Last updated: 2022-01-07

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 22e83d8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Unstaged changes:
    Modified:   analysis/child/budget_analysis.Rmd
    Modified:   analysis/child/column_inventories_analysis.Rmd
    Modified:   analysis/child/zonal_sections_analysis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/classic_budgets.Rmd) and HTML (docs/classic_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 22e83d8 jens-daniel-mueller 2022-01-07 test with MLR_target runs
html a1b4fac jens-daniel-mueller 2022-01-07 Build site.
html c646947 jens-daniel-mueller 2022-01-06 Build site.
html 5ba7fc6 jens-daniel-mueller 2022-01-06 Build site.
html b16a8b5 jens-daniel-mueller 2022-01-06 Build site.
html 33d5577 jens-daniel-mueller 2022-01-06 Build site.
html e2707c1 jens-daniel-mueller 2022-01-06 Build site.
html 218bf79 jens-daniel-mueller 2022-01-06 Build site.
html 6d06b6c jens-daniel-mueller 2022-01-06 Build site.
html d549e76 jens-daniel-mueller 2022-01-06 Build site.
html 6b96935 jens-daniel-mueller 2022-01-06 Build site.
html 3ef7ea5 jens-daniel-mueller 2022-01-06 Build site.
Rmd b170c42 jens-daniel-mueller 2022-01-06 test child document
html 5ec57f9 jens-daniel-mueller 2022-01-06 Build site.
Rmd c7a5023 jens-daniel-mueller 2022-01-06 test child document
html bb02de1 jens-daniel-mueller 2022-01-06 Build site.
Rmd 56b669c jens-daniel-mueller 2022-01-06 test child document
html 72dd8ed jens-daniel-mueller 2022-01-06 Build site.
Rmd 69dc44a jens-daniel-mueller 2022-01-06 test child document
html 030836b jens-daniel-mueller 2022-01-06 Build site.
html bc2c182 jens-daniel-mueller 2021-12-23 Build site.
Rmd dd8aef1 jens-daniel-mueller 2021-12-23 change ensemble bias thresholds
html e55f868 jens-daniel-mueller 2021-12-23 Build site.
html db09d70 jens-daniel-mueller 2021-12-10 Build site.
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html 3f7b649 jens-daniel-mueller 2021-11-03 Build site.
Rmd d675dd9 jens-daniel-mueller 2021-11-03 updated plots
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
html e534f51 jens-daniel-mueller 2021-11-02 Build site.
Rmd 31cbfae jens-daniel-mueller 2021-11-02 rebuild with revised IO tests
html 57cfc36 jens-daniel-mueller 2021-11-01 Build site.
html 4331a22 jens-daniel-mueller 2021-10-29 Build site.
html a162b7e jens-daniel-mueller 2021-10-28 Build site.
Rmd ebaf3bd jens-daniel-mueller 2021-10-28 cleaned output
html cd1e165 jens-daniel-mueller 2021-10-27 Build site.
Rmd a18d99e jens-daniel-mueller 2021-10-27 tcant vs atm pco2 plot created
html ae5ae64 jens-daniel-mueller 2021-10-26 Build site.
html 8c9fa17 jens-daniel-mueller 2021-10-22 Build site.
html 968fe94 jens-daniel-mueller 2021-10-18 Build site.
html 581baa0 jens-daniel-mueller 2021-10-07 Build site.
html a7af62f jens-daniel-mueller 2021-10-06 Build site.
html f9b4f93 jens-daniel-mueller 2021-10-05 Build site.
html f59a35e jens-daniel-mueller 2021-10-04 Build site.
Rmd ddf84c2 jens-daniel-mueller 2021-10-04 slab budgets included
html 8b1336c jens-daniel-mueller 2021-10-04 Build site.
Rmd 251b435 jens-daniel-mueller 2021-10-04 slab budgets included
html 19c82b0 jens-daniel-mueller 2021-10-04 Build site.
Rmd 34386f7 jens-daniel-mueller 2021-10-04 slab budgets included
html 960d158 jens-daniel-mueller 2021-09-29 Build site.
html 0573621 jens-daniel-mueller 2021-09-29 Build site.
Rmd f5cf35e jens-daniel-mueller 2021-09-29 rebuildt with vif results
html 57ebd7c jens-daniel-mueller 2021-09-28 Build site.
Rmd 09fc062 jens-daniel-mueller 2021-09-28 include steady state data
html f51dcb9 jens-daniel-mueller 2021-09-28 Build site.
Rmd 056c790 jens-daniel-mueller 2021-09-28 new MLR_basin added
html 55d2059 jens-daniel-mueller 2021-09-28 Build site.
Rmd 9307c46 jens-daniel-mueller 2021-09-28 new MLR_basin added
html 3a9319e jens-daniel-mueller 2021-09-28 Build site.
Rmd 78424ad jens-daniel-mueller 2021-09-28 update budget plots
html b95f078 jens-daniel-mueller 2021-09-27 Build site.
Rmd 6c51b25 jens-daniel-mueller 2021-09-27 compare direct and summed two decadel changes
html a9bf202 jens-daniel-mueller 2021-09-27 Build site.
Rmd 3ee96bc jens-daniel-mueller 2021-09-27 compare direct and summed two decadel changes
html f2cfccc jens-daniel-mueller 2021-09-27 Build site.
Rmd 6ec79a6 jens-daniel-mueller 2021-09-27 update ensemble calculation
html d0dbf3e jens-daniel-mueller 2021-09-27 Build site.
Rmd f8ae9b3 jens-daniel-mueller 2021-09-27 filter MLR basins with both criteria
html 09002a7 jens-daniel-mueller 2021-09-26 Build site.
Rmd b93e153 jens-daniel-mueller 2021-09-26 filter MLR_basins
html 23cc3a7 jens-daniel-mueller 2021-09-26 Build site.
Rmd ed88932 jens-daniel-mueller 2021-09-26 filter MLR basins
html 0c6be7e jens-daniel-mueller 2021-09-24 Build site.
Rmd 6a79fd0 jens-daniel-mueller 2021-09-24 consider ensemble selection across all analysis
html a324ace jens-daniel-mueller 2021-09-24 Build site.
Rmd c43a6a9 jens-daniel-mueller 2021-09-24 revised ensemble selection
html f54d5db jens-daniel-mueller 2021-09-24 Build site.
Rmd 76c942b jens-daniel-mueller 2021-09-24 1990 as start year 1 for classic runs
html 31c33cb jens-daniel-mueller 2021-09-23 Build site.
Rmd 9b1df4d jens-daniel-mueller 2021-09-23 1994 vs 2014 added
html ec4f702 jens-daniel-mueller 2021-09-22 Build site.
html 6525680 jens-daniel-mueller 2021-09-21 Build site.
html 6bf38c9 jens-daniel-mueller 2021-09-21 Build site.
html 63911d0 jens-daniel-mueller 2021-09-21 Build site.
html 499c9d5 jens-daniel-mueller 2021-09-21 Build site.
html 271a3ac jens-daniel-mueller 2021-09-21 Build site.
html 35ad8b5 jens-daniel-mueller 2021-09-20 Build site.
Rmd 919f74b jens-daniel-mueller 2021-09-20 rebuildt with canyon b cleaning analysis

1 Bias thresholds

global_bias_rel_max <- 12.5
global_bias_rel_max
[1] 12.5
regional_bias_rel_max <- 30
regional_bias_rel_max
[1] 30

2 Read files

# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "t"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "t"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "t"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

print(Version_IDs)
 [1] "v_1t01" "v_1t02" "v_1t03" "v_1t04" "v_1t05" "v_2t01" "v_2t02" "v_2t03"
 [9] "v_2t04" "v_2t05" "v_3t01" "v_3t02" "v_3t03" "v_3t04" "v_3t05"

2.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_target := str_c(params_local$MLR_target, collapse = "+"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_1t01"
[1] "v_1t02"
[1] "v_1t03"
[1] "v_1t04"
[1] "v_1t05"
[1] "v_2t01"
[1] "v_2t02"
[1] "v_2t03"
[1] "v_2t04"
[1] "v_2t05"
[1] "v_3t01"
[1] "v_3t02"
[1] "v_3t03"
[1] "v_3t04"
[1] "v_3t05"
rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  params_local,
  tref
)

dcant_budget_global_all <- full_join(dcant_budget_global_all,
                                     params_local_all)

dcant_budget_global_bias_all <-
  full_join(dcant_budget_global_bias_all,
            params_local_all)
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

2.2 Regional

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}
[1] "v_1t01"
[1] "v_1t02"
[1] "v_1t03"
[1] "v_1t04"
[1] "v_1t05"
[1] "v_2t01"
[1] "v_2t02"
[1] "v_2t03"
[1] "v_2t04"
[1] "v_2t05"
[1] "v_3t01"
[1] "v_3t02"
[1] "v_3t03"
[1] "v_3t04"
[1] "v_3t05"
rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

dcant_budget_basin_AIP_all <- full_join(dcant_budget_basin_AIP_all,
                                        params_local_all)

dcant_budget_basin_AIP_bias_all <-
  full_join(dcant_budget_basin_AIP_bias_all,
            params_local_all)

dcant_slab_budget_all <- full_join(dcant_slab_budget_all,
                                        params_local_all)

dcant_slab_budget_bias_all <-
  full_join(dcant_slab_budget_bias_all,
            params_local_all)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

2.3 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}
[1] "v_1t01"
[1] "v_1t02"
[1] "v_1t03"
[1] "v_1t04"
[1] "v_1t05"
[1] "v_2t01"
[1] "v_2t02"
[1] "v_2t03"
[1] "v_2t04"
[1] "v_2t05"
[1] "v_3t01"
[1] "v_3t02"
[1] "v_3t03"
[1] "v_3t04"
[1] "v_3t05"
rm(dcant_obs_budget)

dcant_obs_budget_all <- full_join(dcant_obs_budget_all,
                             params_local_all)

2.4 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))

3 Global

3.1 Individual cases

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_target)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
b16a8b5 jens-daniel-mueller 2022-01-06
33d5577 jens-daniel-mueller 2022-01-06
d549e76 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col = MLR_target)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (mu * mol ~ kg ^ {-1})))) +
  geom_point()

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
p_global_bias <- 
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_target),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4 Regional

4.1 Individual cases

4.1.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_target)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
72dd8ed jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
f2cfccc jens-daniel-mueller 2021-09-27
d0dbf3e jens-daniel-mueller 2021-09-27
09002a7 jens-daniel-mueller 2021-09-26
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

4.1.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_target)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
09002a7 jens-daniel-mueller 2021-09-26
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_target),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
72dd8ed jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
f2cfccc jens-daniel-mueller 2021-09-27
d0dbf3e jens-daniel-mueller 2021-09-27
09002a7 jens-daniel-mueller 2021-09-26
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_target),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27
f2cfccc jens-daniel-mueller 2021-09-27
d0dbf3e jens-daniel-mueller 2021-09-27
09002a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24

4.2 Slab budgets

4.2.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_target, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
8b1336c jens-daniel-mueller 2021-10-04
19c82b0 jens-daniel-mueller 2021-10-04
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_target, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f59a35e jens-daniel-mueller 2021-10-04

[[2]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f59a35e jens-daniel-mueller 2021-10-04

[[3]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f59a35e jens-daniel-mueller 2021-10-04

4.2.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_target) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
19c82b0 jens-daniel-mueller 2021-10-04

[[2]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
8b1336c jens-daniel-mueller 2021-10-04

[[3]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
8b1336c jens-daniel-mueller 2021-10-04

4.2.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
[[1]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28

[[2]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28

[[3]]

Version Author Date
5ba7fc6 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28

5 Ensemble

5.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()

5.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_target),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
72dd8ed jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27
f2cfccc jens-daniel-mueller 2021-09-27
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_target),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
72dd8ed jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

5.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)

tcant_ensemble <- left_join(tcant_ensemble, co2_atm)

co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)

tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
cd1e165 jens-daniel-mueller 2021-10-27
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

5.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_target) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_target),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
a9bf202 jens-daniel-mueller 2021-09-27

5.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_target == unique(dcant_budget_global_all$MLR_target)[1]) %>% 
    select(period, dcant)
)

dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

5.1.5 Vertical patterns

5.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_target, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

5.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_target, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_target, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias,
   params_local_all)

5.2 Regional

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()

5.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_target),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
a1b4fac jens-daniel-mueller 2022-01-07
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
bb02de1 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

5.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_target == unique(dcant_budget_basin_AIP_all$MLR_target)[1]) %>% 
    select(basin_AIP, period, dcant)
)

dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24

5.2.3 Vertical patterns

5.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_target, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

[[2]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
b95f078 jens-daniel-mueller 2021-09-27

5.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_target, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_target, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
bc2c182 jens-daniel-mueller 2021-12-23
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
e534f51 jens-daniel-mueller 2021-11-02
a162b7e jens-daniel-mueller 2021-10-28
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
f51dcb9 jens-daniel-mueller 2021-09-28
55d2059 jens-daniel-mueller 2021-09-28
3a9319e jens-daniel-mueller 2021-09-28
d0dbf3e jens-daniel-mueller 2021-09-27
23cc3a7 jens-daniel-mueller 2021-09-26
a324ace jens-daniel-mueller 2021-09-24
f54d5db jens-daniel-mueller 2021-09-24
31c33cb jens-daniel-mueller 2021-09-23
35ad8b5 jens-daniel-mueller 2021-09-20

6 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_target ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
57ebd7c jens-daniel-mueller 2021-09-28

[[2]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
57ebd7c jens-daniel-mueller 2021-09-28

[[3]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
57ebd7c jens-daniel-mueller 2021-09-28

[[4]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
57ebd7c jens-daniel-mueller 2021-09-28

[[5]]

Version Author Date
c646947 jens-daniel-mueller 2022-01-06
5ec57f9 jens-daniel-mueller 2022-01-06
030836b jens-daniel-mueller 2022-01-06
e55f868 jens-daniel-mueller 2021-12-23
db09d70 jens-daniel-mueller 2021-12-10
8c9fa17 jens-daniel-mueller 2021-10-22
968fe94 jens-daniel-mueller 2021-10-18
57ebd7c jens-daniel-mueller 2021-09-28

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.3   metR_0.9.0      scico_1.2.0     patchwork_1.1.1
 [5] collapse_1.5.0  forcats_0.5.0   stringr_1.4.0   dplyr_1.0.5    
 [9] purrr_0.3.4     readr_1.4.0     tidyr_1.1.3     tibble_3.1.3   
[13] ggplot2_3.3.5   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               sass_0.4.0               jsonlite_1.7.1          
 [4] here_0.1                 modelr_0.1.8             bslib_0.2.5.1           
 [7] assertthat_0.2.1         highr_0.8                blob_1.2.1              
[10] cellranger_1.1.0         yaml_2.2.1               pillar_1.6.2            
[13] backports_1.1.10         lattice_0.20-41          glue_1.4.2              
[16] RcppEigen_0.3.3.7.0      digest_0.6.27            RColorBrewer_1.1-2      
[19] polyclip_1.10-0          promises_1.1.1           checkmate_2.0.0         
[22] rvest_0.3.6              colorspace_2.0-2         htmltools_0.5.1.1       
[25] httpuv_1.5.4             Matrix_1.2-18            pkgconfig_2.0.3         
[28] broom_0.7.9              haven_2.3.1              scales_1.1.1            
[31] tweenr_1.0.2             whisker_0.4              later_1.2.0             
[34] git2r_0.27.1             farver_2.0.3             generics_0.1.0          
[37] ellipsis_0.3.2           withr_2.3.0              cli_3.0.1               
[40] magrittr_1.5             crayon_1.3.4             readxl_1.3.1            
[43] evaluate_0.14            fs_1.5.0                 fansi_0.4.1             
[46] MASS_7.3-53              xml2_1.3.2               RcppArmadillo_0.10.1.2.0
[49] tools_4.0.3              data.table_1.14.0        hms_0.5.3               
[52] lifecycle_1.0.0          munsell_0.5.0            reprex_0.3.0            
[55] compiler_4.0.3           jquerylib_0.1.4          rlang_0.4.11            
[58] grid_4.0.3               rstudioapi_0.13          labeling_0.4.2          
[61] rmarkdown_2.10           gtable_0.3.0             DBI_1.1.0               
[64] R6_2.5.0                 lubridate_1.7.9          knitr_1.33              
[67] utf8_1.1.4               rprojroot_2.0.2          stringi_1.5.3           
[70] parallel_4.0.3           Rcpp_1.0.5               vctrs_0.3.8             
[73] dbplyr_1.4.4             tidyselect_1.1.0         xfun_0.25