Last updated: 2022-01-13

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7daeb3f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/publication/

Untracked files:
    Untracked:  analysis/child/
    Untracked:  figure/bias_density_distribution-1.png
    Untracked:  figure/bias_density_distribution_ensemble-1.png
    Untracked:  figure/cases_absolute-1.png
    Untracked:  figure/cases_absolute-2.png
    Untracked:  figure/cases_absolute-3.png
    Untracked:  figure/cases_absolute-4.png
    Untracked:  figure/cases_absolute-5.png
    Untracked:  figure/cases_absolute-6.png
    Untracked:  figure/cases_absolute_depth-1.png
    Untracked:  figure/cases_absolute_depth_global-1.png
    Untracked:  figure/cases_absolute_global-1.png
    Untracked:  figure/cases_bias-1.png
    Untracked:  figure/cases_bias-2.png
    Untracked:  figure/cases_bias-3.png
    Untracked:  figure/cases_bias_correlation-1.png
    Untracked:  figure/cases_bias_depth-1.png
    Untracked:  figure/cases_bias_depth_global-1.png
    Untracked:  figure/cases_bias_global-1.png
    Untracked:  figure/cases_bias_global-2.png
    Untracked:  figure/cases_bias_rel_depth-1.png
    Untracked:  figure/cases_bias_rel_depth_global-1.png
    Untracked:  figure/composed_absolute_and_bias_figure-1.png
    Untracked:  figure/composed_figure-1.png
    Untracked:  figure/density_distributions-1.png
    Untracked:  figure/ensemble_deviation_from_mean-1.png
    Untracked:  figure/ensemble_deviation_from_mean-2.png
    Untracked:  figure/ensemble_deviation_from_mean-3.png
    Untracked:  figure/ensemble_deviation_from_mean-4.png
    Untracked:  figure/ensemble_deviation_from_mean-5.png
    Untracked:  figure/ensemble_deviation_from_mean-6.png
    Untracked:  figure/ensemble_mean-1.png
    Untracked:  figure/ensemble_mean-2.png
    Untracked:  figure/ensemble_mean-3.png
    Untracked:  figure/ensemble_mean_bias-1.png
    Untracked:  figure/ensemble_mean_bias-2.png
    Untracked:  figure/ensemble_mean_bias-3.png
    Untracked:  figure/ensemble_mean_bias_global-1.png
    Untracked:  figure/ensemble_mean_bias_global-2.png
    Untracked:  figure/ensemble_mean_global-1.png
    Untracked:  figure/ensemble_mean_global-2.png
    Untracked:  figure/ensemble_mean_two_decades-1.png
    Untracked:  figure/ensemble_range-1.png
    Untracked:  figure/ensemble_sd-1.png
    Untracked:  figure/ensemble_sd-2.png
    Untracked:  figure/ensemble_sd-3.png
    Untracked:  figure/ensemble_sd_uncertainty-1.png
    Untracked:  figure/ensemble_sd_vs_bias-1.png
    Untracked:  figure/ensemble_sd_vs_bias-2.png
    Untracked:  figure/ensemble_sd_vs_bias-3.png
    Untracked:  figure/lat_grid_budget_all-1.png
    Untracked:  figure/lat_grid_budget_all-2.png
    Untracked:  figure/lat_grid_budget_ensemble-1.png
    Untracked:  figure/layer_budget_per_data_source-1.png
    Untracked:  figure/layer_budget_per_data_source-2.png
    Untracked:  figure/layer_budget_per_data_source-3.png
    Untracked:  figure/lon_grid_budget_all-1.png
    Untracked:  figure/lon_grid_budget_all-2.png
    Untracked:  figure/lon_grid_budget_all-3.png
    Untracked:  figure/lon_grid_budget_all-4.png
    Untracked:  figure/lon_grid_budget_ensemble-1.png
    Untracked:  figure/mean_tcant_over_atm_co2-1.png
    Untracked:  figure/profiles_per_MLR_target-1.png
    Untracked:  figure/profiles_per_MLR_target-2.png
    Untracked:  figure/profiles_per_MLR_target-3.png
    Untracked:  figure/profiles_per_data_source-1.png
    Untracked:  figure/profiles_per_data_source-2.png
    Untracked:  figure/profiles_per_data_source-3.png
    Untracked:  figure/profiles_per_period-1.png
    Untracked:  figure/profiles_per_period-2.png
    Untracked:  figure/profiles_per_period-3.png
    Untracked:  figure/slab_budgets-1.png
    Untracked:  figure/slab_budgets_bias-1.png
    Untracked:  figure/slab_budgets_bias-2.png
    Untracked:  figure/slab_budgets_bias-3.png
    Untracked:  figure/slab_budgets_individual-1.png
    Untracked:  figure/slab_budgets_individual-2.png
    Untracked:  figure/slab_budgets_individual-3.png
    Untracked:  figure/slab_budgets_spread-1.png
    Untracked:  figure/slab_budgets_spread-2.png
    Untracked:  figure/slab_budgets_spread-3.png
    Untracked:  figure/steady_state_comparison-1.png
    Untracked:  figure/steady_state_comparison-2.png
    Untracked:  figure/steady_state_comparison-3.png
    Untracked:  figure/steady_state_comparison-4.png
    Untracked:  figure/steady_state_comparison-5.png
    Untracked:  figure/summed_decades-1.png

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/G19_column_inventories.Rmd) and HTML (docs/G19_column_inventories.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 269809e jens-daniel-mueller 2022-01-12 Build site.
html 1696b98 jens-daniel-mueller 2022-01-11 Build site.
html 570e738 jens-daniel-mueller 2022-01-10 Build site.
html 9bf6789 jens-daniel-mueller 2022-01-10 Build site.
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html 66ec048 jens-daniel-mueller 2021-11-04 Build site.
Rmd 3eaddfc jens-daniel-mueller 2021-11-04 compared G19 and this study directly
html 71920de jens-daniel-mueller 2021-11-04 Build site.
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
Rmd 582b24e jens-daniel-mueller 2021-11-03 rebuild with G19 runs

1 Read files

# identify required version IDs

Version_IDs <-
  list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
             pattern = "v_G0")
for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_inv <-
    read_csv(paste(path_version_data,
                   "dcant_inv.csv",
                   sep = ""))
  
  dcant_inv_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_inv_mod_truth.csv",
                   sep = "")) %>%
    filter(method == "total") %>%
    select(-method)
  
  dcant_inv_bias <-
    read_csv(paste(path_version_data,
                   "dcant_inv_bias.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_inv <- bind_rows(dcant_inv,
                         dcant_inv_mod_truth) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_lat_grid <-
    read_csv(paste(path_version_data,
                   "dcant_budget_lat_grid.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_lon_grid <-
    read_csv(paste(path_version_data,
                   "dcant_budget_lon_grid.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins = params_local$MLR_basins,
    tref1 = params_local$tref1,
    tref2 = params_local$tref2,
    gap_filling = params_local$gap_filling,
    rarefication = params_local$rarefication,
    rarefication_threshold = params_local$rarefication_threshold,
    MLR_predictors = str_c(params_local$MLR_predictors, collapse = "+"),
    vif_max = params_local$vif_max
  )
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_inv_all")) {
    dcant_inv_all <- bind_rows(dcant_inv_all, dcant_inv)
  }
  
  if (!exists("dcant_inv_all")) {
    dcant_inv_all <- dcant_inv
  }
  
  if (exists("dcant_inv_bias_all")) {
    dcant_inv_bias_all <- bind_rows(dcant_inv_bias_all, dcant_inv_bias)
  }
  
  if (!exists("dcant_inv_bias_all")) {
    dcant_inv_bias_all <- dcant_inv_bias
  }
  
  if (exists("dcant_budget_lat_grid_all")) {
    dcant_budget_lat_grid_all <- bind_rows(dcant_budget_lat_grid_all, dcant_budget_lat_grid)
  }
  
  if (!exists("dcant_budget_lat_grid_all")) {
    dcant_budget_lat_grid_all <- dcant_budget_lat_grid
  }
  
  if (exists("dcant_budget_lon_grid_all")) {
    dcant_budget_lon_grid_all <- bind_rows(dcant_budget_lon_grid_all, dcant_budget_lon_grid)
  }
  
  if (!exists("dcant_budget_lon_grid_all")) {
    dcant_budget_lon_grid_all <- dcant_budget_lon_grid
  }

  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_G001"
[1] "v_G002"
[1] "v_G003"
[1] "v_G004"
[1] "v_G005"
[1] "v_G006"
rm(dcant_inv,
   dcant_inv_bias,
   dcant_inv_mod_truth,
   dcant_budget_lat_grid,
   dcant_budget_lon_grid,
   params_local,
   tref)

# params_local_all <-
#   params_local_all %>%
#   mutate(period = factor(period, c("1994 - 2004", "2004 - 2014", "1994 - 2014")))

dcant_inv_all <- full_join(dcant_inv_all,
                           params_local_all)

dcant_inv_bias_all <- full_join(dcant_inv_bias_all,
                                params_local_all)


dcant_budget_lat_grid_all <- full_join(dcant_budget_lat_grid_all,
                                       params_local_all)

dcant_budget_lon_grid_all <- full_join(dcant_budget_lon_grid_all,
                                       params_local_all)
dcant_inv_all <- dcant_inv_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>% 
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>% 
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>%
  pivot_wider(names_from = estimate,
              values_from = value) %>%
  filter(method == "total")

dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>%
  pivot_wider(names_from = estimate,
              values_from = value) %>%
  filter(method == "total")
dcant_inv_all_G19 <- read_csv(paste0(path_preprocessing,
                             "G19_dcant_inv_all.csv"))

2 Individual cases

2.1 Absoulte values

dcant_inv_join <- bind_rows(
  dcant_inv_all_G19 %>%
    filter(Version_ID %in% c("01", "04", "05", "07")) %>%
    mutate(
      MLR_basins = recode(
        Version_ID,
        "01" = "2",
        "04" = "SO_AIP",
        "05" = "2+1",
        "07" = "5"
      )
    ) %>%
    select(lon, lat, dcant = dcant_pos, MLR_basins) %>% 
    mutate(source = "Gruber 2019"),
  dcant_inv_all %>%
    filter(data_source %in% c("obs")) %>%
    select(lon, lat, dcant, MLR_basins) %>% 
    mutate(source = "This study")
)

dcant_inv_join <- dcant_inv_join %>% 
  mutate(dcant = dcant * 10 / 13)
dcant_inv_join %>%
  p_map_cant_inv(var = "dcant") +
  facet_grid(MLR_basins ~ source) +
  theme(axis.text = element_blank(),
        axis.ticks = element_blank())

Version Author Date
66ec048 jens-daniel-mueller 2021-11-04
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggforce_0.3.3   metR_0.9.0      scico_1.2.0     patchwork_1.1.1
 [5] collapse_1.5.0  forcats_0.5.0   stringr_1.4.0   dplyr_1.0.5    
 [9] purrr_0.3.4     readr_1.4.0     tidyr_1.1.3     tibble_3.1.3   
[13] ggplot2_3.3.5   tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               sass_0.4.0               viridisLite_0.3.0       
 [4] jsonlite_1.7.1           modelr_0.1.8             bslib_0.2.5.1           
 [7] assertthat_0.2.1         highr_0.8                blob_1.2.1              
[10] cellranger_1.1.0         yaml_2.2.1               pillar_1.6.2            
[13] backports_1.1.10         lattice_0.20-41          glue_1.4.2              
[16] RcppEigen_0.3.3.7.0      digest_0.6.27            promises_1.1.1          
[19] polyclip_1.10-0          checkmate_2.0.0          rvest_0.3.6             
[22] colorspace_2.0-2         htmltools_0.5.1.1        httpuv_1.5.4            
[25] Matrix_1.2-18            pkgconfig_2.0.3          broom_0.7.9             
[28] haven_2.3.1              scales_1.1.1             tweenr_1.0.2            
[31] whisker_0.4              later_1.2.0              git2r_0.27.1            
[34] farver_2.0.3             generics_0.1.0           ellipsis_0.3.2          
[37] withr_2.3.0              cli_3.0.1                magrittr_1.5            
[40] crayon_1.3.4             readxl_1.3.1             evaluate_0.14           
[43] fs_1.5.0                 fansi_0.4.1              MASS_7.3-53             
[46] xml2_1.3.2               RcppArmadillo_0.10.1.2.0 tools_4.0.3             
[49] data.table_1.14.0        hms_0.5.3                lifecycle_1.0.0         
[52] munsell_0.5.0            reprex_0.3.0             compiler_4.0.3          
[55] jquerylib_0.1.4          rlang_0.4.11             grid_4.0.3              
[58] rstudioapi_0.13          labeling_0.4.2           rmarkdown_2.10          
[61] gtable_0.3.0             DBI_1.1.0                R6_2.5.0                
[64] lubridate_1.7.9          knitr_1.33               utf8_1.1.4              
[67] rprojroot_2.0.2          stringi_1.5.3            parallel_4.0.3          
[70] Rcpp_1.0.5               vctrs_0.3.8              dbplyr_1.4.4            
[73] tidyselect_1.1.0         xfun_0.25