Last updated: 2021-07-05

Checks: 7 0

Knit directory: emlr_obs_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version c330a09. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/Gruber_2019_comparison/
    Ignored:    output/publication/

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/observations.Rmd) and HTML (docs/observations.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd c330a09 jens-daniel-mueller 2021-07-05 rerun with observations

1 Data preparation

Version_IDs <- list.files(
  path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
  pattern = "v_3")

# Version_IDs <- Version_IDs[1:4]

1.1 Read files

Following sensitivity cases were considered:

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
  paste(path_observations,
        i_Version_IDs,
        "/data/",
        sep = "")
  
  # read inventory file
  cant_inv <-
    read_csv(paste(path_version_data,
                   "cant_inv.csv",
                   sep = ""))
  
  cant_inv <- cant_inv %>% 
    mutate(Version_ID = i_Version_IDs)

  # read anomaly inventory file
  anom_cant_inv <-
    read_csv(paste(path_version_data,
                   "anom_cant_obs_inv_bias.csv",
                   sep = ""))
  
  anom_cant_inv <- anom_cant_inv %>% 
    mutate(Version_ID = i_Version_IDs)
  
  # read section file
  cant_section <-
    read_csv(paste(path_version_data,
                   "cant_zonal.csv",
                   sep = ""))
  
  cant_section <- cant_section %>% 
    mutate(Version_ID = i_Version_IDs)
  
  # read section file
  anom_cant_section <-
    read_csv(paste(path_version_data,
                   "anom_cant_obs_section_bias.csv",
                   sep = ""))
  
  anom_cant_section <- anom_cant_section %>% 
    mutate(Version_ID = i_Version_IDs)
  
  # read budget file
  anom_cant_budget <-
    read_csv(paste(path_version_data,
                   "anom_cant_obs_inv_budget.csv",
                   sep = ""))
  
  anom_cant_budget <- anom_cant_budget %>% 
    mutate(Version_ID = i_Version_IDs)
  
  # read local parametrization files
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins = params_local$MLR_basins,
    rarefication = params_local$rarefication,
    rarefication_threshold = params_local$rarefication_threshold,
    vif_max = params_local$vif_max
  )
  
  cant_inv <- full_join(cant_inv, params_local)
  cant_section <- full_join(cant_section, params_local)

  anom_cant_inv <- full_join(anom_cant_inv, params_local)
  anom_cant_section <- full_join(anom_cant_section, params_local)
  anom_cant_budget <- full_join(anom_cant_budget, params_local)

  # read tref file
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  duration <- sort(tref$median_year)[2] - sort(tref$median_year)[1]
  eras <- paste0(sort(tref$median_year)[1],"-", sort(tref$median_year)[2])
  
  cant_inv <- cant_inv %>% 
    mutate(duration = duration,
           eras = eras)
  
  cant_section <- cant_section %>%
    mutate(duration = duration,
           eras = eras)
  
  anom_cant_inv <- anom_cant_inv %>% 
    mutate(duration = duration,
           eras = eras)
  
  anom_cant_section <- anom_cant_section %>%
    mutate(duration = duration,
           eras = eras)
  
  anom_cant_budget <- anom_cant_budget %>%
    mutate(duration = duration,
           eras = eras)
  
  # bind inv files
  if (exists("cant_inv_all")) {
    cant_inv_all <- bind_rows(cant_inv_all, cant_inv)
  }
  
  if (!exists("cant_inv_all")) {
    cant_inv_all <- cant_inv
  }

  # bind section files
  if (exists("cant_section_all")) {
    cant_section_all <- bind_rows(cant_section_all, cant_section)
  }
  
  if (!exists("cant_section_all")) {
    cant_section_all <- cant_section
  }
  
  ### for anomalies

  # bind inv files
  if (exists("anom_cant_inv_all")) {
    anom_cant_inv_all <- bind_rows(anom_cant_inv_all, anom_cant_inv)
  }
  
  if (!exists("anom_cant_inv_all")) {
    anom_cant_inv_all <- anom_cant_inv
  }

  # bind section files
  if (exists("anom_cant_section_all")) {
    anom_cant_section_all <- bind_rows(anom_cant_section_all, anom_cant_section)
  }
  
  if (!exists("anom_cant_section_all")) {
    anom_cant_section_all <- anom_cant_section
  }
  
  # bind budget files
  if (exists("anom_cant_budget_all")) {
    anom_cant_budget_all <- bind_rows(anom_cant_budget_all, anom_cant_budget)
  }
  
  if (!exists("anom_cant_budget_all")) {
    anom_cant_budget_all <- anom_cant_budget
  }
  
  
}
[1] "v_301"
[1] "v_302"
[1] "v_303"
[1] "v_304"
[1] "v_305"
[1] "v_306"
[1] "v_307"
[1] "v_308"
[1] "v_309"
[1] "v_310"
[1] "v_311"
[1] "v_312"
[1] "v_313"
[1] "v_314"
[1] "v_315"
[1] "v_316"
[1] "v_317"
[1] "v_318"
[1] "v_319"
[1] "v_320"
[1] "v_321"
[1] "v_322"
[1] "v_323"
rm(cant_inv, cant_section)
rm(anom_cant_inv, anom_cant_section, anom_cant_budget)

1.1.1 Format

# cant_inv_all_long <- cant_inv_all %>%
#   pivot_longer(emlr_anom:nss_projection,
#                names_to = "estimate",
#                values_to = "delta_cant_offset")
# 
# 
# cant_section_all_long <- cant_section_all %>%
#   pivot_longer(emlr_anom:nss_projection,
#                names_to = "estimate",
#                values_to = "delta_cant_offset")

# unique(cant_inv_all$Version_ID)

2 Eras vs basin split

Here we compare the impact of the basin separation approach on the anomaly detection, separately for each compared eras.

cant_inv_all_sub <- cant_inv_all %>% 
    filter(rarefication == "none",
           inv_depth == params_global$inventory_depth_standard)

# unique(cant_inv_all_sub$Version_ID)



cant_section_all_sub <- cant_section_all %>% 
    filter(rarefication == "none")

# unique(cant_section_all_sub$Version_ID)

2.1 Column inventories

2.1.1 Maps

cant_inv_all_sub %>%
  group_split(eras) %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv(
      df = .x,
      var = "cant_inv",
      subtitle_text = paste("Eras:", unique(.x$eras))
    ) +
      facet_grid(MLR_basins ~ data_source) +
      theme(axis.text = element_blank(),
            axis.ticks = element_blank())
  )
[[1]]


[[2]]


[[3]]


[[4]]

2.2 Zonal sections

2.2.1 Sections

cant_section_all_sub %>%
  group_split(eras, data_source, MLR_basins) %>%
  # head(1) %>%
  map(
    ~ p_section_zonal(
      df = .x,
      var = "cant_mean",
      plot_slabs = "n",
      col = "continuous",
      subtitle_text = paste("Eras:", unique(.x$eras),
                            "| data source:", unique(.x$data_source),
                            "| MLR Basins:", unique(.x$MLR_basins))
    )
  )
legend_title <- expression(atop(Delta * C[ant, pos],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

cant_section_all_sub %>%
  group_split(eras, basin_AIP) %>% 
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(lat, depth, z = cant_mean),
                          breaks = c(params_global$breaks_cant_pos)) +
      scale_fill_scico_d(
        palette = "acton",
        drop = FALSE,
        name = legend_title
      ) +
      guides(fill = guide_colorsteps(barheight = unit(8, "cm"),
                                     show.limits = TRUE)) +
      # scale_y_sqrt() +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(100,500,seq(1000,5000,1000))) +
      #scale_y_reverse() +
      scale_x_continuous(breaks = seq(-100, 100, 40),
                         limits = c(-85, 85)) +
      facet_grid(MLR_basins ~ data_source) +
      coord_cartesian(expand = 0) +
      labs(title = paste("Eras", unique(.x$eras),
                         "| Basin:", unique(.x$basin_AIP)))
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]


[[9]]


[[10]]


[[11]]


[[12]]

2.3 Budgets

2.3.1 Regional

cant_budget_all_sub %>%
  filter(inv_depth == params_global$inventory_depth_standard) %>% 
  ggplot(aes(estimate, cant_pos_total, fill = basin_AIP)) +
  scale_fill_brewer(palette = "PuBuGn") +
  geom_col(col = "black") +
  facet_grid(MLR_basins ~ eras) +
  theme(axis.text.x = element_text(angle = 90))

2.3.2 Era additive

cant_budget_all_sub_wide <- cant_budget_all_sub %>%
  filter(inv_depth == params_global$inventory_depth_standard) %>% 
  select(-c(duration, Version_ID)) %>% 
  pivot_wider(names_from = eras,
              values_from = cant_pos_total)

cant_budget_all_sub_wide <- cant_budget_all_sub_wide %>%
  mutate(`1994-2014 (sum)` = `1994-2005` + `2005-2014`)

cant_budget_all_sub_long <- cant_budget_all_sub_wide %>%
  select(-c(`1994-2005`, `2005-2014`)) %>% 
  pivot_longer(c(`1994-2014`, `1994-2014 (sum)`),
               names_to = "eras",
               values_to = "cant_pos_total")

cant_budget_all_sub_long %>% 
  ggplot(aes(eras, cant_pos_total, fill = basin_AIP)) +
  scale_fill_brewer(palette = "PuBuGn") +
  geom_col(col = "black") +
  facet_grid(MLR_basins ~ estimate) +
  theme(axis.text.x = element_text(angle = 90))

3 Rarefication and VIF

cant_inv_all_sub <- cant_inv_all %>%
  filter(rarefication == "coarse_grid" |
           Version_ID == "v_202") %>%
  mutate(
    rarefication_threshold = as.character(rarefication_threshold),
    rarefication_threshold = if_else(rarefication == "none",
                                     "none",
                                     rarefication_threshold),
    rarefication_threshold = if_else(rarefication_threshold == "5",
                                     "05",
                                     rarefication_threshold)
  )

cant_inv_all_long_sub <- cant_inv_all_long  %>%
  filter(rarefication == "coarse_grid" |
           Version_ID == "v_202") %>%
  mutate(
    rarefication_threshold = as.character(rarefication_threshold),
    rarefication_threshold = if_else(rarefication == "none",
                                     "none",
                                     rarefication_threshold),
    rarefication_threshold = if_else(rarefication_threshold == "5",
                                     "05",
                                     rarefication_threshold)
  )

cant_section_all_sub <- cant_section_all %>% 
  filter(rarefication == "coarse_grid" |
           Version_ID == "v_202") %>%
  mutate(
    rarefication_threshold = as.character(rarefication_threshold),
    rarefication_threshold = if_else(rarefication == "none",
                                     "none",
                                     rarefication_threshold),
    rarefication_threshold = if_else(rarefication_threshold == "5",
                                     "05",
                                     rarefication_threshold)
  )

cant_section_all_long_sub <- cant_section_all_long %>% 
  filter(rarefication == "coarse_grid" |
           Version_ID == "v_202") %>%
  mutate(
    rarefication_threshold = as.character(rarefication_threshold),
    rarefication_threshold = if_else(rarefication == "none",
                                     "none",
                                     rarefication_threshold),
    rarefication_threshold = if_else(rarefication_threshold == "5",
                                     "05",
                                     rarefication_threshold)
  )

cant_budget_all_sub <- cant_budget_all %>% 
  filter(rarefication == "coarse_grid" |
           Version_ID == "v_202") %>%
  mutate(
    rarefication_threshold = as.character(rarefication_threshold),
    rarefication_threshold = if_else(rarefication == "none",
                                     "none",
                                     rarefication_threshold),
    rarefication_threshold = if_else(rarefication_threshold == "5",
                                     "05",
                                     rarefication_threshold)
  )

3.1 Column inventories

3.1.1 Maps rarefication

cant_inv_all_long_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv_offset(
      df = .x,
      var = "delta_cant_offset",
      # col = "divergent",
      subtitle_text = paste("Rarefication test | Eras:", unique(.x$eras)),
      breaks = seq(-8,8,1)
    ) +
      facet_grid(rarefication_threshold ~ estimate) +
      theme(axis.text = element_blank(),
            axis.ticks = element_blank())
  )

3.1.2 Maps VIF

cant_inv_all_long_sub %>%
  filter(rarefication_threshold == 10) %>% 
  group_split(eras) %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv_offset(
      df = .x,
      var = "delta_cant_offset",
      # col = "divergent",
      subtitle_text = paste("VIF test | Eras:", unique(.x$eras)),
      breaks = seq(-8,8,1)
    ) +
      facet_grid(vif_max ~ estimate) +
      theme(axis.text = element_blank(),
            axis.ticks = element_blank())
  )

3.1.3 Bias correlation

axis_limit <- 10

cant_inv_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x, aes(emlr_bias, emlr_anom)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )


cant_inv_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x, aes(emlr_anom, nss_mod_truth)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )

cant_inv_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x, aes(nss_mod_truth, nss_projection)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )

3.2 Zonal sections

3.2.1 Sections

cant_section_all_long_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras, rarefication_threshold, estimate) %>%
  head(1) %>%
  map(
    ~ p_section_zonal(
      df = .x,
      var = "delta_cant_offset",
      plot_slabs = "n",
      col = "divergent",
      subtitle_text = paste("Eras:", unique(.x$eras),
                            "| MLR Basins:", unique(.x$MLR_basins),
                            "| Estimate:", unique(.x$estimate)),
      breaks = c(-Inf,seq(-8,8,1), Inf)
    )
  )
legend_title <- expression(atop(Delta * C[ant, pos],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

cant_section_all_long_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras, basin_AIP) %>% 
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(lat, depth, z = delta_cant_offset),
                          breaks =c(-Inf,seq(-8,8,1), Inf)) +
      scale_fill_scico_d(
        palette = "vik",
        drop = FALSE,
        name = legend_title
      ) +
      guides(fill = guide_colorsteps(barheight = unit(8, "cm"),
                                     show.limits = TRUE)) +
      # scale_y_sqrt() +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(100,500,seq(1000,5000,1000))) +
      #scale_y_reverse() +
      scale_x_continuous(breaks = seq(-100, 100, 40),
                         limits = c(-85, 85)) +
      facet_grid(rarefication_threshold ~ estimate) +
      coord_cartesian(expand = 0) +
      labs(title = paste("Rarefication test | Eras", unique(.x$eras),
                         "| Basin:", unique(.x$basin_AIP)))
  )
cant_section_all_long_sub %>%
  filter(rarefication_threshold == 10) %>% 
  group_split(eras, basin_AIP) %>% 
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(lat, depth, z = delta_cant_offset),
                          breaks =c(-Inf,seq(-8,8,1), Inf)) +
      scale_fill_scico_d(
        palette = "vik",
        drop = FALSE,
        name = legend_title
      ) +
      guides(fill = guide_colorsteps(barheight = unit(8, "cm"),
                                     show.limits = TRUE)) +
      # scale_y_sqrt() +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(100,500,seq(1000,5000,1000))) +
      #scale_y_reverse() +
      scale_x_continuous(breaks = seq(-100, 100, 40),
                         limits = c(-85, 85)) +
      facet_grid(vif_max ~ estimate) +
      coord_cartesian(expand = 0) +
      labs(title = paste("VIF test | Eras", unique(.x$eras),
                         "| Basin:", unique(.x$basin_AIP)))
  )

3.2.2 Bias correlation

axis_limit <- 20

cant_section_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x, aes(emlr_bias, emlr_anom)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )


cant_section_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x, aes(emlr_anom, nss_mod_truth)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )

cant_section_all_sub %>%
  filter(vif_max == 1000) %>% 
  group_split(eras) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x, aes(nss_mod_truth, nss_projection)) +
      geom_hline(yintercept = 0) +
      geom_vline(xintercept = 0) +
      geom_bin2d(binwidth = 1) +
      scale_fill_viridis_c(trans = "log10") +
      coord_equal(
        xlim = c(-axis_limit, axis_limit),
        ylim = c(-axis_limit, axis_limit)
      ) +
      labs(title = paste("Eras:", unique(.x$eras))) +
      facet_grid(rarefication_threshold ~ basin_AIP)
  )

3.3 Budgets

3.3.1 Regional

cant_budget_all_sub %>%
  filter(vif_max == 1000,
         inv_depth == params_global$inventory_depth_standard) %>% 
  ggplot(aes(as.factor(rarefication_threshold), cant_pos_total, fill = basin_AIP)) +
  scale_fill_brewer(palette = "PuBuGn") +
  geom_col(col = "black") +
  facet_grid(estimate ~ eras) +
  theme(axis.text.x = element_text(angle = 90))
cant_budget_all_sub %>%
  filter(rarefication_threshold == 10,
         inv_depth == params_global$inventory_depth_standard) %>% 
  ggplot(aes(as.factor(vif_max), cant_pos_total, fill = basin_AIP)) +
  scale_fill_brewer(palette = "PuBuGn") +
  geom_col(col = "black") +
  facet_grid(estimate ~ eras) +
  theme(axis.text.x = element_text(angle = 90))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.3   marelac_2.1.10  shape_1.4.5     metR_0.9.0     
 [5] scico_1.2.0     patchwork_1.1.1 collapse_1.5.0  forcats_0.5.0  
 [9] stringr_1.4.0   dplyr_1.0.5     purrr_0.3.4     readr_1.4.0    
[13] tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.3   tidyverse_1.3.0
[17] workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          gsw_1.0-5               
 [4] httr_1.4.2               rprojroot_2.0.2          tools_4.0.3             
 [7] backports_1.1.10         R6_2.5.0                 DBI_1.1.0               
[10] colorspace_1.4-1         withr_2.3.0              tidyselect_1.1.0        
[13] compiler_4.0.3           git2r_0.27.1             cli_2.1.0               
[16] rvest_0.3.6              xml2_1.3.2               isoband_0.2.2           
[19] labeling_0.4.2           scales_1.1.1             checkmate_2.0.0         
[22] digest_0.6.27            rmarkdown_2.5            oce_1.2-0               
[25] pkgconfig_2.0.3          htmltools_0.5.0          dbplyr_1.4.4            
[28] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.11         
[31] generics_0.0.2           farver_2.0.3             jsonlite_1.7.1          
[34] magrittr_1.5             Matrix_1.2-18            Rcpp_1.0.5              
[37] munsell_0.5.0            fansi_0.4.1              lifecycle_1.0.0         
[40] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[43] MASS_7.3-53              grid_4.0.3               blob_1.2.1              
[46] parallel_4.0.3           promises_1.1.1           crayon_1.3.4            
[49] lattice_0.20-41          haven_2.3.1              hms_0.5.3               
[52] seacarb_3.2.14           knitr_1.30               pillar_1.4.7            
[55] reprex_0.3.0             glue_1.4.2               evaluate_0.14           
[58] RcppArmadillo_0.10.1.2.0 data.table_1.13.2        modelr_0.1.8            
[61] vctrs_0.3.5              tweenr_1.0.2             httpuv_1.5.4            
[64] testthat_2.3.2           cellranger_1.1.0         gtable_0.3.0            
[67] polyclip_1.10-0          assertthat_0.2.1         xfun_0.18               
[70] broom_0.7.5              RcppEigen_0.3.3.7.0      later_1.1.0.1           
[73] ellipsis_0.3.1