Last updated: 2022-07-01

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c9a2845. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Untracked files:
    Untracked:  figure/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/multi_model_assesment_5_budgets.Rmd) and HTML (docs/multi_model_assesment_5_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c9a2845 jens-daniel-mueller 2022-07-01 cleaned drift assesment
html 7c3661a jens-daniel-mueller 2022-07-01 Build site.
Rmd efca815 jens-daniel-mueller 2022-07-01 included drift assesment
html 1273e73 jens-daniel-mueller 2022-07-01 Build site.
Rmd 63298d8 jens-daniel-mueller 2022-07-01 included drift assesment
html df21d31 jens-daniel-mueller 2022-07-01 Build site.
html 6e173bf jens-daniel-mueller 2022-06-30 updated regional budget plots
html 9393c07 jens-daniel-mueller 2022-06-28 Build site.
Rmd 2a3cf97 jens-daniel-mueller 2022-06-28 included basin-hemisphere bias, and bias contributions
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
Rmd ef081b3 jens-daniel-mueller 2022-06-28 rebuild with additional analysis

version_id_pattern <- "s"
config <- "gobm"

1 Read files

print(version_id_pattern)
[1] "s"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "s"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "s"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "s"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    gobm := str_c(params_local$gobm, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
params_local_all <- params_local_all %>%
  mutate(gobm = str_split(gobm, "_v2", simplify = TRUE)[,1])
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = gobm)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(contribution, dcant_bias, fill=contribution)) +
  geom_hline(yintercept = 0) +
  scale_fill_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_col() +
  facet_grid(gobm ~ period) +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = gobm),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ contribution)

p_global_bias
Warning: Removed 30 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_global_bias_all %>%
  group_by(period, contribution) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period contribution dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 C* prediction error 2.3554479 -1.2738 NA NA
1994 - 2004 dcant offset 4.3999936 -2.4542 21.533999 -12.236735
1994 - 2004 delta C* - mod_truth 1.9103801 -0.4408 NA NA
1994 - 2014 C* prediction error 2.8435495 -2.1388 NA NA
1994 - 2014 dcant offset 2.2099364 -1.3562 5.363207 -3.145757
1994 - 2014 delta C* - mod_truth 4.0349706 -1.0780 NA NA
2004 - 2014 C* prediction error 0.9230514 -0.6966 NA NA
2004 - 2014 dcant offset 1.5258108 -0.7468 6.487867 -2.962719
2004 - 2014 delta C* - mod_truth 2.1450806 -0.6368 NA NA

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = gobm)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=gobm)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ contribution)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = gobm),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)
Warning: Removed 90 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = gobm),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias
Warning: Removed 90 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(gobm, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(gobm, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[3]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ gobm) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 18 rows containing missing values (position_stack).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]
Warning: Removed 22 rows containing missing values (position_stack).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[3]]
Warning: Removed 44 rows containing missing values (position_stack).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28

[[3]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = gobm)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=gobm)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = gobm),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = gobm),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 0.9090730 -0.0328 22.302473 -2.4435549
1994 - 2004 N_Atlantic 4.4545964 -2.0636 120.435164 -54.5268879
1994 - 2004 N_Pacific 0.7216647 -0.0070 18.476824 4.2625363
1994 - 2004 S_Atlantic 0.2124389 0.1426 8.942749 5.4655099
1994 - 2004 S_Pacific 0.3170848 -0.4934 6.189531 -9.7588648
1994 - 2014 Indian 0.9433765 0.0914 9.381732 0.6669674
1994 - 2014 N_Atlantic 0.4298864 -0.4944 5.293292 -7.9416345
1994 - 2014 N_Pacific 0.9626174 -0.0716 11.252882 1.8013456
1994 - 2014 S_Atlantic 0.3204125 0.2508 6.139831 4.4455632
1994 - 2014 S_Pacific 0.4621180 -1.1320 3.730150 -9.5528047
2004 - 2014 Indian 1.2252531 0.1058 25.078488 3.0819388
2004 - 2014 N_Atlantic 0.4169175 -0.2292 10.371385 -7.7415819
2004 - 2014 N_Pacific 0.2669114 -0.0432 6.092021 0.2466435
2004 - 2014 S_Atlantic 0.1185356 0.0912 4.270572 3.2041276
2004 - 2014 S_Pacific 0.3887998 -0.6716 4.806270 -9.9636034

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = gobm),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = gobm),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias
Warning: Removed 30 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, gobm) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = gobm),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           gobm == unique(dcant_budget_global_all$gobm)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, gobm, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, gobm, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, gobm, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)
Warning: Removed 150 rows containing missing values (geom_col).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = gobm),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           gobm == unique(dcant_budget_basin_AIP_all$gobm)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
a13a7cf jens-daniel-mueller 2022-06-28

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, gobm, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, gobm, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, gobm, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)
Warning: Removed 450 rows containing missing values (geom_col).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(gobm ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]

Version Author Date
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[3]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[4]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[5]]

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = gobm, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gobm, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 2 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[2]]
Warning: Removed 16 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[3]]
Warning: Removed 13 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[4]]
Warning: Removed 17 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[5]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[6]]
Warning: Removed 8 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

[[7]]
Warning: Removed 7 rows containing missing values (geom_point).

Version Author Date
df21d31 jens-daniel-mueller 2022-07-01
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, gobm, period) %>%
  ggplot(aes(gobm, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
9393c07 jens-daniel-mueller 2022-06-28
a13a7cf jens-daniel-mueller 2022-06-28

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = gobm)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

dcant_budget_global_bias_all_depth %>%
  select(inv_depth, dcant_bias, contribution, gobm, period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias) %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = gobm)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

dcant_budget_global_bias_all_depth %>%
  select(inv_depth, dcant_bias, contribution, gobm, period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias) %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = gobm)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

dcant_budget_global_bias_all_depth %>%
  select(inv_depth, dcant_bias, contribution, gobm, period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias) %>%
  ggplot(aes(`dcant offset`, `C* prediction error` + `delta C* - mod_truth`, col = gobm)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

drift_bias <- full_join(
  dcant_budget_global_bias_all_depth %>%
    select(inv_depth, dcant_bias, contribution, gobm, period),
  dcant_budget_global_all_dissic %>%
    filter(data_source == "B",
           estimate == "dcant") %>%
    select(inv_depth, drift = value, gobm, period)
)
Joining, by = c("inv_depth", "gobm", "period")
drift_bias %>%
  filter(period == "1994 - 2014") %>%
  ggplot(aes(drift, dcant_bias, col = gobm)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point() +
  coord_fixed() +
  labs(title = "period : 1994 - 2014") +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ contribution)

drift_bias %>%
  filter(inv_depth == 3000) %>%
  ggplot(aes(dcant_bias, drift, col = gobm)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_point() +
  coord_fixed() +
  labs(title = "inv_depth : 3000")+
  facet_grid(period ~ contribution)


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4 colorspace_2.0-2 marelac_2.1.10   shape_1.4.6     
 [5] ggforce_0.3.3    metR_0.11.0      scico_1.3.0      patchwork_1.1.1 
 [9] collapse_1.7.0   forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7     
[13] purrr_0.3.4      readr_2.1.1      tidyr_1.1.4      tibble_3.1.6    
[17] ggplot2_3.3.5    tidyverse_1.3.1  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       cli_3.1.1          rvest_1.0.2        xml2_1.3.3        
[25] labeling_0.4.2     sass_0.4.0         scales_1.1.1       checkmate_2.0.0   
[29] SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3  digest_0.6.29     
[33] svglite_2.0.0      rmarkdown_2.11     oce_1.5-0          pkgconfig_2.0.3   
[37] htmltools_0.5.2    highr_0.9          dbplyr_2.1.1       fastmap_1.1.0     
[41] rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13    jquerylib_0.1.4   
[45] generics_0.1.1     farver_2.1.0       jsonlite_1.7.3     vroom_1.5.7       
[49] magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0      fansi_1.0.2       
[53] lifecycle_1.0.1    stringi_1.7.6      whisker_0.4        yaml_2.2.1        
[57] MASS_7.3-55        grid_4.1.2         parallel_4.1.2     promises_1.2.0.1  
[61] crayon_1.4.2       haven_2.4.3        hms_1.1.1          seacarb_3.3.0     
[65] knitr_1.37         ps_1.6.0           pillar_1.6.4       reprex_2.0.1      
[69] glue_1.6.0         evaluate_0.14      getPass_0.2-2      data.table_1.14.2 
[73] modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0         tweenr_1.0.2      
[77] httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0       polyclip_1.10-0   
[81] assertthat_0.2.1   xfun_0.29          broom_0.7.11       later_1.3.0       
[85] viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1