Last updated: 2022-01-12

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0e16fb3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Untracked files:
    Untracked:  analysis/child/budget_analysis_plot_data.Rmd
    Untracked:  analysis/child/budget_analysis_read_data.Rmd
    Untracked:  analysis/child/column_inventories_analysis_plot_data.Rmd
    Untracked:  analysis/child/column_inventories_analysis_read_data.Rmd
    Untracked:  analysis/child/zonal_sections_analysis_plot_data.Rmd
    Untracked:  analysis/child/zonal_sections_analysis_read_data.Rmd
    Untracked:  figure/bias_density_distribution-1.png
    Untracked:  figure/bias_density_distribution_ensemble-1.png
    Untracked:  figure/cases_absolute-1.png
    Untracked:  figure/cases_absolute-2.png
    Untracked:  figure/cases_absolute_depth-1.png
    Untracked:  figure/cases_absolute_depth_global-1.png
    Untracked:  figure/cases_absolute_global-1.png
    Untracked:  figure/cases_bias-1.png
    Untracked:  figure/cases_bias-2.png
    Untracked:  figure/cases_bias-3.png
    Untracked:  figure/cases_bias_depth-1.png
    Untracked:  figure/cases_bias_depth_global-1.png
    Untracked:  figure/cases_bias_global-1.png
    Untracked:  figure/cases_bias_global-2.png
    Untracked:  figure/cases_bias_rel_depth-1.png
    Untracked:  figure/cases_bias_rel_depth_global-1.png
    Untracked:  figure/composed_absolute_and_bias_figure-1.png
    Untracked:  figure/composed_figure-1.png
    Untracked:  figure/density_distributions-1.png
    Untracked:  figure/ensemble_deviation_from_mean-1.png
    Untracked:  figure/ensemble_deviation_from_mean-2.png
    Untracked:  figure/ensemble_deviation_from_mean-3.png
    Untracked:  figure/ensemble_mean-1.png
    Untracked:  figure/ensemble_mean-2.png
    Untracked:  figure/ensemble_mean_bias-1.png
    Untracked:  figure/ensemble_mean_bias-2.png
    Untracked:  figure/ensemble_mean_bias_global-1.png
    Untracked:  figure/ensemble_mean_bias_global-2.png
    Untracked:  figure/ensemble_mean_global-1.png
    Untracked:  figure/ensemble_mean_global-2.png
    Untracked:  figure/ensemble_mean_two_decades-1.png
    Untracked:  figure/ensemble_range-1.png
    Untracked:  figure/ensemble_sd-1.png
    Untracked:  figure/ensemble_sd_uncertainty-1.png
    Untracked:  figure/ensemble_sd_vs_bias-1.png
    Untracked:  figure/lat_grid_budget_all-1.png
    Untracked:  figure/lat_grid_budget_all-2.png
    Untracked:  figure/lat_grid_budget_ensemble-1.png
    Untracked:  figure/lon_grid_budget_all-1.png
    Untracked:  figure/lon_grid_budget_all-2.png
    Untracked:  figure/lon_grid_budget_all-3.png
    Untracked:  figure/lon_grid_budget_all-4.png
    Untracked:  figure/lon_grid_budget_ensemble-1.png
    Untracked:  figure/mean_tcant_over_atm_co2-1.png
    Untracked:  figure/slab_budgets-1.png
    Untracked:  figure/slab_budgets_bias-1.png
    Untracked:  figure/slab_budgets_bias-2.png
    Untracked:  figure/slab_budgets_bias-3.png
    Untracked:  figure/slab_budgets_individual-1.png
    Untracked:  figure/slab_budgets_individual-2.png
    Untracked:  figure/slab_budgets_individual-3.png
    Untracked:  figure/slab_budgets_spread-1.png
    Untracked:  figure/slab_budgets_spread-2.png
    Untracked:  figure/slab_budgets_spread-3.png
    Untracked:  figure/steady_state_comparison-1.png
    Untracked:  figure/steady_state_comparison-2.png
    Untracked:  figure/steady_state_comparison-3.png
    Untracked:  figure/steady_state_comparison-4.png
    Untracked:  figure/steady_state_comparison-5.png
    Untracked:  figure/summed_decades-1.png

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/bottomdepth_budgets.Rmd
    Deleted:    analysis/bottomdepth_column_inventories.Rmd
    Deleted:    analysis/bottomdepth_zonal_sections.Rmd
    Deleted:    analysis/canyon_b_cleaning_budgets.Rmd
    Deleted:    analysis/canyon_b_cleaning_column_inventories.Rmd
    Deleted:    analysis/canyon_b_cleaning_overview.Rmd
    Deleted:    analysis/canyon_b_cleaning_zonal_sections.Rmd
    Deleted:    analysis/child/budget_analysis.Rmd
    Deleted:    analysis/child/column_inventories_analysis.Rmd
    Deleted:    analysis/child/zonal_sections_analysis.Rmd
    Deleted:    analysis/cstar_correction_budgets.Rmd
    Deleted:    analysis/cstar_correction_column_inventories.Rmd
    Deleted:    analysis/cstar_correction_zonal_sections.Rmd
    Deleted:    analysis/cstar_scatter_budgets.Rmd
    Deleted:    analysis/cstar_scatter_column_inventories.Rmd
    Deleted:    analysis/cstar_scatter_zonal_sections.Rmd
    Deleted:    analysis/global_MLR_cleaning_budgets.Rmd
    Deleted:    analysis/global_MLR_cleaning_column_inventories.Rmd
    Deleted:    analysis/global_MLR_cleaning_zonal_sections.Rmd
    Deleted:    analysis/no_n_budgets.Rmd
    Deleted:    analysis/no_n_column_inventories.Rmd
    Deleted:    analysis/no_n_zonal_sections.Rmd
    Deleted:    analysis/no_p_budgets.Rmd
    Deleted:    analysis/no_p_column_inventories.Rmd
    Deleted:    analysis/no_p_zonal_sections.Rmd
    Deleted:    analysis/rarefication_budgets.Rmd
    Deleted:    analysis/rarefication_column_inventories.Rmd
    Deleted:    analysis/rarefication_zonal_sections.Rmd
    Deleted:    analysis/slab_budgets.Rmd
    Deleted:    analysis/slab_column_inventories.Rmd
    Deleted:    analysis/slab_zonal_sections.Rmd
    Deleted:    analysis/vif_budgets.Rmd
    Deleted:    analysis/vif_column_inventories.Rmd
    Deleted:    analysis/vif_zonal_sections.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/classic_zonal_sections.Rmd) and HTML (docs/classic_zonal_sections.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 1696b98 jens-daniel-mueller 2022-01-11 Build site.
html 570e738 jens-daniel-mueller 2022-01-10 Build site.
Rmd d3903e6 jens-daniel-mueller 2022-01-10 rebuild with child docs
html 9bf6789 jens-daniel-mueller 2022-01-10 Build site.
html 23068f5 jens-daniel-mueller 2022-01-10 Build site.
Rmd a79fb02 jens-daniel-mueller 2022-01-10 split child documents
html bad0192 jens-daniel-mueller 2022-01-10 Build site.
Rmd 6984dec jens-daniel-mueller 2022-01-10 split child documents
html 33f190b jens-daniel-mueller 2022-01-09 Build site.
Rmd 053a459 jens-daniel-mueller 2022-01-09 test with MLR_target runs
html 88c47ca jens-daniel-mueller 2022-01-07 Build site.
Rmd 22e83d8 jens-daniel-mueller 2022-01-07 test with MLR_target runs
html a1b4fac jens-daniel-mueller 2022-01-07 Build site.
html 6808a75 jens-daniel-mueller 2022-01-07 Build site.
html c3786f9 jens-daniel-mueller 2022-01-07 Build site.
Rmd 6c1d8e4 jens-daniel-mueller 2022-01-07 test child document
html 030836b jens-daniel-mueller 2022-01-06 Build site.
html bc2c182 jens-daniel-mueller 2021-12-23 Build site.
html e55f868 jens-daniel-mueller 2021-12-23 Build site.
html db09d70 jens-daniel-mueller 2021-12-10 Build site.
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html 3f7b649 jens-daniel-mueller 2021-11-03 Build site.
Rmd d675dd9 jens-daniel-mueller 2021-11-03 updated plots
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
html e534f51 jens-daniel-mueller 2021-11-02 Build site.
html 57cfc36 jens-daniel-mueller 2021-11-01 Build site.
html 4331a22 jens-daniel-mueller 2021-10-29 Build site.
html a162b7e jens-daniel-mueller 2021-10-28 Build site.
Rmd ebaf3bd jens-daniel-mueller 2021-10-28 cleaned output
html ae5ae64 jens-daniel-mueller 2021-10-26 Build site.
Rmd 059b2bf jens-daniel-mueller 2021-10-26 rebuild after /docs error
html 059b2bf jens-daniel-mueller 2021-10-26 rebuild after /docs error
html 44e0e53 jens-daniel-mueller 2021-10-26 Build site.
Rmd 5e671d5 jens-daniel-mueller 2021-10-26 revised composite plots
html 5d80e21 jens-daniel-mueller 2021-10-26 Build site.
Rmd c4ac357 jens-daniel-mueller 2021-10-26 revised composite plots
html 8b4e334 jens-daniel-mueller 2021-10-26 Build site.
Rmd 09c80f9 jens-daniel-mueller 2021-10-26 revised composite plots
html 93f903d jens-daniel-mueller 2021-10-25 Build site.
Rmd ea4285f jens-daniel-mueller 2021-10-25 layer budgets added
html d444839 jens-daniel-mueller 2021-10-25 Build site.
Rmd 88c4411 jens-daniel-mueller 2021-10-25 layer budgets added
html 8c9fa17 jens-daniel-mueller 2021-10-22 Build site.
html 6c49790 jens-daniel-mueller 2021-10-18 Build site.
Rmd f352581 jens-daniel-mueller 2021-10-18 profiles revised
html 968fe94 jens-daniel-mueller 2021-10-18 Build site.
Rmd 88117a8 jens-daniel-mueller 2021-10-18 profile analysis added
html 581baa0 jens-daniel-mueller 2021-10-07 Build site.
html a7af62f jens-daniel-mueller 2021-10-06 Build site.
html f9b4f93 jens-daniel-mueller 2021-10-05 Build site.
html 29faa21 jens-daniel-mueller 2021-09-29 Build site.
Rmd e42ccd7 jens-daniel-mueller 2021-09-29 plots for presentation
html 960d158 jens-daniel-mueller 2021-09-29 Build site.
html 0573621 jens-daniel-mueller 2021-09-29 Build site.
html f51dcb9 jens-daniel-mueller 2021-09-28 Build site.
Rmd 056c790 jens-daniel-mueller 2021-09-28 new MLR_basin added
html 55d2059 jens-daniel-mueller 2021-09-28 Build site.
html d0945da jens-daniel-mueller 2021-09-28 Build site.
Rmd 7780618 jens-daniel-mueller 2021-09-28 update zonal section plots
html 09002a7 jens-daniel-mueller 2021-09-26 Build site.
html 0c6be7e jens-daniel-mueller 2021-09-24 Build site.
Rmd 6a79fd0 jens-daniel-mueller 2021-09-24 consider ensemble selection across all analysis
html f54d5db jens-daniel-mueller 2021-09-24 Build site.
Rmd 76c942b jens-daniel-mueller 2021-09-24 1990 as start year 1 for classic runs
html 31c33cb jens-daniel-mueller 2021-09-23 Build site.
Rmd 9b1df4d jens-daniel-mueller 2021-09-23 1994 vs 2014 added
html ec4f702 jens-daniel-mueller 2021-09-22 Build site.
html 6525680 jens-daniel-mueller 2021-09-21 Build site.
html 6bf38c9 jens-daniel-mueller 2021-09-21 Build site.
html 63911d0 jens-daniel-mueller 2021-09-21 Build site.
html 499c9d5 jens-daniel-mueller 2021-09-21 Build site.
html 271a3ac jens-daniel-mueller 2021-09-21 Build site.
html 35ad8b5 jens-daniel-mueller 2021-09-20 Build site.
Rmd 919f74b jens-daniel-mueller 2021-09-20 rebuildt with canyon b cleaning analysis

version_id_pattern <- "0"
config <- "MLR_basins"

1 Read files

# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "0"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "0"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "0"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

print(Version_IDs)
 [1] "v_1001" "v_1002" "v_1003" "v_1004" "v_1005" "v_1006" "v_2001" "v_2002"
 [9] "v_2003" "v_2004" "v_2005" "v_2006" "v_3001" "v_3002" "v_3003" "v_3004"
[17] "v_3005" "v_3006"
for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
  paste(path_observations,
        i_Version_IDs,
        "/data/",
        sep = "")
  
  # load and join data files
  
  dcant_zonal <-
    read_csv(paste(path_version_data,
                   "dcant_zonal.csv",
                   sep = ""))
  
  dcant_zonal_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_mod_truth.csv",
                   sep = ""))
  
  dcant_zonal <- bind_rows(dcant_zonal,
                         dcant_zonal_mod_truth)
  
  dcant_profile <-
    read_csv(paste(path_version_data,
                   "dcant_profile.csv",
                   sep = ""))
  
  dcant_profile_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_profile_mod_truth.csv",
                   sep = ""))
  
  dcant_profile <- bind_rows(dcant_profile,
                             dcant_profile_mod_truth)
  
  dcant_budget_basin_AIP_layer <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_layer.csv",
                   sep = ""))
  
  dcant_zonal_bias <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_bias.csv",
                   sep = ""))
  

  dcant_zonal <- dcant_zonal %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_profile <- dcant_profile %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_layer <- dcant_budget_basin_AIP_layer %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_zonal_bias <- dcant_zonal_bias %>% 
    mutate(Version_ID = i_Version_IDs)
  
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>% 
    mutate(median_year_1 = sort(tref$median_year)[1],
           median_year_2 = sort(tref$median_year)[2],
           duration = median_year_2 - median_year_1,
           period = paste(median_year_1, "-", median_year_2))
  
  if (exists("dcant_zonal_all")) {
    dcant_zonal_all <- bind_rows(dcant_zonal_all, dcant_zonal)
  }
  
  if (!exists("dcant_zonal_all")) {
    dcant_zonal_all <- dcant_zonal
  }

  if (exists("dcant_profile_all")) {
    dcant_profile_all <- bind_rows(dcant_profile_all, dcant_profile)
  }
  
  if (!exists("dcant_profile_all")) {
    dcant_profile_all <- dcant_profile
  }

  if (exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <-
      bind_rows(dcant_budget_basin_AIP_layer_all,
                dcant_budget_basin_AIP_layer)
  }
  
  if (!exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <- dcant_budget_basin_AIP_layer
  }

  if (exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- bind_rows(dcant_zonal_bias_all, dcant_zonal_bias)
  }
  
  if (!exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- dcant_zonal_bias
  }

  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_1001"
[1] "v_1002"
[1] "v_1003"
[1] "v_1004"
[1] "v_1005"
[1] "v_1006"
[1] "v_2001"
[1] "v_2002"
[1] "v_2003"
[1] "v_2004"
[1] "v_2005"
[1] "v_2006"
[1] "v_3001"
[1] "v_3002"
[1] "v_3003"
[1] "v_3004"
[1] "v_3005"
[1] "v_3006"
rm(dcant_zonal, dcant_zonal_bias, dcant_zonal_mod_truth,
   dcant_budget_basin_AIP_layer,
   tref)
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))

2 Uncertainty limit

sd_uncertainty_limit <- 1.5

3 Individual cases

3.1 Absoulte values

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant",
      plot_slabs = "n",
      subtitle_text = paste(
        "data_source: ",
        unique(.x$data_source),
        "| basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]
Warning: Removed 2448 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 846 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[4]]
Warning: Removed 522 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[5]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[6]]
Warning: Removed 1494 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
p_dcant_Indian_1994_2004 <-
  dcant_zonal_all %>%
  filter(data_source %in% c("obs"),
         period == "1994 - 2004",
         basin_AIP == "Indian") %>%
  p_section_zonal_continous_depth(var = "dcant",
                                  plot_slabs = "n",
                                  subtitle_text = "Indian Ocean") +
  facet_grid(MLR_basins ~ period)

# ggsave(plot = p_dcant_Indian_1994_2004,
#        path = "output/other",
#        filename = "zonal_indian_1994_2004.png",
#        height = 8,
#        width = 5)

p_dcant_Indian_2004_2014 <-
  dcant_zonal_all %>%
  filter(data_source %in% c("obs"),
         period == "2004 - 2014",
         basin_AIP == "Pacific") %>%
  p_section_zonal_continous_depth(var = "dcant",
                                  plot_slabs = "n",
                                  subtitle_text = "Pacific Ocean") +
  facet_grid(MLR_basins ~ period)

# ggsave(plot = p_dcant_Indian_2004_2014,
#        path = "output/other",
#        filename = "zonal_Pacific_2004_2014.png",
#        height = 8,
#        width = 5)

3.2 Biases

dcant_zonal_bias_all %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]
Warning: Removed 2460 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

3.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot(aes(dcant_bias, col = MLR_basins)) +
  scale_color_brewer(palette = "Dark2") +
  geom_vline(xintercept = 0) +
  geom_density() +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))
Warning: Removed 12 rows containing non-finite values (stat_density).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28

3.3 Bias correlation eras

dcant_zonal_bias_all_corr <- dcant_zonal_bias_all %>%
  select(lat, depth, basin_AIP, dcant_bias, MLR_basins, period) %>% 
  pivot_wider(names_from = period,
              values_from = dcant_bias, 
              names_prefix = "dcant_bias ")

dcant_zonal_bias_all_corr %>% 
  ggplot(aes(`dcant_bias 1994 - 2004`, `dcant_bias 2004 - 2014`)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_bin2d() +
  coord_fixed() +
  facet_grid(MLR_basins ~ basin_AIP) +
  scale_fill_viridis_c()

3.4 Concentration profiles

3.4.1 Data source

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = data_source, fill = data_source
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_ribbon(
        aes(xmin = dcant - dcant_sd,
            xmax = dcant + dcant_sd),
        alpha = 0.2,
        col = "transparent"
      ) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(MLR_basins ~ basin_AIP)
  )
[[1]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[2]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[3]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

3.4.2 Basin separation

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = MLR_basins, fill = MLR_basins
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[2]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[3]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

3.4.3 Era

dcant_profile_all %>%
  arrange(depth) %>%
  filter(period != "1994 - 2014") %>%
  group_split(data_source) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        dcant,
        depth,
        col = period,
        group = interaction(MLR_basins, period)
      )
    ) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("data_source", unique(.x$data_source))) +
      facet_grid(. ~ basin_AIP)
  )
[[1]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[2]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

[[3]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
6c49790 jens-daniel-mueller 2021-10-18
968fe94 jens-daniel-mueller 2021-10-18

3.5 Layer budgets

dcant_budget_basin_AIP_layer_all %>%
  filter(estimate == "dcant") %>% 
  mutate(dcant = value,
         inv_depth = fct_inorder(as.factor(inv_depth))) %>% 
  group_split(period) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(dcant, inv_depth,
                 fill = MLR_basins)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_y_discrete(limits = rev) +
      scale_fill_brewer(palette = "Dark2") +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
d444839 jens-daniel-mueller 2021-10-25

[[2]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
93f903d jens-daniel-mueller 2021-10-25

[[3]]

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
93f903d jens-daniel-mueller 2021-10-25

4 Ensemble

dcant_zonal_ensemble <- dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(lat, depth, basin_AIP, data_source, period) %>%
  summarise(
    dcant_ensemble_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_range = max(dcant) - min(dcant)
  ) %>%
  ungroup()
`summarise()` has grouped output by 'lat', 'depth', 'basin_AIP', 'data_source'. You can override using the `.groups` argument.
dcant_budget_basin_AIP_layer_ensemble <-
  dcant_budget_basin_AIP_layer_all %>%
  mutate(inv_depth = fct_inorder(as.factor(inv_depth))) %>%
  filter(data_source %in% c("mod", "obs"),
         estimate == "dcant") %>%
  rename(dcant = value) %>%
  group_by(inv_depth, data_source, period, basin_AIP) %>%
  summarise(
    dcant_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_max = max(dcant),
    dcant_min = min(dcant)
  ) %>%
  ungroup()
`summarise()` has grouped output by 'inv_depth', 'data_source', 'period'. You can override using the `.groups` argument.

4.1 Mean

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_ensemble_mean",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]
Warning: Removed 549 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 339 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 870 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4.2 Mean bias

dcant_zonal_ensemble_bias <- full_join(
  dcant_zonal_ensemble %>%
    filter(data_source == "mod") %>% 
    select(lat, depth, basin_AIP, period, dcant_ensemble_mean, dcant_sd),
  dcant_zonal_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_zonal_all$MLR_basins)[1]) %>% 
    select(lat, depth, basin_AIP, period, dcant_mod_truth = dcant)
)
Joining, by = c("lat", "depth", "basin_AIP", "period")
dcant_zonal_ensemble_bias <- dcant_zonal_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_ensemble_mean - dcant_mod_truth)

dcant_zonal_ensemble_bias %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_mean_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(. ~ period)
  )
[[1]]
Warning: Removed 408 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 252 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 621 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot() +
  scale_color_manual(values = c("red", "grey")) +
  geom_vline(xintercept = 0) +
  geom_density(aes(dcant_bias, group = MLR_basins, col = "Individual")) +
  geom_density(data = dcant_zonal_ensemble_bias,
               aes(dcant_mean_bias, col = "Ensemble")) +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))
Warning: Removed 12 rows containing non-finite values (stat_density).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28

4.3 Mean depth layer budgets

dcant_lat_grid_ensemble %>%
  ggplot(aes(lat_grid, dcant_mean)) +
  geom_hline(yintercept = 0) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  scale_color_brewer(palette = "Set1") +
  coord_flip() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(data_source ~ period)

4.4 Standard deviation

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_sd",
      breaks = c(seq(0,4,0.4), Inf),
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]
Warning: Removed 549 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 339 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 870 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4.5 SD as uncertainty

uncertainty_grid <- dcant_zonal_ensemble %>%
  filter(dcant_sd > sd_uncertainty_limit) %>% 
  distinct(depth, lat, data_source, period, basin_AIP)

uncertainty_grid <- uncertainty_grid %>%
  mutate(
    lat_grid = cut(lat, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
    lat_grid = as.numeric(as.character(lat_grid)),
    depth_grid = cut(depth, seq(0, 1e4, 500), seq(250, 1e4, 500)),
    depth_grid = as.numeric(as.character(depth_grid))
  ) %>%
  distinct(depth_grid, lat_grid, data_source, period, basin_AIP)

uncertainty_grid %>%
  filter(data_source == "obs") %>%
  ggplot() +
  geom_point(aes(lat_grid, depth_grid),
             shape = 3) +
  facet_grid(basin_AIP ~ period) +
  scale_y_reverse()

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
5d80e21 jens-daniel-mueller 2021-10-26
8b4e334 jens-daniel-mueller 2021-10-26

4.6 SD vs bias

dcant_zonal_ensemble_bias %>% 
  ggplot(aes(dcant_mean_bias, dcant_sd)) +
  geom_bin2d() +
  scale_fill_viridis_c() +
  facet_grid(basin_AIP ~ period)

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_zonal_ensemble_bias %>% 
  select(dcant_ensemble_mean, dcant_mean_bias, period) %>% 
  pivot_longer(dcant_ensemble_mean:dcant_mean_bias,
               names_to = "estimate",
               values_to = "value") %>% 
  ggplot(aes(value, col=estimate, linetype = period)) +
  scale_color_brewer(palette = "Set1") +
  geom_density()

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_zonal_ensemble %>% 
  ggplot(aes(dcant_sd)) +
  geom_histogram() +
  facet_grid(data_source ~ period) +
  coord_cartesian(ylim = c(0,50))
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4.7 Composed figure

uncertainty_grid <- uncertainty_grid %>%
  filter(data_source == "obs",
         period != "1994 - 2014")

p_zonal_ensemble <- dcant_zonal_ensemble %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  p_section_zonal_continous_depth(var = "dcant_ensemble_mean",
                                  plot_slabs = "n",
                                  title_text = NULL) +
  geom_point(data = uncertainty_grid,
             aes(lat_grid, depth_grid),
             shape = 3,
             col = "white") +
  facet_grid(basin_AIP ~ period,
             switch = "y") +
  theme(legend.position = "left",
        strip.background.y = element_blank(),
        strip.text.y = element_blank())

p_profiles <-
  dcant_profile_all %>%
  arrange(depth) %>%
  filter(period != "1994 - 2014",
         data_source == "obs") %>%
  ggplot(aes(
           dcant,
           depth,
           col = period,
           fill = "grey80",
           group = interaction(MLR_basins, period)
         )) +
  geom_hline(yintercept = params_global$inventory_depth_standard) +
  geom_vline(xintercept = 0) +
  geom_path() +
  scale_y_reverse(name = "Depth (m)",
                  limits = c(5000,0)) +
  scale_x_continuous(name = expression(Delta * C[ant] ~ (µmol~kg^{-1}))) +
  coord_cartesian(expand = 0) +
  scale_color_brewer(palette = "Set1") +
  facet_grid(basin_AIP ~.) +
  theme(legend.position = "top",
        legend.direction = "vertical",
        legend.title = element_blank(),
        strip.background = element_blank(),
        strip.text = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_layer_budget <- dcant_budget_basin_AIP_layer_ensemble %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  mutate(depth =
           as.numeric(str_split(inv_depth, " - ", simplify = TRUE)[, 1]) + 250) %>%
  filter(depth < 5000) %>% 
  ggplot(aes(dcant_mean, inv_depth, col = period)) +
  geom_col(position = "dodge",
           orientation = "y",
           fill = "grey80") +
  geom_errorbar(
    aes(xmin = dcant_min,
        xmax = dcant_max),
    width = 0,
    position = position_dodge(width = 0.9)
  ) +
  scale_color_brewer(palette = "Set1", guide = "none") +
  scale_x_continuous(
    limits = c(0, NA),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC))
  ) +
  scale_y_discrete(name = "Depth intervals (m)",
                   limits = rev) +
  facet_grid(basin_AIP ~ .) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_zonal_ensemble + p_profiles + p_layer_budget +
  plot_layout(widths = c(5,1,1)) +
  plot_annotation(tag_levels = 'a')
Warning: Removed 318 rows containing non-finite values (stat_contour_filled).
Warning: Removed 4 rows containing missing values (geom_point).
Warning: Removed 36 row(s) containing missing values (geom_path).
Warning: Removed 1 rows containing missing values (geom_col).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
5d80e21 jens-daniel-mueller 2021-10-26
8b4e334 jens-daniel-mueller 2021-10-26
# ggsave("output/publication/Fig_zonal_mean.png",
#        width=15.25,
#        height=9.27)

5 Cases vs ensemble

5.1 Offset from mean

dcant_zonal_all <- full_join(dcant_zonal_all %>% select(-dcant_sd),
                             dcant_zonal_ensemble)
Joining, by = c("data_source", "lat", "depth", "basin_AIP", "period")
dcant_zonal_all <- dcant_zonal_all %>%
  mutate(dcant_offset = dcant - dcant_ensemble_mean)


legend_title <- expression(atop(Delta * C[ant, offset],
                                (mu * mol ~ kg ^ {
                                  -1
                                })))

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_offset",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP),
                            "| data_source",
                            unique(.x$data_source))
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]
Warning: Removed 2448 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]
Warning: Removed 846 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[3]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[4]]
Warning: Removed 522 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[5]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[6]]
Warning: Removed 1494 rows containing non-finite values (stat_contour_filled).

Version Author Date
570e738 jens-daniel-mueller 2022-01-10
bad0192 jens-daniel-mueller 2022-01-10
33f190b jens-daniel-mueller 2022-01-09
88c47ca jens-daniel-mueller 2022-01-07
c3786f9 jens-daniel-mueller 2022-01-07
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
059b2bf jens-daniel-mueller 2021-10-26
44e0e53 jens-daniel-mueller 2021-10-26
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0945da jens-daniel-mueller 2021-09-28
09002a7 jens-daniel-mueller 2021-09-26
0c6be7e jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.3   metR_0.9.0      scico_1.2.0     patchwork_1.1.1
 [5] collapse_1.5.0  forcats_0.5.0   stringr_1.4.0   dplyr_1.0.5    
 [9] purrr_0.3.4     readr_1.4.0     tidyr_1.1.3     tibble_3.1.3   
[13] ggplot2_3.3.5   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          RColorBrewer_1.1-2      
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         bslib_0.2.5.1            utf8_1.1.4              
[10] R6_2.5.0                 DBI_1.1.0                colorspace_2.0-2        
[13] withr_2.3.0              tidyselect_1.1.0         compiler_4.0.3          
[16] git2r_0.27.1             cli_3.0.1                rvest_0.3.6             
[19] xml2_1.3.2               isoband_0.2.2            labeling_0.4.2          
[22] sass_0.4.0               scales_1.1.1             checkmate_2.0.0         
[25] digest_0.6.27            rmarkdown_2.10           pkgconfig_2.0.3         
[28] htmltools_0.5.1.1        dbplyr_1.4.4             highr_0.8               
[31] rlang_0.4.11             readxl_1.3.1             rstudioapi_0.13         
[34] jquerylib_0.1.4          generics_0.1.0           farver_2.0.3            
[37] jsonlite_1.7.1           magrittr_1.5             Matrix_1.2-18           
[40] Rcpp_1.0.5               munsell_0.5.0            fansi_0.4.1             
[43] lifecycle_1.0.0          stringi_1.5.3            whisker_0.4             
[46] yaml_2.2.1               MASS_7.3-53              grid_4.0.3              
[49] blob_1.2.1               parallel_4.0.3           promises_1.1.1          
[52] crayon_1.3.4             lattice_0.20-41          haven_2.3.1             
[55] hms_0.5.3                knitr_1.33               pillar_1.6.2            
[58] reprex_0.3.0             glue_1.4.2               evaluate_0.14           
[61] RcppArmadillo_0.10.1.2.0 data.table_1.14.0        modelr_0.1.8            
[64] vctrs_0.3.8              tweenr_1.0.2             httpuv_1.5.4            
[67] cellranger_1.1.0         gtable_0.3.0             polyclip_1.10-0         
[70] assertthat_0.2.1         xfun_0.25                broom_0.7.9             
[73] RcppEigen_0.3.3.7.0      later_1.2.0              viridisLite_0.3.0       
[76] ellipsis_0.3.2           here_0.1