.088141 11.4300359
1994 - 2004 N_Pacific 0.3445513 0.3600000 12.685983 13.2547865
1994 - 2004 S_Atlantic 0.2936450 0.4011667 11.745799 16.0466667
1994 - 2004 S_Pacific 0.1341144 0.8496667 2.372866 15.0330267
1994 - 2014 Indian 0.5396694 0.7656667 5.165289 7.3283563
1994 - 2014 N_Atlantic 0.2100775 -0.0281667 4.890073 -0.6556487
1994 - 2014 N_Pacific 0.2373895 0.6368333 4.066281 10.9084161
1994 - 2014 S_Atlantic 0.3920507 0.3761667 7.412568 7.1122455
1994 - 2014 S_Pacific 0.8911288 1.0401667 7.074135 8.2572570
2004 - 2014 Indian 0.3949236 -0.1003333 7.019616 -1.7833867
2004 - 2014 N_Atlantic 0.1417773 -0.1410000 6.045940 -6.0127932
2004 - 2014 N_Pacific 0.1069779 0.3123333 3.426582 10.0042708
2004 - 2014 S_Atlantic 0.1986122 0.1280000 7.121269 4.5894586
2004 - 2014 S_Pacific 0.4238924 -0.1830000 6.103563 -2.6349892

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_basins) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_basins ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[4]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[5]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[2]]
Warning: Removed 32 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[4]]
Warning: Removed 19 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[5]]
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[6]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

[[7]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
b44c72a jens-daniel-mueller 2022-07-03
7600951 jens-daniel-mueller 2022-06-26
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, MLR_basins, period) %>%
  ggplot(aes(MLR_basins, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
b44c72a jens-daniel-mueller 2022-07-03
209c9b6 jens-daniel-mueller 2022-04-10
de557de jens-daniel-mueller 2022-01-28

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = !!sym(config))) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

Version Author Date
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  filter(estimate == "dcant") %>%
  select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias)

dcant_budget_global_bias_all_decomposition <-
  full_join(
    dcant_budget_global_bias_all_decomposition,
    dcant_budget_global_bias_all_depth %>%
      select(inv_depth, !!sym(config), period, mod_truth)
  )
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset`,
    `C* prediction error` + `delta C* - mod_truth`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset` - `C* drift`,
    `C* prediction error`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  mutate(
    `dcant offset rel` = 100 * `dcant offset` / mod_truth,
    `dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
    `C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
  )

dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset rel`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
17cd1d1 jens-daniel-mueller 2022-07-13
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  pivot_longer(-c(inv_depth:period),
               names_to = "estimate",
               values_to = "value")


dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth estimate mean sd
100 C* drift 0.2033333 0.0740032
100 C* prediction error -0.3571667 0.4428895
100 C* prediction error rel -6.7632106 10.6041778
100 dcant offset 0.1841667 0.2188159
100 dcant offset rel 4.2388683 5.8011713
100 dcant offset rel corr -0.0531984 5.5072700
100 delta C* - mod_truth -0.3946667 0.2164184
100 mod_truth 4.7563333 1.7425592
500 C* drift 1.3446667 0.4893907
500 C* prediction error -1.1696667 0.9193143
500 C* prediction error rel -6.6859214 5.7701463
500 dcant offset 0.5233333 0.7731972
500 dcant offset rel 3.3209626 5.7431885
500 dcant offset rel corr -4.6454029 5.1655235
500 delta C* - mod_truth 0.3773333 0.1374833
500 mod_truth 16.9600000 6.2242462
1000 C* drift 3.1486667 1.1458415
1000 C* prediction error -2.6533889 1.4354967
1000 C* prediction error rel -11.4649253 5.4854300
1000 dcant offset 0.7490000 1.0574321
1000 dcant offset rel 3.5367480 5.8211195
1000 dcant offset rel corr -10.3723216 4.8332782
1000 delta C* - mod_truth 2.0866667 0.7598902
1000 mod_truth 22.7516667 8.3557301
3000 C* drift 3.9900000 1.4521475
3000 C* prediction error -2.1864444 1.3486430
3000 C* prediction error rel -8.3728524 5.3770340
3000 dcant offset 1.7317222 1.3487986
3000 dcant offset rel 6.9579471 6.0309539
3000 dcant offset rel corr -8.6861974 4.8311098
3000 delta C* - mod_truth 2.6026667 0.9469936
3000 mod_truth 25.6453333 9.4254881
10000 C* drift 3.3760000 1.2289476
10000 C* prediction error -1.0636111 1.2092984
10000 C* prediction error rel -4.0377039 5.2206949
10000 dcant offset 2.0070000 1.5004017
10000 dcant offset rel 7.7929047 5.7405245
10000 dcant offset rel corr -5.2459714 4.7292911
10000 delta C* - mod_truth 1.7546667 0.6384472
10000 mod_truth 26.0420000 9.5725748
dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate, period) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth estimate period mean sd
100 C* drift 1994 - 2004 0.1550000 0.0000000
100 C* drift 1994 - 2014 0.3050000 0.0000000
100 C* drift 2004 - 2014 0.1500000 0.0000000
100 C* prediction error 1994 - 2004 0.1711667 0.1723977
100 C* prediction error 1994 - 2014 -0.5840000 0.2859049
100 C* prediction error 2004 - 2014 -0.6586667 0.2228476
100 C* prediction error rel 1994 - 2004 5.1571759 5.1942663
100 C* prediction error rel 1994 - 2014 -8.1861508 4.0076378
100 C* prediction error rel 2004 - 2014 -17.2606569 5.8398226
100 dcant offset 1994 - 2004 0.3668333 0.0703659
100 dcant offset 1994 - 2014 0.2626667 0.1612199
100 dcant offset 2004 - 2014 -0.0770000 0.0506478
100 dcant offset rel 1994 - 2004 11.0525259 2.1200949
100 dcant offset rel 1994 - 2014 3.6818989 2.2598813
100 dcant offset rel 2004 - 2014 -2.0178197 1.3272485
100 dcant offset rel corr 1994 - 2004 6.3824445 2.1200949
100 dcant offset rel corr 1994 - 2014 -0.5934025 2.2598813
100 dcant offset rel corr 2004 - 2014 -5.9486373 1.3272485
100 delta C* - mod_truth 1994 - 2004 -0.4900000 0.0000000
100 delta C* - mod_truth 1994 - 2014 -0.5910000 0.0000000
100 delta C* - mod_truth 2004 - 2014 -0.1030000 0.0000000
100 mod_truth 1994 - 2004 3.3190000 0.0000000
100 mod_truth 1994 - 2014 7.1340000 0.0000000
100 mod_truth 2004 - 2014 3.8160000 0.0000000
500 C* drift 1994 - 2004 1.0250000 0.0000000
500 C* drift 1994 - 2014 2.0170000 0.0000000
500 C* drift 2004 - 2014 0.9920000 0.0000000
500 C* prediction error 1994 - 2004 -0.1231667 0.4369153
500 C* prediction error 1994 - 2014 -1.6950000 0.6324043
500 C* prediction error 2004 - 2014 -1.6908333 0.5579776
500 C* prediction error rel 1994 - 2004 -1.0486732 3.7200109
500 C* prediction error rel 1994 - 2014 -6.6627358 2.4858660
500 C* prediction error rel 2004 - 2014 -12.3463551 4.0743159
500 dcant offset 1994 - 2004 1.1383333 0.2884147
500 dcant offset 1994 - 2014 0.8546667 0.4395064
500 dcant offset 2004 - 2014 -0.4230000 0.3098742
500 dcant offset rel 1994 - 2004 9.6920675 2.4556385
500 dcant offset rel 1994 - 2014 3.3595388 1.7276195
500 dcant offset rel 2004 - 2014 -3.0887185 2.2626810
500 dcant offset rel corr 1994 - 2004 0.9649496 2.4556385
500 dcant offset rel corr 1994 - 2014 -4.5689203 1.7276195
500 dcant offset rel corr 2004 - 2014 -10.3322380 2.2626810
500 delta C* - mod_truth 1994 - 2004 0.2920000 0.0000000
500 delta C* - mod_truth 1994 - 2014 0.5660000 0.0000000
500 delta C* - mod_truth 2004 - 2014 0.2740000 0.0000000
500 mod_truth 1994 - 2004 11.7450000 0.0000000
500 mod_truth 1994 - 2014 25.4400000 0.0000000
500 mod_truth 2004 - 2014 13.6950000 0.0000000
1000 C* drift 1994 - 2004 2.3950000 0.0000000
1000 C* drift 1994 - 2014 4.7230000 0.0000000
1000 C* drift 2004 - 2014 2.3280000 0.0000000
1000 C* prediction error 1994 - 2004 -0.9785000 0.6021059
1000 C* prediction error 1994 - 2014 -3.8953333 0.8231522
1000 C* prediction error 2004 - 2014 -3.0863333 0.7238496
1000 C* prediction error rel 1994 - 2004 -6.2324841 3.8350693
1000 C* prediction error rel 1994 - 2014 -11.4142272 2.4120261
1000 C* prediction error rel 2004 - 2014 -16.7480645 3.9279879
1000 dcant offset 1994 - 2004 1.5486667 0.4538492
1000 dcant offset 1994 - 2014 1.2191667 0.6298026
1000 dcant offset 2004 - 2014 -0.5208333 0.4811675
1000 dcant offset rel 1994 - 2004 9.8641189 2.8907590
1000 dcant offset rel 1994 - 2014 3.5724402 1.8454673
1000 dcant offset rel 2004 - 2014 -2.8263150 2.6110674
1000 dcant offset rel corr 1994 - 2004 -5.3906582 2.8907590
1000 dcant offset rel corr 1994 - 2014 -10.2670417 1.8454673
1000 dcant offset rel corr 2004 - 2014 -15.4592649 2.6110674
1000 delta C* - mod_truth 1994 - 2004 1.5570000 0.0000000
1000 delta C* - mod_truth 1994 - 2014 3.1310000 0.0000000
1000 delta C* - mod_truth 2004 - 2014 1.5720000 0.0000000
1000 mod_truth 1994 - 2004 15.7000000 0.0000000
1000 mod_truth 1994 - 2014 34.1270000 0.0000000
1000 mod_truth 2004 - 2014 18.4280000 0.0000000
3000 C* drift 1994 - 2004 3.0410000 0.0000000
3000 C* drift 1994 - 2014 5.9850000 0.0000000
3000 C* drift 2004 - 2014 2.9440000 0.0000000
3000 C* prediction error 1994 - 2004 -0.5128333 0.5382343
3000 C* prediction error 1994 - 2014 -3.0973333 0.6322486
3000 C* prediction error 2004 - 2014 -2.9491667 0.6630905
3000 C* prediction error rel 1994 - 2004 -2.9072184 3.0512149
3000 C* prediction error rel 1994 - 2014 -8.0517140 1.6435702
3000 C* prediction error rel 2004 - 2014 -14.1596249 3.1836493
3000 dcant offset 1994 - 2004 2.3898333 0.4238318
3000 dcant offset 1994 - 2014 2.7901667 0.5635702
3000 dcant offset 2004 - 2014 0.0151667 0.5368968
3000 dcant offset rel 1994 - 2004 13.5478080 2.4026744
3000 dcant offset rel 1994 - 2014 7.2532148 1.4650364
3000 dcant offset rel 2004 - 2014 0.0728186 2.5777645
3000 dcant offset rel corr 1994 - 2004 -3.6914210 2.4026744
3000 dcant offset rel corr 1994 - 2014 -8.3051714 1.4650364
3000 dcant offset rel corr 2004 - 2014 -14.0619999 2.5777645
3000 delta C* - mod_truth 1994 - 2004 1.9330000 0.0000000
3000 delta C* - mod_truth 1994 - 2014 3.9040000 0.0000000
3000 delta C* - mod_truth 2004 - 2014 1.9710000 0.0000000
3000 mod_truth 1994 - 2004 17.6400000 0.0000000
3000 mod_truth 1994 - 2014 38.4680000 0.0000000
3000 mod_truth 2004 - 2014 20.8280000 0.0000000
10000 C* drift 1994 - 2004 2.5830000 0.0000000
10000 C* drift 1994 - 2014 5.0640000 0.0000000
10000 C* drift 2004 - 2014 2.4810000 0.0000000
10000 C* prediction error 1994 - 2004 0.1793333 0.3746020
10000 C* prediction error 1994 - 2014 -1.2981667 1.1344116
10000 C* prediction error 2004 - 2014 -2.0720000 0.6362562
10000 C* prediction error rel 1994 - 2004 1.0017503 2.0925149
10000 C* prediction error rel 1994 - 2014 -3.3232641 2.9040566
10000 C* prediction error rel 2004 - 2014 -9.7915978 3.0067399
10000 dcant offset 1994 - 2004 2.4520000 0.2189128
10000 dcant offset 1994 - 2014 3.3171667 1.1309496
10000 dcant offset 2004 - 2014 0.2518333 0.5769941
10000 dcant offset rel 1994 - 2004 13.6967937 1.2228397
10000 dcant offset rel 1994 - 2014 8.4918380 2.8951939
10000 dcant offset rel 2004 - 2014 1.1900824 2.7266863
10000 dcant offset rel corr 1994 - 2004 -0.7317618 1.2228397
10000 dcant offset rel corr 1994 - 2014 -4.4718361 2.8951939
10000 dcant offset rel corr 2004 - 2014 -10.5343163 2.7266863
10000 delta C* - mod_truth 1994 - 2004 1.3030000 0.0000000
10000 delta C* - mod_truth 1994 - 2014 2.6320000 0.0000000
10000 delta C* - mod_truth 2004 - 2014 1.3290000 0.0000000
10000 mod_truth 1994 - 2004 17.9020000 0.0000000
10000 mod_truth 1994 - 2014 39.0630000 0.0000000
10000 mod_truth 2004 - 2014 21.1610000 0.0000000

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4   geomtextpath_0.1.0 colorspace_2.0-2   marelac_2.1.10    
 [5] shape_1.4.6        ggforce_0.3.3      metR_0.11.0        scico_1.3.0       
 [9] patchwork_1.1.1    collapse_1.7.0     forcats_0.5.1      stringr_1.4.0     
[13] dplyr_1.0.7        purrr_0.3.4        readr_2.1.1        tidyr_1.1.4       
[17] tibble_3.1.6       ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       textshaping_0.3.6  cli_3.1.1          rvest_1.0.2       
[25] xml2_1.3.3         labeling_0.4.2     sass_0.4.0         scales_1.1.1      
[29] checkmate_2.0.0    SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3 
[33] digest_0.6.29      svglite_2.0.0      rmarkdown_2.11     oce_1.5-0         
[37] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[41] fastmap_1.1.0      rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13   
[45] jquerylib_0.1.4    generics_0.1.1     farver_2.1.0       jsonlite_1.7.3    
[49] vroom_1.5.7        magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0     
[53] fansi_1.0.2        lifecycle_1.0.1    stringi_1.7.6      whisker_0.4       
[57] yaml_2.2.1         MASS_7.3-55        grid_4.1.2         parallel_4.1.2    
[61] promises_1.2.0.1   crayon_1.4.2       haven_2.4.3        hms_1.1.1         
[65] seacarb_3.3.0      knitr_1.37         ps_1.6.0           pillar_1.6.4      
[69] reprex_2.0.1       glue_1.6.0         evaluate_0.14      getPass_0.2-2     
[73] data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0        
[77] tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0      
[81] polyclip_1.10-0    assertthat_0.2.1   xfun_0.29          broom_0.7.11      
[85] later_1.3.0        viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1