Last updated: 2021-04-22

Checks: 7 0

Knit directory: emlr_obs_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9da882f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/Gruber_2019_comparison/
    Ignored:    output/publication/

Untracked files:
    Untracked:  code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/publication.Rmd) and HTML (docs/publication.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 9da882f jens-daniel-mueller 2021-04-22 zonal mean section added
html 2cc294a jens-daniel-mueller 2021-04-21 Build site.
Rmd 728b5c5 jens-daniel-mueller 2021-04-21 revised histogram
html e336d01 jens-daniel-mueller 2021-04-19 Build site.
Rmd 5f76a71 jens-daniel-mueller 2021-04-19 zonal mean sections added
html 0e9a91d jens-daniel-mueller 2021-04-16 Build site.
Rmd d4af2c2 jens-daniel-mueller 2021-04-16 refined inventory map
html 2ab1b25 jens-daniel-mueller 2021-04-15 Build site.
Rmd 974c6c1 jens-daniel-mueller 2021-04-15 refined inventory map
html 7be394f jens-daniel-mueller 2021-04-15 Build site.
Rmd 71e6c6f jens-daniel-mueller 2021-04-15 add publication figures
html 117a5c3 jens-daniel-mueller 2021-04-14 Build site.
Rmd 56f179d jens-daniel-mueller 2021-04-14 add publication figures

1 Data sources

Following Cant estimates are used:

  • Zonal mean (basin, lat, depth)
  • Inventories (lat, lon)
cant_inv <-
  read_csv(paste(path_version_data,
                 "cant_inv.csv",
                 sep = ""))

cant_inv_mod_truth <-
  read_csv(paste(path_version_data,
                 "cant_inv_mod_truth.csv",
                 sep = ""))

cant_inv <- bind_rows(cant_inv, cant_inv_mod_truth)


cant_zonal <-
  read_csv(paste(path_version_data,
                 "cant_zonal.csv",
                 sep = ""))

cant_zonal_mod_truth <-
  read_csv(paste(path_version_data,
                 "cant_zonal_mod_truth.csv",
                 sep = ""))

cant_zonal <- bind_rows(cant_zonal,
                        cant_zonal_mod_truth)




GLODAP_clean <-
  read_csv(paste(path_version_data,
                 "GLODAPv2.2020_clean.csv",
                 sep = ""))

GLODAP_preprocessed <-
  read_csv(
    paste(
      path_preprocessing_model,
      "GLODAPv2.2020_preprocessed_model_runA_both.csv",
      sep = ""
    )
  )

GLODAP_grid_dup <-
  read_csv(paste(path_version_data,
                  "GLODAPv2.2020_clean_obs_grid_duplicates.csv",
                  sep = ""))


tref <-
  read_csv(paste(path_version_data,
                 "tref.csv",
                 sep = ""))
cant_inv <- cant_inv %>%
  filter(inv_depth == params_global$inventory_depth_standard)

2 Inventory map

# coastlines and worldmap

coastlines <- ne_coastline(scale = "small", returnclass = "sf")
coastlines_re <- ne_coastline(scale = "small", returnclass = "sf")
worldmap <- ne_countries(scale = "small", returnclass = "sf")
worldmap_re <- ne_countries(scale = "small", returnclass = "sf")

crs <- st_crs(coastlines)

st_geometry(worldmap_re) <- st_geometry(worldmap_re) + c(360, 0)
st_crs(worldmap_re) <- crs
worldmap <- rbind(worldmap, worldmap_re)
rm(worldmap_re)

st_geometry(coastlines_re) <- st_geometry(coastlines_re) + c(360, 0)
st_crs(coastlines_re) <- crs
coastlines <- rbind(coastlines, coastlines_re)
rm(coastlines_re)

# coastlines_buffer <- st_buffer(coastlines, dist = 1)
# coastlines_re_buffer <- st_buffer(coastlines_re, dist = 1)

# coastline_raster <- stars::st_rasterize(coastlines, options = "ALL_TOUCHED=TRUE") %>% 
#   as.tibble()


# unmapped regions shape files

for (i_file in list.files("data/iho_marginal_seas")) {
  iho <- st_read(paste0("data/iho_marginal_seas/", i_file, "/iho.shp"))
  
  if (exists("marine_polys")) {
    marine_polys <- rbind(marine_polys, iho)
  } else {
    marine_polys <- iho
  }
  
}
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/baltic_sea/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 5 features and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 9.365596 ymin: 52.65352 xmax: 37.46891 ymax: 67.08059
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/caribbean_sea/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -89.41293 ymin: 7.709799 xmax: -59.4216 ymax: 22.70652
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/gulf_of_mexico/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -98.05392 ymin: 17.40681 xmax: -80.43304 ymax: 31.46484
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/hudson_bay/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -95.34617 ymin: 51.14359 xmax: -75.88438 ymax: 66.02643
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/mediterranean_sea/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 10 features and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: -6.032549 ymin: 30.06809 xmax: 36.21573 ymax: 45.80891
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/persian_gulf/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 47.70244 ymin: 23.95901 xmax: 57.33998 ymax: 31.18586
Geodetic CRS:  WGS 84
Reading layer `iho' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/iho_marginal_seas/red_sea/iho.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 10 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 33.63937 ymin: 12.45626 xmax: 43.50552 ymax: 28.13954
Geodetic CRS:  WGS 84
marine_polys_re <- marine_polys
st_geometry(marine_polys_re) <- st_geometry(marine_polys) + c(360, 0)

st_crs(marine_polys) <- crs
st_crs(marine_polys_re) <- crs

marine_polys <- rbind(marine_polys, marine_polys_re)
rm(marine_polys_re)

# plot(st_geometry(marine_polys))
# ggplot() +
#   geom_sf(data = st_geometry(marine_polys), fill = "white")

# marine_polys_simple <- st_simplify(marine_polys, dTolerance = 0.5)
# ggplot() +
#   geom_sf(data = marine_polys, fill = "red") +
#   geom_sf(data = marine_polys_simple, fill = "white")

black_sea <- st_read("data/black_sea/provinces.shp")
Reading layer `provinces' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/black_sea/provinces.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 27.44959 ymin: 40.91028 xmax: 41.77609 ymax: 47.28054
Geodetic CRS:  WGS 84
black_sea_re <- black_sea
st_geometry(black_sea_re) <- st_geometry(black_sea) + c(360, 0)
st_crs(black_sea) <- crs
st_crs(black_sea_re) <- crs
black_sea <- rbind(black_sea, black_sea_re)
rm(black_sea_re)

hudson_bay <- st_read("data/hudson_bay/lme.shp")
Reading layer `lme' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/hudson_bay/lme.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 16 fields
Geometry type: MULTIPOLYGON
Dimension:     XY
Bounding box:  xmin: -94.99611 ymin: 50.72388 xmax: -64.5891 ymax: 70.68027
Geodetic CRS:  WGS 84
hudson_bay_re <- hudson_bay
st_geometry(hudson_bay_re) <- st_geometry(hudson_bay) + c(360, 0)
st_crs(hudson_bay) <- crs
st_crs(hudson_bay_re) <- crs
hudson_bay <- rbind(hudson_bay, hudson_bay_re)
rm(hudson_bay_re)

caspian_sea <- st_read("data/caspian_sea/seavox_v17.shp")
Reading layer `seavox_v17' from data source `/UP_home/jenmueller/Projects/emlr_cant/observations/emlr_obs_analysis/data/caspian_sea/seavox_v17.shp' using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 20 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 46.6797 ymin: 36.5801 xmax: 54.7659 ymax: 47.1153
Geodetic CRS:  WGS 84
caspian_sea_re <- caspian_sea
st_geometry(caspian_sea_re) <- st_geometry(caspian_sea) + c(360, 0)
st_crs(caspian_sea) <- crs
st_crs(caspian_sea_re) <- crs
caspian_sea <- rbind(caspian_sea, caspian_sea_re)
rm(caspian_sea_re)

# ggplot() +
#   geom_sf(data = marine_polys, fill = "white") +
#   geom_sf(data = black_sea, fill = "white") +
#   geom_sf(data = caspian_sea, fill = "white") +
#   geom_sf(data = hudson_bay, fill = "white")
set_breaks <- c(-Inf, seq(0, 12, 2), Inf)
color_land <- "grey80"
color_unmapped <- "grey90"

var_name <- expression(atop(Delta * C["ant"],
                            (mol ~ m ^ {
                              -2
                            })))

GLODAP_grid_both <- GLODAP_grid_dup %>%
  filter(duplicate == "no") %>% 
  count(lon, lat) %>% 
  mutate(n = as.factor(n))


p_inv_map <- ggplot() +
  geom_contour_fill(
    data = cant_inv %>% filter(data_source == "obs"),
    aes(lon, lat, z = cant_inv, fill = stat(level)),
    breaks = set_breaks,
    na.fill = TRUE
  ) +
  scale_fill_viridis_d(option = "D", name = var_name,
                       guide = guide_colorsteps()) +
  new_scale_fill() +
  geom_tile(data = GLODAP_grid_both,
              aes(x = lon, y = lat, height = 0.7, width = 0.7, fill=n)) +
  scale_fill_manual(values = c("Deeppink4", "Deeppink"),
                    name = "Eras\noccupied") +
  geom_sf(data = marine_polys, fill = color_unmapped, col="transparent") +
  geom_sf(data = black_sea,  fill = color_unmapped, col="transparent") +
  geom_sf(data = caspian_sea,  fill = color_unmapped, col="transparent") +
  geom_sf(data = hudson_bay, fill = "white", col="white") +
  geom_sf(data = worldmap,  fill = color_land, col="transparent") +
  geom_sf(data = coastlines, col = "black") +
  coord_sf(ylim = c(-77.5,64.5), xlim = c(20.5,379.5), expand = 0) +
  labs(title = expression("Column inventory (0 - 3000m) of the change in anthropogenic CO"[2]~
                            "from 2006 to 2014")) +
  theme(axis.text = element_blank(),
        axis.ticks = element_blank(),
        axis.title = element_blank(),
        legend.key = element_rect(colour = "black"))


ggsave(plot = p_inv_map,
       path = "output/publication",
       filename = "dCant_inventory_map.png",
       height = 4,
       width = 10)

3 Data time series histogram

time_histo <- GLODAP_preprocessed %>% 
  filter(!is.na(tco2)) %>% 
  count(year)

p_time_histo <-
  ggplot() +
  geom_col(data = time_histo %>% filter(year >= 2010),
           aes(year, n),
           col = "grey20",
           fill = "grey60") +
  geom_col(data = time_histo %>% filter(year >= 2000, year < 2010),
           aes(year, n),
           col = "grey20",
           fill = "grey80") +
  geom_col(data = time_histo %>% filter(year < 2000),
           aes(year, n),
           col = "grey20",
           fill = "white") +
  scale_fill_brewer(palette = "Dark2") +
  scale_x_continuous(breaks = seq(1900, 2100, 5)) +
  scale_y_continuous(name = "") +
  coord_cartesian(expand = 0) +
  labs(title = "GLODAPv2.2020 | Observations per year") +
  theme_bw() +
  theme(axis.title = element_blank())


# p_histo_map <- 
#   p_time_histo / p_inv_map +
#     plot_layout(heights = c(1,2))


ggsave(plot = p_time_histo,
       path = "output/publication",
       filename = "time_histo.png",
       height = 2,
       width = 10)

4 Spatial time coverage

time_histo <- GLODAP_preprocessed %>%
  filter(year >= 2000) %>%
  distinct(lat, lon, year)

p_coverage_maps <- 
map +
  geom_raster(data = time_histo, aes(lon, lat)) +
  facet_wrap( ~ year) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    axis.title = element_blank()
  )


ggsave(plot = p_coverage_maps,
       path = "output/publication",
       filename = "data_coverage_maps_by_year.png",
       height = 7,
       width = 16)
color_land <- "white"
color_unmapped <- "white"

p_inv_map <- ggplot() +
  geom_contour_fill(
    data = cant_inv %>% filter(data_source == "obs"),
    aes(lon, lat, z = cant_inv, fill = stat(level)),
    breaks = set_breaks,
    na.fill = TRUE
  ) +
  scale_fill_viridis_d(option = "D", name = var_name,
                       guide = FALSE) +
  geom_sf(data = marine_polys, fill = color_unmapped, col="transparent") +
  geom_sf(data = black_sea,  fill = color_unmapped, col="transparent") +
  geom_sf(data = caspian_sea,  fill = color_unmapped, col="transparent") +
  geom_sf(data = hudson_bay, fill = "white", col="white") +
  geom_sf(data = worldmap,  fill = color_land, col="transparent") +
  geom_sf(data = coastlines, col = "white") +
  coord_sf(ylim = c(-77.5,64.5), xlim = c(20.5,379.5), expand = 0) +
  theme_void()


ggsave(plot = p_inv_map,
       path = "output/publication",
       filename = "dCant_inventory_map_color_only.png",
       height = 4,
       width = 10)

5 Uptake rate comparison

cant_inv_budget <- cant_inv %>% 
  mutate(surface_area = earth_surf(lat, lon),
         cant_inv_grid = cant_inv*surface_area,
         cant_pos_inv_grid = cant_pos_inv*surface_area) %>% 
  group_by(basin_AIP, data_source, inv_depth) %>% 
  summarise(cant_total = sum(cant_inv_grid)*12*1e-15,
            cant_total = round(cant_total,1),
            cant_pos_total = sum(cant_pos_inv_grid)*12*1e-15,
            cant_pos_total = round(cant_pos_total,1)) %>% 
  ungroup()

duration <- sort(tref$median_year)[2] - sort(tref$median_year)[1]

cant_inv_budget_obs <- cant_inv_budget %>% 
  filter(data_source == "obs",
         inv_depth == 3000) %>% 
  summarise(cant_uptake_rate = sum(cant_total)/duration) %>% 
  mutate(source = "This study",
         period = "2006-2014",
         uncertainty = 0.3)

cant_inv_budget_lit <-
  bind_cols(
    cant_uptake_rate = c(2.6, 2.37 + 0.38, 2.18 + 0.61),
    source = c("Gruber et al.\n(2019)", "GCB\nGOBM", "GCB\nObserved\nfluxes"),
    period = c("1994-2007", "2006-2014", "2006-2014"),
    uncertainty = c(0.3, 0.6, 0.6)
  )

cant_inv_budget_all <- bind_rows(
  cant_inv_budget_obs,
  cant_inv_budget_lit
)


p_budget <-
  cant_inv_budget_all %>%
  mutate(source = fct_reorder(source, period)) %>%
  ggplot() +
  geom_col(aes(source, cant_uptake_rate),
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(
    aes(
      x = source,
      ymin = cant_uptake_rate - uncertainty,
      ymax = cant_uptake_rate + uncertainty
    ),
    width = .2
  ) +
  geom_text(
    aes(
      x = source,
      y = 0.8,
      label = period,
      angle = 90
    )
  ) +
  scale_y_continuous(limits = c(0, max(cant_inv_budget_all$cant_uptake_rate + 
                                         cant_inv_budget_all$uncertainty) + 0.1),
                     expand = c(0, 0)) +
  labs(title = "Global anthropogenic carbon uptake",
       y = expression(Rate ~ (PgC ~ yr ^ {
         -1
       }))) +
  theme_bw() +
  theme(axis.title.x = element_blank())


p_budget

ggsave(plot = p_budget,
       path = "output/publication",
       filename = "uptake_rate_comparison.png",
       height = 3.5,
       width = 3.5)

6 Zonal mean sections

breaks <- c(-Inf, seq(0, 10, 1), Inf)
breaks_n <- length(breaks) - 1

legend_title = expression(atop(Delta * C[ant, pos],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

i_basin_AIP <- "Pacific"

# plot base section
section <-
  cant_zonal %>%
  filter(basin_AIP == i_basin_AIP,
         data_source == "obs") %>%
  ggplot() +
  guides(fill = guide_colorsteps(barheight = unit(8, "cm"))) +
  scale_y_reverse() +
  scale_x_continuous(breaks = seq(-100, 100, 20),
                     limits = c(-85, 85)) +
  geom_contour_filled(aes(lat, depth, z = cant_mean),
                      breaks = breaks) +
  scale_fill_viridis_d(name = legend_title)

# select slab breaks for plotted basin
if (i_basin_AIP == "Atlantic") {
  slab_breaks <- params_local$slabs_Atl
} else {
  slab_breaks <- params_local$slabs_Ind_Pac
}

section <- section  +
  geom_hline(yintercept = params_local$depth_min,
             col = "white",
             linetype = 2) +
  geom_contour(aes(lat, depth, z = gamma_mean),
               breaks = slab_breaks,
               col = "white") +
  geom_text_contour(
    aes(lat, depth, z = gamma_mean),
    breaks = slab_breaks,
    col = "white",
    skip = 0
  )


# cut surface water section
surface <-
  section +
  coord_cartesian(expand = 0,
                  ylim = c(500, 0)) +
  labs(y = "Depth (m)",
       title = i_basin_AIP) +
  theme(
    axis.title.x = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank()
  )

# cut deep water section
deep <-
  section +
  coord_cartesian(expand = 0,
                  ylim = c(params_global$plotting_depth, 500)) +
  labs(x = expression(latitude ~ (degree * N)), y = "Depth (m)")


# combine surface and deep water section
section_combined <-
  surface / deep +
  plot_layout(guides = "collect")

section_combined

ggsave(plot = section_combined,
       path = "output/publication",
       filename = "zonal_mean_section_obs.png",
       height = 5,
       width = 8)

7 Model offset

GLODAP_sp <- GLODAP %>% 
  filter(depth == 150)

map +
  geom_raster(data = GLODAP_sp,
              aes(lon, lat, fill = temp)) +
  scale_fill_viridis_c()

class(GLODAP_sp)

GLODAP_sp <- GLODAP_sp %>% 
  mutate(lon = if_else(lon > 180, lon - 360, lon))

ggplot() +
  geom_raster(data = GLODAP_sp,
              aes(lon, lat, fill = temp)) +
  scale_fill_viridis_c() +
  coord_quickmap()

GLODAP_sp <- as.data.frame(GLODAP_sp)

library(sp)
coordinates(GLODAP_sp) = ~lon+lat
class(GLODAP_sp)

summary(GLODAP_sp)

is.projected(GLODAP_sp)
proj4string(GLODAP_sp) <-
  CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")


GLODAP_sp_grid <- GLODAP_sp

gridded(GLODAP_sp_grid) <- TRUE


spplot(GLODAP_sp,
       zcol = "temp")

spplot(GLODAP_sp_grid,
       zcol = "temp")

library(sf)
library(stars)
GLODAP_sf <- st_as_sf(GLODAP_sp_grid)
GLODAP_stars <- st_as_stars(GLODAP_sp_grid)
class(GLODAP_stars)

plot(GLODAP_stars)

ggplot() +
  geom_stars(data = GLODAP_stars,
             aes(x, y, fill = temp)) +
  scale_fill_viridis_c(na.value = "transparent") +
  coord_quickmap(expand = 0)


coastlines <- ne_coastline(scale = "small", returnclass = "sf")

ggplot() +
  geom_sf(data = GLODAP_sf,
             aes(col = temp)) +
  scale_fill_viridis_c(na.value = "transparent") +
  geom_sf(data = st_wrap_dateline(coastlines),
          colour = "black") +
  coord_sf(crs = st_crs('ESRI:54030')) +
  theme_bw()

summary(GLODAP_sp)

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] marelac_2.1.10      shape_1.4.5         ggnewscale_0.4.5   
 [4] rnaturalearth_0.1.0 sf_0.9-8            metR_0.9.0         
 [7] scico_1.2.0         patchwork_1.1.1     collapse_1.5.0     
[10] forcats_0.5.0       stringr_1.4.0       dplyr_1.0.5        
[13] purrr_0.3.4         readr_1.4.0         tidyr_1.1.2        
[16] tibble_3.0.4        ggplot2_3.3.3       tidyverse_1.3.0    
[19] workflowr_1.6.2    

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          gsw_1.0-5               
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 KernSmooth_2.23-17      
[10] rgeos_0.5-5              DBI_1.1.0                colorspace_1.4-1        
[13] withr_2.3.0              sp_1.4-4                 rnaturalearthdata_0.1.0 
[16] tidyselect_1.1.0         compiler_4.0.3           git2r_0.27.1            
[19] cli_2.1.0                rvest_0.3.6              xml2_1.3.2              
[22] isoband_0.2.2            labeling_0.4.2           scales_1.1.1            
[25] checkmate_2.0.0          classInt_0.4-3           digest_0.6.27           
[28] rmarkdown_2.5            oce_1.2-0                pkgconfig_2.0.3         
[31] htmltools_0.5.0          dbplyr_1.4.4             rlang_0.4.10            
[34] readxl_1.3.1             rstudioapi_0.13          farver_2.0.3            
[37] generics_0.0.2           jsonlite_1.7.1           magrittr_1.5            
[40] Matrix_1.2-18            Rcpp_1.0.5               munsell_0.5.0           
[43] fansi_0.4.1              lifecycle_1.0.0          stringi_1.5.3           
[46] whisker_0.4              yaml_2.2.1               plyr_1.8.6              
[49] grid_4.0.3               blob_1.2.1               parallel_4.0.3          
[52] promises_1.1.1           crayon_1.3.4             lattice_0.20-41         
[55] haven_2.3.1              hms_0.5.3                seacarb_3.2.14          
[58] knitr_1.30               pillar_1.4.7             reprex_0.3.0            
[61] glue_1.4.2               evaluate_0.14            RcppArmadillo_0.10.1.2.0
[64] data.table_1.13.2        modelr_0.1.8             vctrs_0.3.5             
[67] httpuv_1.5.4             testthat_2.3.2           cellranger_1.1.0        
[70] gtable_0.3.0             assertthat_0.2.1         xfun_0.18               
[73] broom_0.7.5              RcppEigen_0.3.3.7.0      e1071_1.7-4             
[76] later_1.1.0.1            viridisLite_0.3.0        class_7.3-17            
[79] memoise_1.1.0            units_0.6-7              ellipsis_0.3.1