Last updated: 2022-04-12

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version e5e9288. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/classic_budgets.Rmd
    Deleted:    analysis/classic_column_inventories.Rmd
    Deleted:    analysis/classic_zonal_sections.Rmd
    Deleted:    analysis/data_adjustment_budgets.Rmd
    Deleted:    analysis/data_adjustment_column_inventories.Rmd
    Deleted:    analysis/data_adjustment_zonal_sections.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/vif_zonal_sections.Rmd) and HTML (docs/vif_zonal_sections.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html acad2e2 jens-daniel-mueller 2022-04-09 Build site.
html c3a6238 jens-daniel-mueller 2022-03-08 Build site.
html de557de jens-daniel-mueller 2022-01-28 Build site.
html 9753eb8 jens-daniel-mueller 2022-01-26 Build site.
html f347cd7 jens-daniel-mueller 2022-01-18 Build site.
html 513630f jens-daniel-mueller 2022-01-18 Build site.
html d6fe073 jens-daniel-mueller 2022-01-18 Build site.
Rmd 51e4dfa jens-daniel-mueller 2022-01-18 ordered vif_max factor levels
html d7dfc7c jens-daniel-mueller 2022-01-18 Build site.
Rmd f441bed jens-daniel-mueller 2022-01-18 rebuild without any gap filter or flagging exceptions
Rmd 53dee50 jens-daniel-mueller 2022-01-12 rebuild with correct config
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
html e534f51 jens-daniel-mueller 2021-11-02 Build site.
html 57cfc36 jens-daniel-mueller 2021-11-01 Build site.
html 4331a22 jens-daniel-mueller 2021-10-29 Build site.
html ae5ae64 jens-daniel-mueller 2021-10-26 Build site.
html 581baa0 jens-daniel-mueller 2021-10-07 Build site.
html a7af62f jens-daniel-mueller 2021-10-06 Build site.
html f9b4f93 jens-daniel-mueller 2021-10-05 Build site.
html 960d158 jens-daniel-mueller 2021-09-29 Build site.
html 0573621 jens-daniel-mueller 2021-09-29 Build site.
html 73154c7 jens-daniel-mueller 2021-09-22 Build site.
Rmd 8f1a837 jens-daniel-mueller 2021-09-22 new vif analysis added
html ec4f702 jens-daniel-mueller 2021-09-22 Build site.
Rmd 1abd051 jens-daniel-mueller 2021-09-22 rebuildt with vif results
Rmd f474699 jens-daniel-mueller 2021-08-17 ensemble filtering
html bd9ce6b jens-daniel-mueller 2021-08-02 Build site.
Rmd 29564fb jens-daniel-mueller 2021-08-02 rebuildt with vif analysis

version_id_pattern <- "v"
config <- "vif_max"

1 Read files

# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "v"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "v"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "v"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

print(Version_IDs)
 [1] "v_1v01" "v_1v02" "v_1v03" "v_1v04" "v_1v05" "v_1v06" "v_2v01" "v_2v02"
 [9] "v_2v03" "v_2v04" "v_2v05" "v_2v06" "v_3v01" "v_3v02" "v_3v03" "v_3v04"
[17] "v_3v05" "v_3v06"
for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
  paste(path_observations,
        i_Version_IDs,
        "/data/",
        sep = "")
  
  # load and join data files
  
  dcant_zonal <-
    read_csv(paste(path_version_data,
                   "dcant_zonal.csv",
                   sep = ""))
  
  dcant_zonal_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_mod_truth.csv",
                   sep = ""))
  
  dcant_zonal <- bind_rows(dcant_zonal,
                         dcant_zonal_mod_truth)
  
  dcant_profile <-
    read_csv(paste(path_version_data,
                   "dcant_profile.csv",
                   sep = ""))
  
  dcant_profile_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_profile_mod_truth.csv",
                   sep = ""))
  
  dcant_profile <- bind_rows(dcant_profile,
                             dcant_profile_mod_truth)
  
  dcant_budget_basin_AIP_layer <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_layer.csv",
                   sep = ""))
  
  dcant_zonal_bias <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_bias.csv",
                   sep = ""))
  

  dcant_zonal <- dcant_zonal %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_profile <- dcant_profile %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_layer <- dcant_budget_basin_AIP_layer %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_zonal_bias <- dcant_zonal_bias %>% 
    mutate(Version_ID = i_Version_IDs)
  
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    vif_max := str_c(params_local$vif_max, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>% 
    mutate(median_year_1 = sort(tref$median_year)[1],
           median_year_2 = sort(tref$median_year)[2],
           duration = median_year_2 - median_year_1,
           period = paste(median_year_1, "-", median_year_2))
  
  if (exists("dcant_zonal_all")) {
    dcant_zonal_all <- bind_rows(dcant_zonal_all, dcant_zonal)
  }
  
  if (!exists("dcant_zonal_all")) {
    dcant_zonal_all <- dcant_zonal
  }

  if (exists("dcant_profile_all")) {
    dcant_profile_all <- bind_rows(dcant_profile_all, dcant_profile)
  }
  
  if (!exists("dcant_profile_all")) {
    dcant_profile_all <- dcant_profile
  }

  if (exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <-
      bind_rows(dcant_budget_basin_AIP_layer_all,
                dcant_budget_basin_AIP_layer)
  }
  
  if (!exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <- dcant_budget_basin_AIP_layer
  }

  if (exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- bind_rows(dcant_zonal_bias_all, dcant_zonal_bias)
  }
  
  if (!exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- dcant_zonal_bias
  }

  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_1v01"
[1] "v_1v02"
[1] "v_1v03"
[1] "v_1v04"
[1] "v_1v05"
[1] "v_1v06"
[1] "v_2v01"
[1] "v_2v02"
[1] "v_2v03"
[1] "v_2v04"
[1] "v_2v05"
[1] "v_2v06"
[1] "v_3v01"
[1] "v_3v02"
[1] "v_3v03"
[1] "v_3v04"
[1] "v_3v05"
[1] "v_3v06"
rm(dcant_zonal, dcant_zonal_bias, dcant_zonal_mod_truth,
   dcant_budget_basin_AIP_layer,
   tref)
params_local_all <- params_local_all %>%
  mutate(vif_max = fct_inorder(vif_max))

2 Uncertainty limit

sd_uncertainty_limit <- 1.5

3 Individual cases

3.1 Absoulte values

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant",
      plot_slabs = "n",
      subtitle_text = paste(
        "data_source: ",
        unique(.x$data_source),
        "| basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(vif_max ~ period)
  )
[[1]]
Warning: Removed 20196 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 9522 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[3]]
Warning: Removed 13338 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[4]]
Warning: Removed 6354 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[5]]
Warning: Removed 22212 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[6]]
Warning: Removed 10782 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02
p_dcant_Indian_1994_2004 <-
  dcant_zonal_all %>%
  filter(data_source %in% c("obs"),
         period == "1994 - 2004",
         basin_AIP == "Indian") %>%
  p_section_zonal_continous_depth(var = "dcant",
                                  plot_slabs = "n",
                                  subtitle_text = "Indian Ocean") +
  facet_grid(vif_max ~ period)

# ggsave(plot = p_dcant_Indian_1994_2004,
#        path = "output/other",
#        filename = "zonal_indian_1994_2004.png",
#        height = 8,
#        width = 5)

p_dcant_Indian_2004_2014 <-
  dcant_zonal_all %>%
  filter(data_source %in% c("obs"),
         period == "2004 - 2014",
         basin_AIP == "Pacific") %>%
  p_section_zonal_continous_depth(var = "dcant",
                                  plot_slabs = "n",
                                  subtitle_text = "Pacific Ocean") +
  facet_grid(vif_max ~ period)

# ggsave(plot = p_dcant_Indian_2004_2014,
#        path = "output/other",
#        filename = "zonal_Pacific_2004_2014.png",
#        height = 8,
#        width = 5)

3.2 Biases

dcant_zonal_bias_all %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(vif_max ~ period)
  )
[[1]]
Warning: Removed 20196 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 13338 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[3]]
Warning: Removed 22212 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

3.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot(aes(dcant_bias, col = vif_max)) +
  scale_color_brewer(palette = "Dark2") +
  geom_vline(xintercept = 0) +
  geom_density() +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))

Version Author Date
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

3.3 Bias correlation eras

dcant_zonal_bias_all_corr <- dcant_zonal_bias_all %>%
  select(lat, depth, basin_AIP, dcant_bias, vif_max, period) %>% 
  pivot_wider(names_from = period,
              values_from = dcant_bias, 
              names_prefix = "dcant_bias ")

dcant_zonal_bias_all_corr %>% 
  ggplot(aes(`dcant_bias 1994 - 2004`, `dcant_bias 2004 - 2014`)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_bin2d() +
  coord_fixed() +
  facet_grid(vif_max ~ basin_AIP) +
  scale_fill_viridis_c()

Version Author Date
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

3.4 Concentration profiles

3.4.1 Data source

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = data_source, fill = data_source
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_ribbon(
        aes(xmin = dcant - dcant_sd,
            xmax = dcant + dcant_sd),
        alpha = 0.2,
        col = "transparent"
      ) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(vif_max ~ basin_AIP)
  )
[[1]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[2]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[3]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

3.4.2 Basin separation

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = vif_max, fill = vif_max
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[2]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[3]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

3.4.3 Era

dcant_profile_all %>%
  arrange(depth) %>%
  filter(period != "1994 - 2014") %>%
  group_split(data_source) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        dcant,
        depth,
        col = period,
        group = interaction(vif_max, period)
      )
    ) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("data_source", unique(.x$data_source))) +
      facet_grid(. ~ basin_AIP)
  )
[[1]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[2]]

Version Author Date
d7dfc7c jens-daniel-mueller 2022-01-18

[[3]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

3.5 Layer budgets

dcant_budget_basin_AIP_layer_all %>%
  filter(estimate == "dcant") %>% 
  mutate(dcant = value,
         inv_depth = fct_inorder(as.factor(inv_depth))) %>% 
  group_split(period) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(dcant, inv_depth,
                 fill = vif_max)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_y_discrete(limits = rev) +
      scale_fill_brewer(palette = "Dark2") +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[2]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

[[3]]

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

4 Ensemble

dcant_zonal_ensemble <- dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(lat, depth, basin_AIP, data_source, period) %>%
  summarise(
    dcant_ensemble_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_range = max(dcant) - min(dcant)
  ) %>%
  ungroup()
`summarise()` has grouped output by 'lat', 'depth', 'basin_AIP', 'data_source'. You can override using the `.groups` argument.
dcant_budget_basin_AIP_layer_ensemble <-
  dcant_budget_basin_AIP_layer_all %>%
  mutate(inv_depth = fct_inorder(as.factor(inv_depth))) %>%
  filter(data_source %in% c("mod", "obs"),
         estimate == "dcant") %>%
  rename(dcant = value) %>%
  group_by(inv_depth, data_source, period, basin_AIP) %>%
  summarise(
    dcant_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_max = max(dcant),
    dcant_min = min(dcant)
  ) %>%
  ungroup()
`summarise()` has grouped output by 'inv_depth', 'data_source', 'period'. You can override using the `.groups` argument.

4.1 Mean

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_ensemble_mean",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]
Warning: Removed 4953 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 3282 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[3]]
Warning: Removed 5499 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

4.2 Mean bias

dcant_zonal_ensemble_bias <- full_join(
  dcant_zonal_ensemble %>%
    filter(data_source == "mod") %>% 
    select(lat, depth, basin_AIP, period, dcant_ensemble_mean, dcant_sd),
  dcant_zonal_all %>%
    filter(data_source == "mod_truth",
           vif_max == unique(dcant_zonal_all$vif_max)[1]) %>% 
    select(lat, depth, basin_AIP, period, dcant_mod_truth = dcant)
)
Joining, by = c("lat", "depth", "basin_AIP", "period")
dcant_zonal_ensemble_bias <- dcant_zonal_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_ensemble_mean - dcant_mod_truth)

dcant_zonal_ensemble_bias %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_mean_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(. ~ period)
  )
[[1]]
Warning: Removed 3366 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 2223 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[3]]
Warning: Removed 3702 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

4.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot() +
  scale_color_manual(values = c("red", "grey")) +
  geom_vline(xintercept = 0) +
  geom_density(aes(dcant_bias, group = vif_max, col = "Individual")) +
  geom_density(data = dcant_zonal_ensemble_bias,
               aes(dcant_mean_bias, col = "Ensemble")) +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18

4.3 Mean depth layer budgets

dcant_lat_grid_ensemble %>%
  ggplot(aes(lat_grid, dcant_mean)) +
  geom_hline(yintercept = 0) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  scale_color_brewer(palette = "Set1") +
  coord_flip() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(data_source ~ period)

4.4 Standard deviation

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_sd",
      breaks = c(seq(0,4,0.4), Inf),
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]
Warning: Removed 4953 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 3282 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[3]]
Warning: Removed 5499 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

4.5 SD as uncertainty

uncertainty_grid <- dcant_zonal_ensemble %>%
  filter(dcant_sd > sd_uncertainty_limit) %>% 
  distinct(depth, lat, data_source, period, basin_AIP)

uncertainty_grid <- uncertainty_grid %>%
  mutate(
    lat_grid = cut(lat, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
    lat_grid = as.numeric(as.character(lat_grid)),
    depth_grid = cut(depth, seq(0, 1e4, 500), seq(250, 1e4, 500)),
    depth_grid = as.numeric(as.character(depth_grid))
  ) %>%
  distinct(depth_grid, lat_grid, data_source, period, basin_AIP)

uncertainty_grid %>%
  filter(data_source == "obs") %>%
  ggplot() +
  geom_point(aes(lat_grid, depth_grid),
             shape = 3) +
  facet_grid(basin_AIP ~ period) +
  scale_y_reverse()

Version Author Date
d7dfc7c jens-daniel-mueller 2022-01-18

4.6 SD vs bias

dcant_zonal_ensemble_bias %>% 
  ggplot(aes(dcant_mean_bias, dcant_sd)) +
  geom_bin2d() +
  scale_fill_viridis_c() +
  facet_grid(basin_AIP ~ period)

Version Author Date
d7dfc7c jens-daniel-mueller 2022-01-18
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02
dcant_zonal_ensemble_bias %>% 
  select(dcant_ensemble_mean, dcant_mean_bias, period) %>% 
  pivot_longer(dcant_ensemble_mean:dcant_mean_bias,
               names_to = "estimate",
               values_to = "value") %>% 
  ggplot(aes(value, col=estimate, linetype = period)) +
  scale_color_brewer(palette = "Set1") +
  geom_density()

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
d7dfc7c jens-daniel-mueller 2022-01-18
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02
dcant_zonal_ensemble %>% 
  ggplot(aes(dcant_sd)) +
  geom_histogram() +
  facet_grid(data_source ~ period) +
  coord_cartesian(ylim = c(0,50))
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.

Version Author Date
d7dfc7c jens-daniel-mueller 2022-01-18
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

4.7 Composed figure

uncertainty_grid <- uncertainty_grid %>%
  filter(data_source == "obs",
         period != "1994 - 2014")

p_zonal_ensemble <- dcant_zonal_ensemble %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  p_section_zonal_continous_depth(var = "dcant_ensemble_mean",
                                  plot_slabs = "n",
                                  title_text = NULL) +
  geom_point(data = uncertainty_grid,
             aes(lat_grid, depth_grid),
             shape = 3,
             col = "white") +
  facet_grid(basin_AIP ~ period,
             switch = "y") +
  theme(legend.position = "left",
        strip.background.y = element_blank(),
        strip.text.y = element_blank())

p_profiles <-
  dcant_profile_all %>%
  arrange(depth) %>%
  filter(period != "1994 - 2014",
         data_source == "obs") %>%
  ggplot(aes(
           dcant,
           depth,
           col = period,
           fill = "grey80",
           group = interaction(vif_max, period)
         )) +
  geom_hline(yintercept = params_global$inventory_depth_standard) +
  geom_vline(xintercept = 0) +
  geom_path() +
  scale_y_reverse(name = "Depth (m)",
                  limits = c(5000,0)) +
  scale_x_continuous(name = expression(Delta * C[ant] ~ (µmol~kg^{-1}))) +
  coord_cartesian(expand = 0) +
  scale_color_brewer(palette = "Set1") +
  facet_grid(basin_AIP ~.) +
  theme(legend.position = "top",
        legend.direction = "vertical",
        legend.title = element_blank(),
        strip.background = element_blank(),
        strip.text = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_layer_budget <- dcant_budget_basin_AIP_layer_ensemble %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  mutate(depth =
           as.numeric(str_split(inv_depth, " - ", simplify = TRUE)[, 1]) + 250) %>%
  filter(depth < 5000) %>% 
  ggplot(aes(dcant_mean, inv_depth, col = period)) +
  geom_col(position = "dodge",
           orientation = "y",
           fill = "grey80") +
  geom_errorbar(
    aes(xmin = dcant_min,
        xmax = dcant_max),
    width = 0,
    position = position_dodge(width = 0.9)
  ) +
  scale_color_brewer(palette = "Set1", guide = "none") +
  scale_x_continuous(
    limits = c(0, NA),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC))
  ) +
  scale_y_discrete(name = "Depth intervals (m)",
                   limits = rev) +
  facet_grid(basin_AIP ~ .) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_zonal_ensemble + p_profiles + p_layer_budget +
  plot_layout(widths = c(5,1,1)) +
  plot_annotation(tag_levels = 'a')
Warning: Removed 2962 rows containing non-finite values (stat_contour_filled).
Warning: Removed 1 rows containing missing values (geom_point).
Warning: Removed 36 row(s) containing missing values (geom_path).
Warning: Removed 4 rows containing missing values (geom_col).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
# ggsave("output/publication/Fig_zonal_mean.png",
#        width=15.25,
#        height=9.27)

5 Cases vs ensemble

5.1 Offset from mean

dcant_zonal_all <- full_join(dcant_zonal_all %>% select(-dcant_sd),
                             dcant_zonal_ensemble)
Joining, by = c("data_source", "lat", "depth", "basin_AIP", "period")
dcant_zonal_all <- dcant_zonal_all %>%
  mutate(dcant_offset = dcant - dcant_ensemble_mean)


legend_title <- expression(atop(Delta * C[ant, offset],
                                (mu * mol ~ kg ^ {
                                  -1
                                })))

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_offset",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP),
                            "| data_source",
                            unique(.x$data_source))
    ) +
      facet_grid(vif_max ~ period)
  )
[[1]]
Warning: Removed 20196 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22
bd9ce6b jens-daniel-mueller 2021-08-02

[[2]]
Warning: Removed 9522 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22

[[3]]
Warning: Removed 13338 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22

[[4]]
Warning: Removed 6354 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22

[[5]]
Warning: Removed 22212 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22

[[6]]
Warning: Removed 10782 rows containing non-finite values (stat_contour_filled).

Version Author Date
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
d6fe073 jens-daniel-mueller 2022-01-18
d7dfc7c jens-daniel-mueller 2022-01-18
ae5ae64 jens-daniel-mueller 2021-10-26
0573621 jens-daniel-mueller 2021-09-29
73154c7 jens-daniel-mueller 2021-09-22
ec4f702 jens-daniel-mueller 2021-09-22

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] colorspace_2.0-2 marelac_2.1.10   shape_1.4.6      ggforce_0.3.3   
 [5] metR_0.11.0      scico_1.3.0      patchwork_1.1.1  collapse_1.7.0  
 [9] forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7      purrr_0.3.4     
[13] readr_2.1.1      tidyr_1.1.4      tibble_3.1.6     ggplot2_3.3.5   
[17] tidyverse_1.3.1  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2           bit64_4.0.5        gsw_1.0-6          lubridate_1.8.0   
 [5] RColorBrewer_1.1-2 httr_1.4.2         rprojroot_2.0.2    tools_4.1.2       
 [9] backports_1.4.1    bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] DBI_1.1.2          withr_2.4.3        tidyselect_1.1.1   processx_3.5.2    
[17] bit_4.0.4          compiler_4.1.2     git2r_0.29.0       cli_3.1.1         
[21] rvest_1.0.2        xml2_1.3.3         isoband_0.2.5      labeling_0.4.2    
[25] sass_0.4.0         scales_1.1.1       checkmate_2.0.0    SolveSAPHE_2.1.0  
[29] callr_3.7.0        digest_0.6.29      rmarkdown_2.11     oce_1.5-0         
[33] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[37] fastmap_1.1.0      rlang_0.4.12       readxl_1.3.1       rstudioapi_0.13   
[41] jquerylib_0.1.4    generics_0.1.1     farver_2.1.0       jsonlite_1.7.3    
[45] vroom_1.5.7        magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0     
[49] fansi_1.0.2        lifecycle_1.0.1    stringi_1.7.6      whisker_0.4       
[53] yaml_2.2.1         MASS_7.3-55        grid_4.1.2         parallel_4.1.2    
[57] promises_1.2.0.1   crayon_1.4.2       haven_2.4.3        hms_1.1.1         
[61] seacarb_3.3.0      knitr_1.37         ps_1.6.0           pillar_1.6.4      
[65] reprex_2.0.1       glue_1.6.0         evaluate_0.14      getPass_0.2-2     
[69] data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0        
[73] tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0      
[77] polyclip_1.10-0    assertthat_0.2.1   xfun_0.29          broom_0.7.11      
[81] later_1.3.0        viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1