Last updated: 2022-06-28

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version ef081b3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    figure/
    Ignored:    output/other/
    Ignored:    output/publication/

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/multi_model_assesment_budgets.Rmd
    Deleted:    analysis/multi_model_assesment_column_inventories.Rmd
    Deleted:    analysis/multi_model_assesment_zonal_sections.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/multi_model_assesment_AIP_column_inventories.Rmd) and HTML (docs/multi_model_assesment_AIP_column_inventories.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd ef081b3 jens-daniel-mueller 2022-06-28 rebuild with additional analysis

version_id_pattern <- "y"
config <- "gobm"

1 Read files

# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "y"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "y"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "y"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

print(Version_IDs)
 [1] "v_1y01" "v_1y02" "v_1y03" "v_1y04" "v_1y05" "v_2y01" "v_2y02" "v_2y03"
 [9] "v_2y04" "v_2y05" "v_3y01" "v_3y02" "v_3y03" "v_3y04" "v_3y05"
for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_inv <-
    read_csv(paste(path_version_data,
                   "dcant_inv.csv",
                   sep = ""))
  
  dcant_inv_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_inv_mod_truth.csv",
                   sep = "")) %>%
    filter(method == "total") %>%
    select(-method)
  
  dcant_inv_bias <-
    read_csv(paste(path_version_data,
                   "dcant_inv_bias.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_inv <- bind_rows(dcant_inv,
                         dcant_inv_mod_truth) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_lat_grid <-
    read_csv(paste(path_version_data,
                   "dcant_budget_lat_grid.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_lon_grid <-
    read_csv(paste(path_version_data,
                   "dcant_budget_lon_grid.csv",
                   sep = "")) %>%
    mutate(Version_ID = i_Version_IDs)
  
  
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    gobm := str_c(params_local$gobm, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_inv_all")) {
    dcant_inv_all <- bind_rows(dcant_inv_all, dcant_inv)
  }
  
  if (!exists("dcant_inv_all")) {
    dcant_inv_all <- dcant_inv
  }
  
  if (exists("dcant_inv_bias_all")) {
    dcant_inv_bias_all <- bind_rows(dcant_inv_bias_all, dcant_inv_bias)
  }
  
  if (!exists("dcant_inv_bias_all")) {
    dcant_inv_bias_all <- dcant_inv_bias
  }
  
  if (exists("dcant_budget_lat_grid_all")) {
    dcant_budget_lat_grid_all <- bind_rows(dcant_budget_lat_grid_all, dcant_budget_lat_grid)
  }
  
  if (!exists("dcant_budget_lat_grid_all")) {
    dcant_budget_lat_grid_all <- dcant_budget_lat_grid
  }
  
  if (exists("dcant_budget_lon_grid_all")) {
    dcant_budget_lon_grid_all <- bind_rows(dcant_budget_lon_grid_all, dcant_budget_lon_grid)
  }
  
  if (!exists("dcant_budget_lon_grid_all")) {
    dcant_budget_lon_grid_all <- dcant_budget_lon_grid
  }

  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_1y01"
[1] "v_1y02"
[1] "v_1y03"
[1] "v_1y04"
[1] "v_1y05"
[1] "v_2y01"
[1] "v_2y02"
[1] "v_2y03"
[1] "v_2y04"
[1] "v_2y05"
[1] "v_3y01"
[1] "v_3y02"
[1] "v_3y03"
[1] "v_3y04"
[1] "v_3y05"
rm(dcant_inv,
   dcant_inv_bias,
   dcant_inv_mod_truth,
   dcant_budget_lat_grid,
   dcant_budget_lon_grid,
   params_local,
   tref)

# params_local_all <-
#   params_local_all %>%
#   mutate(period = factor(period, c("1994 - 2004", "2004 - 2014", "1994 - 2014")))
dcant_inv_all <- dcant_inv_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>% 
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>% 
  filter(inv_depth == params_global$inventory_depth_standard)
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>%
  pivot_wider(names_from = estimate,
              values_from = value) %>%
  filter(period != "1994 - 2014",
         method == "total")

dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>%
  pivot_wider(names_from = estimate,
              values_from = value) %>%
  filter(period != "1994 - 2014",
         method == "total")

2 Uncertainty limit

sd_uncertainty_limit <- 4

3 Individual cases

3.1 Absoulte values

dcant_inv_all %>%
  filter(#data_source %in% c("mod", "obs"),
         period != "1994 - 2014") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv(df = .x,
                     var = "dcant",
                     subtitle_text = paste("data_source:",
                                           unique(.x$data_source))) +
      facet_grid(gobm ~ period) +
      theme(axis.text = element_blank(),
            axis.ticks = element_blank())
  )
[[1]]


[[2]]


[[3]]

dcant_inv_all %>%
  filter(data_source %in% c("mod", "obs"),
         period == "1994 - 2014") %>%
  p_map_cant_inv(
    var = "dcant",
    subtitle_text = "1994 - 2014",
    breaks = c(-Inf, seq(0, 16, 2), Inf) * 2
  ) +
  facet_grid(gobm ~ data_source) +
  theme(axis.text = element_blank(),
        axis.ticks = element_blank())

p_dcant_inv_all_1994_2004 <-
  dcant_inv_all %>%
  filter(data_source %in% c("obs"),
         period == "1994 - 2004") %>%
  mutate(period = recode(period,
                         "1994 - 2004" = "Observation-based")) %>%
  p_map_cant_inv(var = "dcant",
                 title_text = "1994 - 2004") +
  facet_grid(gobm ~ period) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    strip.background.y = element_blank(),
    strip.text.y = element_blank(),
    legend.position = "left"
  )

3.2 Biases

dcant_inv_bias_all %>%
  filter(period != "1994 - 2014") %>%
  p_map_cant_inv(var = "dcant_bias",
                 col = "bias",
                 subtitle_text = "data_source: mod - mod_truth") +
  facet_grid(gobm ~ period)

dcant_inv_bias_all %>%
  filter(period == "1994 - 2014") %>%
  p_map_cant_inv(var = "dcant_bias",
                 col = "bias",
                 subtitle_text = "data_source: mod - mod_truth") +
  facet_grid(gobm ~ period)

p_dcant_inv_bias_all_1994_2004 <-
  dcant_inv_bias_all %>%
  filter(period == "1994 - 2004") %>%
  mutate(period = recode(period,
                         "1994 - 2004" = "Model-based")) %>%
  p_map_cant_inv(var = "dcant_bias",
                 col = "bias",
                 title_text = "Models") +
  facet_grid(gobm ~ period) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    plot.title = element_blank()
  )
p_dcant_1994_2004 <- 
p_dcant_inv_all_1994_2004 +
  p_dcant_inv_bias_all_1994_2004

p_dcant_1994_2004

# ggsave(plot = p_dcant_1994_2004,
#        path = "output/other",
#        filename = "inv_dcant_1994_2004_abs_bias.png",
#        height = 8,
#        width = 8)

3.3 Decadal offset

dcant_inv_all %>%
  filter(period != "1994 - 2014") %>%
  select(data_source, lon, lat, gobm, period, dcant_pos) %>% 
  pivot_wider(values_from = dcant_pos,
              names_from = period) %>% 
  mutate(dcant_pos_bias = `2004 - 2014`- `1994 - 2004`) %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv(df = .x,
                     var = "dcant_pos_bias",
                     col = "bias",
                     subtitle_text = paste("data_source:",
                                           unique(.x$data_source))) +
      facet_grid(gobm ~ .) +
      theme(axis.text = element_blank(),
            axis.ticks = element_blank())
  )
[[1]]


[[2]]


[[3]]

dcant_inv_bias_all %>%
  filter(period != "1994 - 2014") %>%
  select(lon, lat, gobm, period, dcant_pos_bias) %>%
  pivot_wider(values_from = dcant_pos_bias,
              names_from = period) %>%
  mutate(dcant_pos_bias = `2004 - 2014` - `1994 - 2004`) %>%
  p_map_cant_inv(var = "dcant_pos_bias",
                 col = "bias") +
  facet_grid(gobm ~ .) +
  theme(axis.text = element_blank(),
        axis.ticks = element_blank())

3.3.1 Density distribution

dcant_inv_bias_all %>%
  filter(abs(dcant_bias) < 10) %>% 
  ggplot(aes(dcant_bias, col = gobm)) +
  scale_color_brewer(palette = "Dark2") +
  geom_vline(xintercept = 0) +
  geom_density() +
  facet_grid(period ~.)

3.4 Lat grid budgets

dcant_budget_lat_grid_all %>%
  group_split(data_source) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(lat_grid, dcant, fill = gobm)) +
      geom_hline(yintercept = 0) +
      geom_col(position = "dodge") +
      coord_flip() +
      scale_fill_brewer(palette = "Dark2") +
      labs(title = paste("data_source:", unique(.x$data_source))) +
      facet_grid(basin_AIP ~ period)
  )
[[1]]


[[2]]

3.5 Lon grid budgets

dcant_budget_lon_grid_all %>%
  group_split(data_source, period) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(lon_grid, dcant, fill = gobm)) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      labs(title = paste(
        "data_source:",
        unique(.x$data_source),
        "| period:",
        unique(.x$period)
      )) +
      facet_grid(basin_AIP ~ .)
  )
[[1]]


[[2]]


[[3]]


[[4]]

4 Ensemble

dcant_inv_ensemble <- dcant_inv_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(lat, lon, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'lat', 'lon', 'data_source'. You can
override using the `.groups` argument.
dcant_lat_grid_ensemble <- dcant_budget_lat_grid_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(lat_grid, data_source, period, gobm) %>% 
  summarise(dcant = sum(dcant, na.rm = TRUE)) %>% 
  ungroup() %>% 
  group_by(lat_grid, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_max = max(dcant),
            dcant_min = min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'lat_grid', 'data_source', 'period'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'lat_grid', 'data_source'. You can override using the `.groups` argument.
dcant_lon_grid_ensemble <- dcant_budget_lon_grid_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(lon_grid, data_source, period, gobm) %>% 
  summarise(dcant = sum(dcant, na.rm = TRUE)) %>% 
  ungroup() %>% 
  group_by(lon_grid, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_max = max(dcant),
            dcant_min = min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'lon_grid', 'data_source', 'period'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'lon_grid', 'data_source'. You can override using the `.groups` argument.

4.1 Mean

p_map_cant_inv(
  df = dcant_inv_ensemble %>%
    filter(period != "1994 - 2014",
           data_source == "obs"),
  var = "dcant_mean",
  subtitle_text = paste("Ensemble mean")
) +
  facet_grid(period ~ .) +
  theme(axis.text = element_blank(),
        axis.ticks = element_blank())

p_map_cant_inv(
  df = dcant_inv_ensemble %>%
    filter(data_source == "obs",
           period == "1994 - 2014"),
  var = "dcant_mean",
  title_text = paste("Ensemble mean"),
  breaks = c(-Inf, seq(0, 28, 4), Inf)
) +
  facet_grid(period ~ .) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    legend.position = "left"
  )

4.2 Mean bias

dcant_inv_ensemble_bias <- full_join(
  dcant_inv_ensemble %>%
    filter(data_source == "mod") %>%
    select(lat, lon, period, dcant_mean, dcant_sd),
  dcant_inv_all %>%
    filter(data_source == "mod_truth",
           gobm == unique(dcant_inv_all$gobm)[1]) %>%
    select(lat, lon, period, dcant)
)
Joining, by = c("lat", "lon", "period")
dcant_inv_ensemble_bias <- dcant_inv_ensemble_bias %>%
  mutate(dcant_mean_bias = dcant_mean - dcant)

dcant_inv_ensemble_bias %>%
  filter(period != "1994 - 2014") %>%
  p_map_cant_inv(var = "dcant_mean_bias",
                 col = "bias",
                 subtitle_text = "Ensemble mean - mod_truth") +
  facet_grid(period ~ .)

4.2.1 Density distribution

dcant_inv_bias_all %>%
  ggplot() +
  scale_color_manual(values = c("red", "grey")) +
  geom_vline(xintercept = 0) +
  geom_density(aes(dcant_bias, group = gobm, col = "Individual")) +
  geom_density(data = dcant_inv_ensemble_bias,
               aes(dcant_mean_bias, col = "Ensemble")) +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))
Warning: Removed 1188 rows containing non-finite values (stat_density).

4.3 Mean lat grid budgets

dcant_lat_grid_ensemble %>%
  ggplot(aes(lat_grid, dcant_mean)) +
  geom_hline(yintercept = 0) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  scale_color_brewer(palette = "Set1") +
  coord_flip() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(data_source ~ period)

4.4 Mean lon grid budgets

dcant_lon_grid_ensemble %>%
  ggplot(aes(lon_grid, dcant_mean)) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  facet_grid(data_source ~ period)

4.5 Standard deviation

p_map_cant_inv(
  df = dcant_inv_ensemble,
  var = "dcant_sd",
  breaks = c(seq(0, 4, 0.4), Inf),
  subtitle_text = paste("Ensemble SD")
) +
  facet_grid(period ~ data_source)

4.6 SD as uncertainty

uncertainty_grid <- dcant_inv_ensemble %>%
  filter(dcant_sd > sd_uncertainty_limit) %>%
  distinct(lon, lat, data_source, period)

uncertainty_grid <- m_grid_horizontal_coarse(uncertainty_grid) %>%
  distinct(lon_grid, lat_grid, data_source, period)

map +
  geom_point(data =
               uncertainty_grid,
             aes(lon_grid, lat_grid),
             shape = 3) +
  facet_grid(period ~ data_source)

4.7 SD vs abs bias

4.7.1 2D bin

dcant_inv_ensemble_bias %>% 
  ggplot(aes(abs(dcant_mean_bias), dcant_sd)) +
  geom_bin2d() +
  scale_fill_viridis_c() +
  facet_grid(. ~ period)
Warning: Removed 1188 rows containing non-finite values (stat_bin2d).

4.7.2 Density distributions

legend_title = expression(Delta * C[ant]~(mol~m^2))

dcant_density_distribution_bias <- dcant_inv_ensemble_bias %>% 
  select(dcant_mean_bias, period) %>% 
  pivot_longer(dcant_mean_bias,
               names_to = "estimate",
               values_to = "value") %>% 
  mutate(data_source = "mod")

dcant_density_distribution <- dcant_inv_ensemble %>% 
  select(dcant_mean, dcant_sd, period, data_source) %>% 
  pivot_longer(dcant_mean:dcant_sd,
               names_to = "estimate",
               values_to = "value")

dcant_density_distribution <- bind_rows(dcant_density_distribution,
                                        dcant_density_distribution_bias) %>%
  mutate(period = factor(period, c("1994 - 2004", "2004 - 2014", "1994 - 2014")))

p_ensemble_distribution <-
  dcant_density_distribution %>%
  filter(period != "1994 - 2014") %>% 
  mutate(
    data_source = recode(data_source,
                         mod = "Model",
                         obs = "Observations"),
    estimate = recode(
      estimate,
      dcant_mean = "Mean",
      dcant_mean_bias = "Bias",
      dcant_sd = "SD"
    )
  ) %>%
  ggplot(aes(value, fill = estimate, col = estimate)) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  geom_density(alpha = 0.2) +
  facet_grid(period ~ data_source) +
  labs(title = "Density distributions of column inventory ensemble properties",
       x = legend_title,
       y = "Density of 1x1° grid cells") +
  coord_cartesian(ylim = c(0, 0.5),
                  xlim = c(-5, 32))

# ggsave(plot = p_ensemble_distribution,
#        path = "output/other",
#        filename = "inv_ensemble_distribution.png",
#        height = 4,
#        width = 8)


p_ensemble_distribution <-
  dcant_density_distribution %>%
  filter(data_source == "obs") %>%
  mutate(
    data_source = recode(data_source,
                         mod = "Model",
                         obs = "Observations"),
    estimate = recode(
      estimate,
      dcant_mean = "Mean",
      dcant_mean_bias = "Bias",
      dcant_sd = "SD"
    )
  ) %>%
  ggplot(aes(value, fill = estimate, col = estimate)) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  geom_density(alpha = 0.2) +
  facet_grid(period ~ data_source) +
  labs(title = "Density distributions of column inventory ensemble properties",
       x = legend_title,
       y = "Density of 1x1° grid cells") +
  coord_cartesian(ylim = c(0, 0.5),
                  xlim = c(-5, 32))

p_ensemble_distribution

# ggsave(plot = p_ensemble_distribution,
#        path = "output/other",
#        filename = "inv_ensemble_distribution_all.png",
#        height = 6,
#        width = 5)

4.8 Range

p_map_cant_inv(
  df = dcant_inv_ensemble,
  var = "dcant_range",
  breaks = c(seq(0,8,0.8), Inf),
  subtitle_text = paste("Ensemble range")
) +
  facet_grid(period ~ data_source)

4.9 Composed figure

uncertainty_grid <- uncertainty_grid %>% 
  filter(data_source == "obs")

p_map_94 <- p_map_cant_inv(
  df = dcant_inv_ensemble %>%
    filter(period == "1994 - 2004",
           data_source == "obs"),
  var = "dcant_mean",
  subtitle_text = NULL,
  title_text = NULL
) +
  geom_point(
    data =
      uncertainty_grid %>% filter(period == "1994 - 2004"),
    aes(lon_grid, lat_grid),
    shape = 3,
    col = "red"
  ) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    legend.position = "left"
  ) +
  facet_grid(period ~ .,
             switch = "y")

p_map_04 <- p_map_cant_inv(
  df = dcant_inv_ensemble %>%
    filter(period == "2004 - 2014",
           data_source == "obs"),
  var = "dcant_mean",
  subtitle_text = NULL,
  title_text = NULL
) +
  geom_point(
    data =
      uncertainty_grid %>% filter(period == "2004 - 2014"),
    aes(lon_grid, lat_grid),
    shape = 3,
    col = "red"
  ) +
  theme(
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    legend.position = "left"
  ) +
  facet_grid(period ~ .,
             switch = "y")

p_lon_94 <- dcant_lon_grid_ensemble %>%
  filter(data_source == "obs",
         period == "1994 - 2004") %>%
  ggplot(aes(lon_grid, dcant_mean)) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(ymin = dcant_min,
                    ymax = dcant_max),
                col = "grey20",
                width = 0) +
  scale_y_continuous(
    limits = c(0, 1),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC)),
    position = "right"
  ) +
  scale_x_continuous(name = "Longitude (°E)",
                     limits = c(20, 380),
                     expand = c(0, 0)) +
  theme(
    axis.title.x = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank()
  )
# coord_fixed(ratio = 100)

p_lon_04 <- dcant_lon_grid_ensemble %>%
  filter(data_source == "obs",
         period == "2004 - 2014") %>% 
  ggplot(aes(lon_grid, dcant_mean)) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  scale_y_continuous(limits = c(0,1), expand = c(0,0),
                     name = expression(Delta*C[ant]~(PgC)),
                     position = "right") +
  scale_x_continuous(name = "Longitude (°E)",
                     limits = c(20,380), expand = c(0,0)) +
  theme(title = element_blank())
  # coord_fixed(ratio = 100)

p_lat_94 <- dcant_lat_grid_ensemble %>%
  filter(data_source == "obs",
         period == "1994 - 2004") %>%
  ggplot(aes(dcant_mean, lat_grid)) +
  geom_col(
    position = "dodge",
    fill = "grey80",
    col = "grey20",
    orientation = "y"
  ) +
  geom_errorbar(aes(xmin = dcant_min,
                    xmax = dcant_max),
                col = "grey20",
                width = 0) +
  scale_x_continuous(
    limits = c(0, 2.8),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC))
  ) +
  scale_y_continuous(
    name = "Latitude (°N)",
    limits = c(-80, 65),
    expand = c(0, 0),
    position = "right"
  ) +
  theme(
    axis.title.x = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank()
  ) 
  # coord_fixed(ratio = 5e-2)

p_lat_04 <- dcant_lat_grid_ensemble %>%
  filter(data_source == "obs",
         period == "2004 - 2014") %>%
  ggplot(aes(dcant_mean, lat_grid)) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20",
           orientation = "y") +
  geom_errorbar(aes(xmin = dcant_min,
                    xmax = dcant_max),
                col = "grey20",
                width = 0) +
  scale_x_continuous(
    limits = c(0, 2.8),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC))
  ) +
  scale_y_continuous(name = "Latitude (°N)",
                     limits = c(-80, 65),
                     expand = c(0, 0),
                     position = "right")

t_94 <- grid::textGrob("1994 -\n2004")
t_04 <- grid::textGrob("2004 -\n2014")


layout <- "
BBB#
AAAD
AAAD
CCCE
CCCE
GGG#
"

wrap_plots(B = p_lon_94, A = p_map_94, D = p_lat_94,
           G = p_lon_04, C = p_map_04, E = p_lat_04,
           design = layout,
           guides = "collect")&
  theme(legend.position = "left")

# ggsave("output/publication/Fig_column_inventories.png",
#        width=11,
#        height=9.27)

5 Cases vs ensemble

5.1 Offset from mean

dcant_inv_all <- full_join(dcant_inv_all,
                           dcant_inv_ensemble)
Joining, by = c("data_source", "lon", "lat", "period")
dcant_inv_all <- dcant_inv_all %>% 
  mutate(dcant_offset = dcant - dcant_mean)

dcant_inv_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(period) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_map_cant_inv(df = .x,
                     var = "dcant_offset",
                     col = "bias",
                     subtitle_text = paste("period:",
                                           unique(.x$period))) +
      facet_grid(gobm ~ data_source)
  )
[[1]]


[[2]]


[[3]]


sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] colorspace_2.0-2 marelac_2.1.10   shape_1.4.6      ggforce_0.3.3   
 [5] metR_0.11.0      scico_1.3.0      patchwork_1.1.1  collapse_1.7.0  
 [9] forcats_0.5.1    stringr_1.4.0    dplyr_1.0.7      purrr_0.3.4     
[13] readr_2.1.1      tidyr_1.1.4      tibble_3.1.6     ggplot2_3.3.5   
[17] tidyverse_1.3.1  workflowr_1.7.0 

loaded via a namespace (and not attached):
 [1] fs_1.5.2           bit64_4.0.5        lubridate_1.8.0    gsw_1.0-6         
 [5] RColorBrewer_1.1-2 httr_1.4.2         rprojroot_2.0.2    tools_4.1.2       
 [9] backports_1.4.1    bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] DBI_1.1.2          withr_2.4.3        tidyselect_1.1.1   processx_3.5.2    
[17] bit_4.0.4          compiler_4.1.2     git2r_0.29.0       cli_3.1.1         
[21] rvest_1.0.2        xml2_1.3.3         labeling_0.4.2     sass_0.4.0        
[25] scales_1.1.1       checkmate_2.0.0    SolveSAPHE_2.1.0   callr_3.7.0       
[29] digest_0.6.29      rmarkdown_2.11     oce_1.5-0          pkgconfig_2.0.3   
[33] htmltools_0.5.2    highr_0.9          dbplyr_2.1.1       fastmap_1.1.0     
[37] rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13    jquerylib_0.1.4   
[41] generics_0.1.1     farver_2.1.0       jsonlite_1.7.3     vroom_1.5.7       
[45] magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0      fansi_1.0.2       
[49] lifecycle_1.0.1    stringi_1.7.6      whisker_0.4        yaml_2.2.1        
[53] MASS_7.3-55        grid_4.1.2         parallel_4.1.2     promises_1.2.0.1  
[57] crayon_1.4.2       haven_2.4.3        hms_1.1.1          seacarb_3.3.0     
[61] knitr_1.37         ps_1.6.0           pillar_1.6.4       reprex_2.0.1      
[65] glue_1.6.0         evaluate_0.14      getPass_0.2-2      data.table_1.14.2 
[69] modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0         tweenr_1.0.2      
[73] httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0       polyclip_1.10-0   
[77] assertthat_0.2.1   xfun_0.29          broom_0.7.11       later_1.3.0       
[81] viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1