Last updated: 2022-01-18
Checks: 7 0
Knit directory: emlr_obs_analysis/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210412)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version f441bed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/
Ignored: output/other/
Ignored: output/publication/
Untracked files:
Untracked: analysis/child/
Untracked: figure/bias_density_distribution-1.png
Untracked: figure/bias_density_distribution_ensemble-1.png
Untracked: figure/cases_absolute-1.png
Untracked: figure/cases_absolute-2.png
Untracked: figure/cases_absolute-3.png
Untracked: figure/cases_absolute-4.png
Untracked: figure/cases_absolute-5.png
Untracked: figure/cases_absolute-6.png
Untracked: figure/cases_absolute_depth-1.png
Untracked: figure/cases_absolute_depth_global-1.png
Untracked: figure/cases_absolute_global-1.png
Untracked: figure/cases_bias-1.png
Untracked: figure/cases_bias-2.png
Untracked: figure/cases_bias-3.png
Untracked: figure/cases_bias_correlation-1.png
Untracked: figure/cases_bias_depth-1.png
Untracked: figure/cases_bias_depth_global-1.png
Untracked: figure/cases_bias_global-1.png
Untracked: figure/cases_bias_global-2.png
Untracked: figure/cases_bias_rel_depth-1.png
Untracked: figure/cases_bias_rel_depth_global-1.png
Untracked: figure/composed_absolute_and_bias_figure-1.png
Untracked: figure/composed_figure-1.png
Untracked: figure/density_distributions-1.png
Untracked: figure/ensemble_deviation_from_mean-1.png
Untracked: figure/ensemble_deviation_from_mean-2.png
Untracked: figure/ensemble_deviation_from_mean-3.png
Untracked: figure/ensemble_deviation_from_mean-4.png
Untracked: figure/ensemble_deviation_from_mean-5.png
Untracked: figure/ensemble_deviation_from_mean-6.png
Untracked: figure/ensemble_mean-1.png
Untracked: figure/ensemble_mean-2.png
Untracked: figure/ensemble_mean-3.png
Untracked: figure/ensemble_mean_bias-1.png
Untracked: figure/ensemble_mean_bias-2.png
Untracked: figure/ensemble_mean_bias-3.png
Untracked: figure/ensemble_mean_bias_global-1.png
Untracked: figure/ensemble_mean_bias_global-2.png
Untracked: figure/ensemble_mean_global-1.png
Untracked: figure/ensemble_mean_global-2.png
Untracked: figure/ensemble_mean_two_decades-1.png
Untracked: figure/ensemble_range-1.png
Untracked: figure/ensemble_sd-1.png
Untracked: figure/ensemble_sd-2.png
Untracked: figure/ensemble_sd-3.png
Untracked: figure/ensemble_sd_uncertainty-1.png
Untracked: figure/ensemble_sd_vs_bias-1.png
Untracked: figure/ensemble_sd_vs_bias-2.png
Untracked: figure/ensemble_sd_vs_bias-3.png
Untracked: figure/lat_grid_budget_all-1.png
Untracked: figure/lat_grid_budget_all-2.png
Untracked: figure/lat_grid_budget_ensemble-1.png
Untracked: figure/layer_budget_per_data_source-1.png
Untracked: figure/layer_budget_per_data_source-2.png
Untracked: figure/layer_budget_per_data_source-3.png
Untracked: figure/lon_grid_budget_all-1.png
Untracked: figure/lon_grid_budget_all-2.png
Untracked: figure/lon_grid_budget_all-3.png
Untracked: figure/lon_grid_budget_all-4.png
Untracked: figure/lon_grid_budget_ensemble-1.png
Untracked: figure/mean_tcant_over_atm_co2-1.png
Untracked: figure/profiles_per_MLR_target-1.png
Untracked: figure/profiles_per_MLR_target-2.png
Untracked: figure/profiles_per_MLR_target-3.png
Untracked: figure/profiles_per_data_source-1.png
Untracked: figure/profiles_per_data_source-2.png
Untracked: figure/profiles_per_data_source-3.png
Untracked: figure/profiles_per_period-1.png
Untracked: figure/profiles_per_period-2.png
Untracked: figure/profiles_per_period-3.png
Untracked: figure/slab_budgets-1.png
Untracked: figure/slab_budgets_bias-1.png
Untracked: figure/slab_budgets_bias-2.png
Untracked: figure/slab_budgets_bias-3.png
Untracked: figure/slab_budgets_individual-1.png
Untracked: figure/slab_budgets_individual-2.png
Untracked: figure/slab_budgets_individual-3.png
Untracked: figure/slab_budgets_spread-1.png
Untracked: figure/slab_budgets_spread-2.png
Untracked: figure/slab_budgets_spread-3.png
Untracked: figure/steady_state_comparison-1.png
Untracked: figure/steady_state_comparison-2.png
Untracked: figure/steady_state_comparison-3.png
Untracked: figure/steady_state_comparison-4.png
Untracked: figure/steady_state_comparison-5.png
Untracked: figure/summed_decades-1.png
Unstaged changes:
Modified: analysis/_site.yml
Modified: code/Workflowr_project_managment.R
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/MLR_target_zonal_sections.Rmd
) and HTML (docs/MLR_target_zonal_sections.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 7daeb3f | jens-daniel-mueller | 2022-01-12 | Build site. |
Rmd | 9aff207 | jens-daniel-mueller | 2022-01-12 | added sections with divergent color scale |
html | 269809e | jens-daniel-mueller | 2022-01-12 | Build site. |
html | 1696b98 | jens-daniel-mueller | 2022-01-11 | Build site. |
html | 570e738 | jens-daniel-mueller | 2022-01-10 | Build site. |
Rmd | d3903e6 | jens-daniel-mueller | 2022-01-10 | rebuild with child docs |
version_id_pattern <- "t"
config <- "MLR_target"
# identify required version IDs
Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_1", "t"))
Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_2", "t"))
Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_3", "t"))
Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)
print(Version_IDs)
[1] "v_1t01" "v_1t02" "v_1t03" "v_1t04" "v_1t05" "v_1t06" "v_2t01" "v_2t02"
[9] "v_2t03" "v_2t04" "v_2t05" "v_2t06" "v_3t01" "v_3t02" "v_3t03" "v_3t04"
[17] "v_3t05" "v_3t06"
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_zonal <-
read_csv(paste(path_version_data,
"dcant_zonal.csv",
sep = ""))
dcant_zonal_mod_truth <-
read_csv(paste(path_version_data,
"dcant_zonal_mod_truth.csv",
sep = ""))
dcant_zonal <- bind_rows(dcant_zonal,
dcant_zonal_mod_truth)
dcant_profile <-
read_csv(paste(path_version_data,
"dcant_profile.csv",
sep = ""))
dcant_profile_mod_truth <-
read_csv(paste(path_version_data,
"dcant_profile_mod_truth.csv",
sep = ""))
dcant_profile <- bind_rows(dcant_profile,
dcant_profile_mod_truth)
dcant_budget_basin_AIP_layer <-
read_csv(paste(path_version_data,
"dcant_budget_basin_AIP_layer.csv",
sep = ""))
dcant_zonal_bias <-
read_csv(paste(path_version_data,
"dcant_zonal_bias.csv",
sep = ""))
dcant_zonal <- dcant_zonal %>%
mutate(Version_ID = i_Version_IDs)
dcant_profile <- dcant_profile %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_basin_AIP_layer <- dcant_budget_basin_AIP_layer %>%
mutate(Version_ID = i_Version_IDs)
dcant_zonal_bias <- dcant_zonal_bias %>%
mutate(Version_ID = i_Version_IDs)
params_local <-
read_rds(paste(path_version_data,
"params_local.rds",
sep = ""))
params_local <- bind_cols(
Version_ID = i_Version_IDs,
MLR_target := str_c(params_local$MLR_target, collapse = "|"),
tref1 = params_local$tref1,
tref2 = params_local$tref2)
tref <- read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
params_local <- params_local %>%
mutate(median_year_1 = sort(tref$median_year)[1],
median_year_2 = sort(tref$median_year)[2],
duration = median_year_2 - median_year_1,
period = paste(median_year_1, "-", median_year_2))
if (exists("dcant_zonal_all")) {
dcant_zonal_all <- bind_rows(dcant_zonal_all, dcant_zonal)
}
if (!exists("dcant_zonal_all")) {
dcant_zonal_all <- dcant_zonal
}
if (exists("dcant_profile_all")) {
dcant_profile_all <- bind_rows(dcant_profile_all, dcant_profile)
}
if (!exists("dcant_profile_all")) {
dcant_profile_all <- dcant_profile
}
if (exists("dcant_budget_basin_AIP_layer_all")) {
dcant_budget_basin_AIP_layer_all <-
bind_rows(dcant_budget_basin_AIP_layer_all,
dcant_budget_basin_AIP_layer)
}
if (!exists("dcant_budget_basin_AIP_layer_all")) {
dcant_budget_basin_AIP_layer_all <- dcant_budget_basin_AIP_layer
}
if (exists("dcant_zonal_bias_all")) {
dcant_zonal_bias_all <- bind_rows(dcant_zonal_bias_all, dcant_zonal_bias)
}
if (!exists("dcant_zonal_bias_all")) {
dcant_zonal_bias_all <- dcant_zonal_bias
}
if (exists("params_local_all")) {
params_local_all <- bind_rows(params_local_all, params_local)
}
if (!exists("params_local_all")) {
params_local_all <- params_local
}
}
[1] "v_1t01"
[1] "v_1t02"
[1] "v_1t03"
[1] "v_1t04"
[1] "v_1t05"
[1] "v_1t06"
[1] "v_2t01"
[1] "v_2t02"
[1] "v_2t03"
[1] "v_2t04"
[1] "v_2t05"
[1] "v_2t06"
[1] "v_3t01"
[1] "v_3t02"
[1] "v_3t03"
[1] "v_3t04"
[1] "v_3t05"
[1] "v_3t06"
rm(dcant_zonal, dcant_zonal_bias, dcant_zonal_mod_truth,
dcant_budget_basin_AIP_layer,
tref)
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")
params_local_all <- params_local_all %>%
mutate(MLR_predictors = str_remove_all(all_predictors,
MLR_predictors))
sd_uncertainty_limit <- 1.5
dcant_zonal_all %>%
filter(data_source %in% c("mod", "obs")) %>%
group_by(basin_AIP, data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant",
plot_slabs = "n",
subtitle_text = paste(
"data_source: ",
unique(.x$data_source),
"| basin:",
unique(.x$basin_AIP)
)
) +
facet_grid(MLR_target ~ period)
)
[[1]]
Warning: Removed 2448 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 846 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).
[[4]]
Warning: Removed 522 rows containing non-finite values (stat_contour_filled).
[[5]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).
[[6]]
Warning: Removed 1494 rows containing non-finite values (stat_contour_filled).
p_dcant_Indian_1994_2004 <-
dcant_zonal_all %>%
filter(data_source %in% c("obs"),
period == "1994 - 2004",
basin_AIP == "Indian") %>%
p_section_zonal_continous_depth(var = "dcant",
plot_slabs = "n",
subtitle_text = "Indian Ocean") +
facet_grid(MLR_target ~ period)
# ggsave(plot = p_dcant_Indian_1994_2004,
# path = "output/other",
# filename = "zonal_indian_1994_2004.png",
# height = 8,
# width = 5)
p_dcant_Indian_2004_2014 <-
dcant_zonal_all %>%
filter(data_source %in% c("obs"),
period == "2004 - 2014",
basin_AIP == "Pacific") %>%
p_section_zonal_continous_depth(var = "dcant",
plot_slabs = "n",
subtitle_text = "Pacific Ocean") +
facet_grid(MLR_target ~ period)
# ggsave(plot = p_dcant_Indian_2004_2014,
# path = "output/other",
# filename = "zonal_Pacific_2004_2014.png",
# height = 8,
# width = 5)
dcant_zonal_bias_all %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_bias",
col = "divergent",
plot_slabs = "n",
subtitle_text = paste("basin:",
unique(.x$basin_AIP)
)
) +
facet_grid(MLR_target ~ period)
)
[[1]]
Warning: Removed 2448 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).
dcant_zonal_bias_all %>%
ggplot(aes(dcant_bias, col = MLR_target)) +
scale_color_brewer(palette = "Dark2") +
geom_vline(xintercept = 0) +
geom_density() +
facet_grid(period ~.) +
coord_cartesian(xlim = c(-10, 10))
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_zonal_bias_all_corr <- dcant_zonal_bias_all %>%
select(lat, depth, basin_AIP, dcant_bias, MLR_target, period) %>%
pivot_wider(names_from = period,
values_from = dcant_bias,
names_prefix = "dcant_bias ")
dcant_zonal_bias_all_corr %>%
ggplot(aes(`dcant_bias 1994 - 2004`, `dcant_bias 2004 - 2014`)) +
geom_vline(xintercept = 0) +
geom_hline(yintercept = 0) +
geom_bin2d() +
coord_fixed() +
facet_grid(MLR_target ~ basin_AIP) +
scale_fill_viridis_c()
dcant_profile_all %>%
group_split(period) %>%
map(
~ ggplot(data = .x,
aes(
dcant, depth,
col = data_source, fill = data_source
)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_ribbon(
aes(xmin = dcant - dcant_sd,
xmax = dcant + dcant_sd),
alpha = 0.2,
col = "transparent"
) +
geom_path() +
scale_y_reverse() +
labs(title = paste("period", unique(.x$period))) +
facet_grid(MLR_target ~ basin_AIP)
)
[[1]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[2]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[3]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_profile_all %>%
group_split(period) %>%
map(
~ ggplot(data = .x,
aes(
dcant, depth,
col = MLR_target, fill = MLR_target
)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_path() +
scale_y_reverse() +
labs(title = paste("period", unique(.x$period))) +
facet_grid(data_source ~ basin_AIP)
)
[[1]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[2]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[3]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_profile_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014") %>%
group_split(data_source) %>%
map(
~ ggplot(
data = .x,
aes(
dcant,
depth,
col = period,
group = interaction(MLR_target, period)
)
) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_path() +
scale_y_reverse() +
labs(title = paste("data_source", unique(.x$data_source))) +
facet_grid(. ~ basin_AIP)
)
[[1]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[2]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[3]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_budget_basin_AIP_layer_all %>%
filter(estimate == "dcant") %>%
mutate(dcant = value,
inv_depth = fct_inorder(as.factor(inv_depth))) %>%
group_split(period) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(dcant, inv_depth,
fill = MLR_target)) +
geom_vline(xintercept = 0) +
geom_col(position = "dodge") +
scale_y_discrete(limits = rev) +
scale_fill_brewer(palette = "Dark2") +
labs(title = paste("period", unique(.x$period))) +
facet_grid(data_source ~ basin_AIP)
)
[[1]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[2]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
[[3]]
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_zonal_ensemble <- dcant_zonal_all %>%
filter(data_source %in% c("mod", "obs")) %>%
group_by(lat, depth, basin_AIP, data_source, period) %>%
summarise(
dcant_ensemble_mean = mean(dcant),
dcant_sd = sd(dcant),
dcant_range = max(dcant) - min(dcant)
) %>%
ungroup()
`summarise()` has grouped output by 'lat', 'depth', 'basin_AIP', 'data_source'. You can override using the `.groups` argument.
dcant_budget_basin_AIP_layer_ensemble <-
dcant_budget_basin_AIP_layer_all %>%
mutate(inv_depth = fct_inorder(as.factor(inv_depth))) %>%
filter(data_source %in% c("mod", "obs"),
estimate == "dcant") %>%
rename(dcant = value) %>%
group_by(inv_depth, data_source, period, basin_AIP) %>%
summarise(
dcant_mean = mean(dcant),
dcant_sd = sd(dcant),
dcant_max = max(dcant),
dcant_min = min(dcant)
) %>%
ungroup()
`summarise()` has grouped output by 'inv_depth', 'data_source', 'period'. You can override using the `.groups` argument.
dcant_zonal_ensemble %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_ensemble_mean",
plot_slabs = "n",
subtitle_text = paste("basin:",
unique(.x$basin_AIP))
) +
facet_grid(data_source ~ period)
)
[[1]]
Warning: Removed 549 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 339 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 870 rows containing non-finite values (stat_contour_filled).
dcant_zonal_ensemble_bias <- full_join(
dcant_zonal_ensemble %>%
filter(data_source == "mod") %>%
select(lat, depth, basin_AIP, period, dcant_ensemble_mean, dcant_sd),
dcant_zonal_all %>%
filter(data_source == "mod_truth",
MLR_target == unique(dcant_zonal_all$MLR_target)[1]) %>%
select(lat, depth, basin_AIP, period, dcant_mod_truth = dcant)
)
Joining, by = c("lat", "depth", "basin_AIP", "period")
dcant_zonal_ensemble_bias <- dcant_zonal_ensemble_bias %>%
mutate(dcant_mean_bias = dcant_ensemble_mean - dcant_mod_truth)
dcant_zonal_ensemble_bias %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_mean_bias",
col = "divergent",
plot_slabs = "n",
subtitle_text = paste("basin:",
unique(.x$basin_AIP)
)
) +
facet_grid(. ~ period)
)
[[1]]
Warning: Removed 408 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 252 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 621 rows containing non-finite values (stat_contour_filled).
dcant_zonal_bias_all %>%
ggplot() +
scale_color_manual(values = c("red", "grey")) +
geom_vline(xintercept = 0) +
geom_density(aes(dcant_bias, group = MLR_target, col = "Individual")) +
geom_density(data = dcant_zonal_ensemble_bias,
aes(dcant_mean_bias, col = "Ensemble")) +
facet_grid(period ~.) +
coord_cartesian(xlim = c(-10, 10))
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_lat_grid_ensemble %>%
ggplot(aes(lat_grid, dcant_mean)) +
geom_hline(yintercept = 0) +
geom_col(position = "dodge",
fill = "grey80",
col = "grey20") +
geom_errorbar(aes(
ymin = dcant_min,
ymax = dcant_max
),
col = "grey20",
width = 0) +
scale_color_brewer(palette = "Set1") +
coord_flip() +
scale_fill_brewer(palette = "Dark2") +
facet_grid(data_source ~ period)
dcant_zonal_ensemble %>%
group_by(basin_AIP) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_sd",
breaks = c(seq(0,4,0.4), Inf),
plot_slabs = "n",
subtitle_text = paste("basin:",
unique(.x$basin_AIP))
) +
facet_grid(data_source ~ period)
)
[[1]]
Warning: Removed 549 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 339 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 870 rows containing non-finite values (stat_contour_filled).
uncertainty_grid <- dcant_zonal_ensemble %>%
filter(dcant_sd > sd_uncertainty_limit) %>%
distinct(depth, lat, data_source, period, basin_AIP)
uncertainty_grid <- uncertainty_grid %>%
mutate(
lat_grid = cut(lat, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
lat_grid = as.numeric(as.character(lat_grid)),
depth_grid = cut(depth, seq(0, 1e4, 500), seq(250, 1e4, 500)),
depth_grid = as.numeric(as.character(depth_grid))
) %>%
distinct(depth_grid, lat_grid, data_source, period, basin_AIP)
uncertainty_grid %>%
filter(data_source == "obs") %>%
ggplot() +
geom_point(aes(lat_grid, depth_grid),
shape = 3) +
facet_grid(basin_AIP ~ period) +
scale_y_reverse()
Warning: Removed 237 rows containing missing values (geom_point).
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_zonal_ensemble_bias %>%
ggplot(aes(dcant_mean_bias, dcant_sd)) +
geom_bin2d() +
scale_fill_viridis_c() +
facet_grid(basin_AIP ~ period)
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_zonal_ensemble_bias %>%
select(dcant_ensemble_mean, dcant_mean_bias, period) %>%
pivot_longer(dcant_ensemble_mean:dcant_mean_bias,
names_to = "estimate",
values_to = "value") %>%
ggplot(aes(value, col=estimate, linetype = period)) +
scale_color_brewer(palette = "Set1") +
geom_density()
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
dcant_zonal_ensemble %>%
ggplot(aes(dcant_sd)) +
geom_histogram() +
facet_grid(data_source ~ period) +
coord_cartesian(ylim = c(0,50))
`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
Version | Author | Date |
---|---|---|
570e738 | jens-daniel-mueller | 2022-01-10 |
uncertainty_grid <- uncertainty_grid %>%
filter(data_source == "obs",
period != "1994 - 2014")
p_zonal_ensemble <- dcant_zonal_ensemble %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
p_section_zonal_continous_depth(var = "dcant_ensemble_mean",
plot_slabs = "n",
title_text = NULL) +
geom_point(data = uncertainty_grid,
aes(lat_grid, depth_grid),
shape = 3,
col = "white") +
facet_grid(basin_AIP ~ period,
switch = "y") +
theme(legend.position = "left",
strip.background.y = element_blank(),
strip.text.y = element_blank())
p_profiles <-
dcant_profile_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014",
data_source == "obs") %>%
ggplot(aes(
dcant,
depth,
col = period,
fill = "grey80",
group = interaction(MLR_target, period)
)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_path() +
scale_y_reverse(name = "Depth (m)",
limits = c(5000,0)) +
scale_x_continuous(name = expression(Delta * C[ant] ~ (µmol~kg^{-1}))) +
coord_cartesian(expand = 0) +
scale_color_brewer(palette = "Set1") +
facet_grid(basin_AIP ~.) +
theme(legend.position = "top",
legend.direction = "vertical",
legend.title = element_blank(),
strip.background = element_blank(),
strip.text = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank())
p_layer_budget <- dcant_budget_basin_AIP_layer_ensemble %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
mutate(depth =
as.numeric(str_split(inv_depth, " - ", simplify = TRUE)[, 1]) + 250) %>%
filter(depth < 5000) %>%
ggplot(aes(dcant_mean, inv_depth, col = period)) +
geom_col(position = "dodge",
orientation = "y",
fill = "grey80") +
geom_errorbar(
aes(xmin = dcant_min,
xmax = dcant_max),
width = 0,
position = position_dodge(width = 0.9)
) +
scale_color_brewer(palette = "Set1", guide = "none") +
scale_x_continuous(
limits = c(0, NA),
expand = c(0, 0),
name = expression(Delta * C[ant] ~ (PgC))
) +
scale_y_discrete(name = "Depth intervals (m)",
limits = rev) +
facet_grid(basin_AIP ~ .) +
theme(legend.position = "top",
legend.title = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
axis.ticks.y = element_blank())
p_zonal_ensemble + p_profiles + p_layer_budget +
plot_layout(widths = c(5,1,1)) +
plot_annotation(tag_levels = 'a')
Warning: Removed 318 rows containing non-finite values (stat_contour_filled).
Warning: Removed 168 rows containing missing values (geom_point).
Warning: Removed 36 row(s) containing missing values (geom_path).
Warning: Removed 5 rows containing missing values (geom_col).
# ggsave("output/publication/Fig_zonal_mean.png",
# width=15.25,
# height=9.27)
dcant_zonal_all <- full_join(dcant_zonal_all %>% select(-dcant_sd),
dcant_zonal_ensemble)
Joining, by = c("data_source", "lat", "depth", "basin_AIP", "period")
dcant_zonal_all <- dcant_zonal_all %>%
mutate(dcant_offset = dcant - dcant_ensemble_mean)
legend_title <- expression(atop(Delta * C[ant, offset],
(mu * mol ~ kg ^ {
-1
})))
dcant_zonal_all %>%
filter(data_source %in% c("mod", "obs")) %>%
group_by(basin_AIP, data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant_offset",
col = "divergent",
plot_slabs = "n",
subtitle_text = paste("basin:",
unique(.x$basin_AIP),
"| data_source",
unique(.x$data_source))
) +
facet_grid(MLR_target ~ period)
)
[[1]]
Warning: Removed 2448 rows containing non-finite values (stat_contour_filled).
[[2]]
Warning: Removed 846 rows containing non-finite values (stat_contour_filled).
[[3]]
Warning: Removed 1512 rows containing non-finite values (stat_contour_filled).
[[4]]
Warning: Removed 522 rows containing non-finite values (stat_contour_filled).
[[5]]
Warning: Removed 3726 rows containing non-finite values (stat_contour_filled).
[[6]]
Warning: Removed 1494 rows containing non-finite values (stat_contour_filled).
dcant_zonal_all %>%
filter(data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
group_by(basin_AIP, data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "dcant",
plot_slabs = "n",
subtitle_text = paste(
"data_source: ",
unique(.x$data_source),
"| basin:",
unique(.x$basin_AIP)
),
col = "divergent"
) +
facet_grid(MLR_target ~ period)
)
[[1]]
Warning: Removed 1632 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
[[2]]
Warning: Removed 564 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
[[3]]
Warning: Removed 1008 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
[[4]]
Warning: Removed 348 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
[[5]]
Warning: Removed 2484 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
[[6]]
Warning: Removed 996 rows containing non-finite values (stat_contour_filled).
Version | Author | Date |
---|---|---|
7daeb3f | jens-daniel-mueller | 2022-01-12 |
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggforce_0.3.3 metR_0.9.0 scico_1.2.0 patchwork_1.1.1
[5] collapse_1.5.0 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.5
[9] purrr_0.3.4 readr_1.4.0 tidyr_1.1.3 tibble_3.1.3
[13] ggplot2_3.3.5 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 viridisLite_0.3.0 jsonlite_1.7.1
[4] here_1.0.1 modelr_0.1.8 assertthat_0.2.1
[7] highr_0.8 blob_1.2.1 cellranger_1.1.0
[10] yaml_2.2.1 pillar_1.6.2 backports_1.1.10
[13] lattice_0.20-41 glue_1.4.2 RcppEigen_0.3.3.7.0
[16] digest_0.6.27 RColorBrewer_1.1-2 promises_1.1.1
[19] polyclip_1.10-0 checkmate_2.0.0 rvest_0.3.6
[22] colorspace_2.0-2 htmltools_0.5.0 httpuv_1.5.4
[25] Matrix_1.2-18 pkgconfig_2.0.3 broom_0.7.9
[28] haven_2.3.1 scales_1.1.1 tweenr_1.0.2
[31] whisker_0.4 later_1.2.0 git2r_0.27.1
[34] generics_0.1.0 farver_2.0.3 ellipsis_0.3.2
[37] withr_2.3.0 cli_3.0.1 magrittr_1.5
[40] crayon_1.3.4 readxl_1.3.1 evaluate_0.14
[43] fs_1.5.0 fansi_0.4.1 MASS_7.3-53
[46] xml2_1.3.2 RcppArmadillo_0.10.1.0.0 tools_4.0.3
[49] data.table_1.14.0 hms_0.5.3 lifecycle_1.0.0
[52] munsell_0.5.0 reprex_0.3.0 isoband_0.2.2
[55] compiler_4.0.3 rlang_0.4.10 grid_4.0.3
[58] rstudioapi_0.13 labeling_0.4.2 rmarkdown_2.10
[61] gtable_0.3.0 DBI_1.1.0 R6_2.5.0
[64] lubridate_1.7.9 knitr_1.33 utf8_1.1.4
[67] rprojroot_2.0.2 stringi_1.5.3 parallel_4.0.3
[70] Rcpp_1.0.5 vctrs_0.3.8 dbplyr_1.4.4
[73] tidyselect_1.1.0 xfun_0.25