Last updated: 2022-11-06

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 820fff8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/presentation/
    Ignored:    output/publication/

Untracked files:
    Untracked:  code/visualization_equal_earth.R
    Untracked:  code/visualization_equal_earth_cleaned.R
    Untracked:  code/visualization_equal_earth_cleaned_jdm.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/surface_equi_budgets.Rmd) and HTML (docs/surface_equi_budgets.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html e99640e jens-daniel-mueller 2022-07-29 Build site.
html 08c00b4 jens-daniel-mueller 2022-07-16 Build site.
Rmd cbde57a jens-daniel-mueller 2022-07-16 include surfave equilibrium analysis

version_id_pattern <- "e"
config <- "MLR_basins"

1 Read files

print(version_id_pattern)
[1] "e"
# identify required version IDs

Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_1", "e"))

Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_2", "e"))

Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
                            pattern = paste0("v_3", "e"))

Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)

# print(Version_IDs)

1.1 Global

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_global <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global.csv",
                   sep = ""))
  
  dcant_budget_global_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_global_mod_truth.csv",
      sep = ""
    ))
  
  dcant_budget_global_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_global_bias.csv",
                   sep = ""))
  
  lm_best_predictor_counts <-
    read_csv(paste(path_version_data,
                   "lm_best_predictor_counts.csv",
                   sep = ""))
  
  lm_best_dcant <-
    read_csv(paste(path_version_data,
                   "lm_best_dcant.csv",
                   sep = ""))
  
  dcant_budget_global <- bind_rows(dcant_budget_global,
                                      dcant_budget_global_mod_truth)
  
  dcant_budget_global <- dcant_budget_global %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_global_bias <- dcant_budget_global_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_predictor_counts <- lm_best_predictor_counts %>%
    mutate(Version_ID = i_Version_IDs)
  
  lm_best_dcant <- lm_best_dcant %>%
    mutate(Version_ID = i_Version_IDs)

  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins := str_c(params_local$MLR_basins, collapse = "|"),
    tref1 = params_local$tref1,
    tref2 = params_local$tref2)
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>%
    mutate(
      median_year_1 = sort(tref$median_year)[1],
      median_year_2 = sort(tref$median_year)[2],
      duration = median_year_2 - median_year_1,
      period = paste(median_year_1, "-", median_year_2)
    )
  
  if (exists("dcant_budget_global_all")) {
    dcant_budget_global_all <-
      bind_rows(dcant_budget_global_all, dcant_budget_global)
  }
  
  if (!exists("dcant_budget_global_all")) {
    dcant_budget_global_all <- dcant_budget_global
  }
  
  if (exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <-
      bind_rows(dcant_budget_global_bias_all,
                dcant_budget_global_bias)
  }

  if (!exists("dcant_budget_global_bias_all")) {
    dcant_budget_global_bias_all <- dcant_budget_global_bias
  }
  
    
  if (exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <-
      bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
  }
  
  if (!exists("lm_best_predictor_counts_all")) {
    lm_best_predictor_counts_all <- lm_best_predictor_counts
  }
    
  if (exists("lm_best_dcant_all")) {
    lm_best_dcant_all <-
      bind_rows(lm_best_dcant_all, lm_best_dcant)
  }
  
  if (!exists("lm_best_dcant_all")) {
    lm_best_dcant_all <- lm_best_dcant
  }
  
  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}

rm(
  dcant_budget_global,
  dcant_budget_global_bias,
  dcant_budget_global_mod_truth,
  lm_best_predictor_counts,
  lm_best_dcant,
  params_local,
  tref
)

1.2 Basins

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_AIP <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP.csv",
                   sep = ""))
  
  dcant_budget_basin_AIP_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_AIP_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_AIP <- bind_rows(dcant_budget_basin_AIP,
                                      dcant_budget_basin_AIP_mod_truth)
  
  dcant_budget_basin_AIP_bias <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_bias.csv",
                   sep = ""))
  
  dcant_slab_budget_bias <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget_bias.csv"))

  dcant_slab_budget <-
    read_csv(paste0(path_version_data,
                    "dcant_slab_budget.csv"))

  dcant_budget_basin_AIP <- dcant_budget_basin_AIP %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_bias <- dcant_budget_basin_AIP_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget <- dcant_slab_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  dcant_slab_budget_bias <- dcant_slab_budget_bias %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <-
      bind_rows(dcant_budget_basin_AIP_all, dcant_budget_basin_AIP)
  }
  
  if (!exists("dcant_budget_basin_AIP_all")) {
    dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP
  }
  
  if (exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <-
      bind_rows(dcant_budget_basin_AIP_bias_all,
                dcant_budget_basin_AIP_bias)
  }
  
  if (!exists("dcant_budget_basin_AIP_bias_all")) {
    dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias
  }
  
  if (exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <-
      bind_rows(dcant_slab_budget_all, dcant_slab_budget)
  }
  
  if (!exists("dcant_slab_budget_all")) {
    dcant_slab_budget_all <- dcant_slab_budget
  }
  
  if (exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <-
      bind_rows(dcant_slab_budget_bias_all,
                dcant_slab_budget_bias)
  }
  
  if (!exists("dcant_slab_budget_bias_all")) {
    dcant_slab_budget_bias_all <- dcant_slab_budget_bias
  }
  
}

rm(
  dcant_budget_basin_AIP,
  dcant_budget_basin_AIP_bias,
  dcant_budget_basin_AIP_mod_truth,
  dcant_slab_budget,
  dcant_slab_budget_bias
)

1.3 Basins hemisphere

# Version_IDs <- Version_IDs[1:length(Version_IDs)-1]

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_budget_basin_MLR <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_MLR.csv",
                   sep = ""))
  
  dcant_budget_basin_MLR_mod_truth <-
    read_csv(paste(
      path_version_data,
      "dcant_budget_basin_MLR_mod_truth.csv",
      sep = ""
    ))
  
    
  dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
                                      dcant_budget_basin_MLR_mod_truth)
  

  dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
    mutate(Version_ID = i_Version_IDs)

  if (exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <-
      bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
  }
  
  if (!exists("dcant_budget_basin_MLR_all")) {
    dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
  }

  
}

rm(
  dcant_budget_basin_MLR,
  dcant_budget_basin_MLR_mod_truth
)

1.4 Steady state

for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  # print(i_Version_IDs)
  
  path_version_data     <-
    paste(path_observations,
          i_Version_IDs,
          "/data/",
          sep = "")
  
  # load and join data files
  
  dcant_obs_budget <-
    read_csv(paste0(path_version_data,
                    "anom_dcant_obs_budget.csv"))
  
  dcant_obs_budget <- dcant_obs_budget %>%
    mutate(Version_ID = i_Version_IDs)
  
  if (exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <-
      bind_rows(dcant_obs_budget_all, dcant_obs_budget)
  }
  
  if (!exists("dcant_obs_budget_all")) {
    dcant_obs_budget_all <- dcant_obs_budget
  }
  
}


rm(dcant_obs_budget)

1.5 Atm CO2

co2_atm <-
  read_csv(paste(path_preprocessing,
                 "co2_atm.csv",
                 sep = ""))
all_predictors <- c("saltempaouoxygenphosphatenitratesilicate")

params_local_all <- params_local_all %>%
  mutate(MLR_predictors = str_remove_all(all_predictors,
                                         MLR_predictors))
dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_global_all_depth <- dcant_budget_global_all

dcant_budget_global_all <- dcant_budget_global_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(estimate == "dcant") %>%
  select(-c(estimate))

dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all

dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

dcant_budget_basin_AIP_all_depth <- dcant_budget_basin_AIP_all

dcant_budget_basin_AIP_all <- dcant_budget_basin_AIP_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(estimate == "dcant") %>% 
  select(-c(estimate))

dcant_budget_basin_AIP_bias_all_depth <- dcant_budget_basin_AIP_bias_all

dcant_budget_basin_AIP_bias_all <- dcant_budget_basin_AIP_bias_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(estimate == "dcant", 
         method == "total") %>% 
  select(-c(estimate, method)) %>% 
  rename(dcant = value)

# dcant_budget_basin_MLR_all_depth <- dcant_budget_basin_MLR_all

dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
  filter(inv_depth == params_global$inventory_depth_standard)

# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(estimate == "dcant") %>% 
#   select(-c(estimate))
# 
# dcant_budget_basin_MLR_bias_all_depth <- dcant_budget_basin_MLR_bias_all
# 
# dcant_budget_basin_MLR_bias_all <- dcant_budget_basin_MLR_bias_all %>%
#   filter(inv_depth == params_global$inventory_depth_standard)

2 Bias thresholds

global_bias_rel_max <- 10
global_bias_rel_max
[1] 10
regional_bias_rel_max <- 20
regional_bias_rel_max
[1] 20

3 Individual cases

3.1 Global

3.1.1 Absoulte values

legend_title = expression(atop(Delta * C[ant],
                               (mu * mol ~ kg ^ {
                                 -1
                               })))

dcant_budget_global_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.1.2 Biases

dcant_budget_global_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(atop(Delta * C[ant] ~ bias,
                               (PgC)))) +
  geom_point() +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
p_global_bias <-
  dcant_budget_global_bias_all %>%
  ggplot() +
  geom_hline(yintercept = global_bias_rel_max * c(-1, 1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
  alpha = 0.7) +
  theme(axis.text.x = element_text(angle = 45, hjust = 1),
        axis.title.x = element_blank())

p_global_bias

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all %>%
  group_by(period) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
period dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 1.3369243 0.8546667 7.578936 4.8450491
1994 - 2014 1.6205714 1.0468333 4.212778 2.7213095
2004 - 2014 0.9633679 0.2041667 4.625350 0.9802509

3.2 Basins

3.2.1 Absoulte values

dcant_budget_basin_AIP_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin_AIP ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.2.2 Biases

dcant_budget_basin_AIP_bias_all %>%
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin_AIP ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin_AIP)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
p_regional_bias <- 
  dcant_budget_basin_AIP_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.3 Slab budgets

3.3.1 Absolute values

dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  ggplot(aes(MLR_basins, dcant, fill = gamma_slab)) +
  geom_hline(yintercept = 0, col = "red") +
  geom_col() +
  scale_fill_scico_d(direction = -1) +
  facet_grid(basin_AIP ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_slab_budget_all %>%
  filter(data_source == "obs",
         period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, dcant, fill = gamma_slab)) +
      geom_hline(yintercept = 0) +
      geom_col() +
      scale_fill_scico_d(direction = -1) +
      labs(title = paste("data_source:", unique(.x$basin_AIP))) +
      facet_grid(gamma_slab ~ period)
  )
[[1]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[3]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.3.2 Bias

dcant_slab_budget_bias_all %>%
  filter(period != "1994 - 2014") %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_bias, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ MLR_basins) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
    )
[[1]]
Warning: Removed 56 rows containing missing values (position_stack).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]
Warning: Removed 60 rows containing missing values (position_stack).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[3]]
Warning: Removed 96 rows containing missing values (position_stack).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.3.3 Spread

dcant_slab_budget_all %>%
  filter(period != "1994 - 2014",
         data_source != "mod_truth") %>%
  group_by(data_source, basin_AIP, gamma_slab, period) %>%
  summarise(dcant_range = max(dcant) - min(dcant)) %>%
  ungroup() %>%
  group_split(basin_AIP) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(gamma_slab, dcant_range, fill = gamma_slab)) +
      geom_col() +
      coord_flip() +
      scale_x_discrete(limits = rev) +
      scale_fill_scico_d(direction = -1) +
      facet_grid(period ~ data_source) +
      labs(title = paste("data_source:", unique(.x$basin_AIP)))
  )
`summarise()` has grouped output by 'data_source', 'basin_AIP', 'gamma_slab'.
You can override using the `.groups` argument.
[[1]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[3]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.4 Basins hemisphere

3.4.1 Absoulte values

dcant_budget_basin_MLR_all %>%
  ggplot(aes(period, dcant, col = MLR_basins)) +
  geom_jitter(width = 0.05, height = 0) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(basin ~ data_source) +
  ylim(0,NA) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

3.4.2 Biases

dcant_budget_basin_MLR_bias_all <-
  dcant_budget_basin_MLR_all %>%
  filter(data_source %in% c("mod", "mod_truth")) %>%
  pivot_wider(names_from = data_source,
              values_from = dcant) %>%
  mutate(dcant_bias = mod - mod_truth,
         dcant_bias_rel = 100*(mod - mod_truth)/mod_truth)
  
dcant_budget_basin_MLR_bias_all %>%   
  ggplot(aes(period, dcant_bias, col=MLR_basins)) +
  geom_hline(yintercept = 0) +
  geom_point() +
  facet_grid(basin ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_tile(aes(y = 0, height = regional_bias_rel_max * 2,
                x = "2004 - 2014", width = Inf,
                fill = "bias\nthreshold"), alpha = 0.5) +
  geom_hline(yintercept = 0) +
  scale_fill_manual(values = "grey70", name = "") +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta ~ C[ant] ~ bias)) +
  theme(axis.title.x = element_blank()) +
  geom_jitter(aes(period, dcant_bias_rel, col = MLR_basins),
              width = 0.05, height = 0) +
  facet_grid(. ~ basin)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
p_regional_bias <- 
  dcant_budget_basin_MLR_bias_all %>%
  ggplot() +
  geom_hline(yintercept = regional_bias_rel_max * c(-1,1),
             linetype = 2) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = expression(Delta * C[ant] ~ bias ~ ("%")),
       title = "Model-based assesment") +
  theme(axis.title.x = element_blank()) +
  geom_point(aes(period, dcant_bias_rel, col = MLR_basins),
             alpha = 0.7) +
    theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin) +
  theme(
  strip.background = element_blank(),
  strip.text.x = element_blank()
)

p_regional_bias

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_basin_MLR_bias_all %>%
  group_by(period, basin) %>%
  summarise(
    dcant_bias_sd = sd(dcant_bias),
    dcant_bias = mean(dcant_bias),
    dcant_bias_rel_sd = sd(dcant_bias_rel),
    dcant_bias_rel = mean(dcant_bias_rel)
  ) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'period'. You can override using the
`.groups` argument.
period basin dcant_bias_sd dcant_bias dcant_bias_rel_sd dcant_bias_rel
1994 - 2004 Indian 0.8572570 0.2510000 17.781726 5.206389
1994 - 2004 N_Atlantic 0.2264239 0.1808333 11.605529 9.268751
1994 - 2004 N_Pacific 0.1465792 0.6253333 5.396878 23.024055
1994 - 2004 S_Atlantic 0.3008546 -0.1013333 12.034182 -4.053333
1994 - 2004 S_Pacific 0.8608667 -0.1013333 15.231187 -1.792876
1994 - 2014 Indian 1.2607805 0.5583333 12.067195 5.343926
1994 - 2014 N_Atlantic 0.3586558 -0.2170000 8.348599 -5.051210
1994 - 2014 N_Pacific 0.2082070 0.1411667 3.566410 2.418065
1994 - 2014 S_Atlantic 0.3955314 0.3915000 7.478378 7.402155
1994 - 2014 S_Pacific 1.4628358 0.1731667 11.612573 1.374666
2004 - 2014 Indian 0.6755613 0.2545000 12.007844 4.523640
2004 - 2014 N_Atlantic 0.1353505 -0.3118333 5.771878 -13.297797
2004 - 2014 N_Pacific 0.1798440 -0.5016667 5.760538 -16.068759
2004 - 2014 S_Atlantic 0.3098830 0.5075000 11.110902 18.196486
2004 - 2014 S_Pacific 0.6807807 0.2565000 9.802457 3.693304

4 Ensemble

4.1 Global

dcant_budget_global_all_in <- dcant_budget_global_all %>% 
  filter(data_source %in% c("mod", "obs"))

dcant_budget_global_ensemble <- dcant_budget_global_all_in %>% 
  group_by(data_source, period, tref2) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'data_source', 'period'. You can override
using the `.groups` argument.

4.1.1 Mean

legend_title = expression(Delta * C[ant]~(PgC))

ggplot() +
  geom_col(data = dcant_budget_global_ensemble,
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
  geom_errorbar(
    data = dcant_budget_global_ensemble,
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  geom_point(
    data = dcant_budget_global_all,
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.2, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  labs(y = legend_title) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
p_global_dcant <- ggplot() +
  geom_col(data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
           aes(x = period,
               y = dcant_mean),
           fill = "darkgrey") +
    geom_point(
    data = dcant_budget_global_all %>% 
             filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0.1, height = 0)
  ) +
  geom_errorbar(
    data = dcant_budget_global_ensemble %>% 
             filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank())

p_global_dcant_bias <-
p_global_dcant / p_global_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_global_dcant_bias

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
# ggsave(plot = p_global_dcant_bias,
#        path = here::here("output/publication"),
#        filename = "Fig_global_dcant_budget.png",
#        height = 5,
#        width = 5)

rm(p_global_bias, p_global_dcant, p_global_dcant_bias)

4.1.2 Mean vs atm CO2

dcant_ensemble <- dcant_budget_global_ensemble %>% 
  filter(data_source == "obs",
         period != "1994 - 2014") %>% 
  select(year = tref2, dcant_mean, dcant_sd)

tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)

tcant_ensemble <- full_join(dcant_ensemble, tcant_S04)
Joining, by = c("year", "dcant_mean", "dcant_sd")
tcant_ensemble <- left_join(tcant_ensemble, co2_atm)
Joining, by = "year"
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)

tcant_ensemble <- full_join(tcant_ensemble, co2_atm_pi)
Joining, by = c("year", "dcant_mean", "dcant_sd", "pCO2")
tcant_ensemble <- tcant_ensemble %>% 
  arrange(year) %>% 
  mutate(tcant = cumsum(dcant_mean),
         tcant_sd = cumsum(dcant_sd))

tcant_ensemble %>% 
  ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
  geom_ribbon(fill = "grey80") +
  geom_point() +
  geom_line() +
  scale_x_continuous(breaks = seq(280, 400, 30),
                     sec.axis = dup_axis(labels =  c(1750, 1940, 1980, 2000, 2015),
                                         name = "Year")) +
  geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
  labs(x = expression(Atmospheric~pCO[2]~(µatm)),
       y = expression(Total~oceanic~C[ant]~(PgC)))

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
# ggsave(path = "output/publication",
#        filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
#        height = 4,
#        width = 7)

4.1.3 Sum decades

dcant_budget_global_all_in_sum <-
  dcant_budget_global_all_in %>%
  filter(period != "1994 - 2014") %>%
  arrange(tref1) %>%
  group_by(data_source, MLR_basins) %>%
  mutate(dcant = dcant + lag(dcant)) %>% 
  ungroup() %>%
  drop_na() %>% 
  mutate(estimate = "sum")

dcant_budget_global_all_in_sum <-
  bind_rows(
    dcant_budget_global_all_in_sum,
    dcant_budget_global_all_in %>%
      filter(period == "1994 - 2014") %>%
      mutate(estimate = "direct")
  )

ggplot() +
  geom_point(
    data = dcant_budget_global_all_in_sum,
    aes(estimate, dcant, col = MLR_basins),
    alpha = 0.7,
    position = position_jitter(width = 0, height = 0)
  ) +
  scale_y_continuous(limits = c(0,70), expand = c(0,0)) +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(. ~ data_source) +
  theme(axis.text.x = element_text(angle = 45, hjust=1),
        axis.title.x = element_blank())

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

4.1.4 Mean bias

dcant_budget_global_ensemble_bias <- full_join(
  dcant_budget_global_ensemble %>%
    filter(data_source == "mod") %>% 
    select(period, dcant_mean, dcant_sd),
  dcant_budget_global_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_global_all$MLR_basins)[1]) %>% 
    select(period, dcant)
)
Joining, by = "period"
dcant_budget_global_ensemble_bias <- dcant_budget_global_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)

dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

4.1.5 Vertical patterns

4.1.5.1 Absoulte values

dcant_budget_global_all_depth %>%
  filter(data_source != "mod_truth") %>% 
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill=period)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ .) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

4.1.5.2 Biases

dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = period)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
rm(dcant_budget_global_all,
   dcant_budget_global_all_depth,
   dcant_budget_global_bias_all,
   dcant_budget_global_bias_all_depth,
   dcant_budget_global_ensemble,
   dcant_budget_global_ensemble_bias)

4.2 Basins

dcant_budget_basin_AIP_ensemble <- dcant_budget_basin_AIP_all %>% 
  filter(data_source %in% c("mod", "obs")) %>% 
  group_by(basin_AIP, data_source, period) %>% 
  summarise(dcant_mean = mean(dcant),
            dcant_sd = sd(dcant),
            dcant_range = max(dcant)- min(dcant)) %>% 
  ungroup()
`summarise()` has grouped output by 'basin_AIP', 'data_source'. You can override
using the `.groups` argument.

4.2.1 Mean

dcant_budget_basin_AIP_ensemble %>%
  ggplot(aes(period, dcant_mean, col=basin_AIP)) +
  geom_pointrange(aes(ymax = dcant_mean + dcant_sd,
                      ymin = dcant_mean - dcant_sd),
                  shape = 21) +
  facet_grid(. ~ data_source)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
p_regional_dcant <- ggplot() +
  geom_col(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(x = period,
        y = dcant_mean),
    fill = "darkgrey"
  ) +
  geom_point(
    data = dcant_budget_basin_AIP_all %>%
      filter(data_source == "obs"),
    aes(period, dcant, col = MLR_basins),
    position = position_jitter(width = 0.1, height = 0),
    alpha = 0.7
  ) +
  geom_errorbar(
    data = dcant_budget_basin_AIP_ensemble %>%
      filter(data_source == "obs"),
    aes(
      x = period,
      y = dcant_mean,
      ymax = dcant_mean + dcant_sd,
      ymin = dcant_mean - dcant_sd
    ),
    width = 0.1
  ) +
  scale_y_continuous(limits = c(0, 35), expand = c(0, 0)) +
  scale_color_brewer(palette = "Dark2") +
  labs(y = legend_title,
       title = "Observation-based results") +
  theme(axis.text.x = element_blank(),
        axis.title.x = element_blank()) +
  facet_grid(. ~ basin_AIP)

p_regional_dcant_bias <-
p_regional_dcant / p_regional_bias +
  plot_layout(guides = 'collect',
              heights = c(2,1))

p_regional_dcant_bias

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
# ggsave(plot = p_regional_dcant_bias,
#        path = "output/publication",
#        filename = "Fig_regional_dcant_budget.png",
#        height = 5,
#        width = 10)

rm(p_regional_bias, p_regional_dcant, p_regional_dcant_bias)

4.2.2 Mean bias

dcant_budget_basin_AIP_ensemble_bias <- full_join(
  dcant_budget_basin_AIP_ensemble %>%
    filter(data_source == "mod") %>% 
    select(basin_AIP, period, dcant_mean, dcant_sd),
  dcant_budget_basin_AIP_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == unique(dcant_budget_basin_AIP_all$MLR_basins)[1]) %>% 
    select(basin_AIP, period, dcant)
)
Joining, by = c("basin_AIP", "period")
dcant_budget_basin_AIP_ensemble_bias <- dcant_budget_basin_AIP_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_mean - dcant,
         dcant_mean_bias_rel = 100 * dcant_mean_bias / dcant)


dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_basin_AIP_ensemble_bias %>%
  ggplot(aes(period, dcant_mean_bias_rel, col = basin_AIP)) +
  geom_hline(yintercept = 0) +
  geom_point()

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

4.2.3 Vertical patterns

4.2.3.1 Absoulte values

dcant_budget_basin_AIP_all_depth %>%
  filter(data_source != "mod_truth") %>%
  group_by(data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~  ggplot(data = .x,
              aes(dcant, MLR_basins, fill = basin_AIP)) +
      geom_vline(xintercept = 0) +
      geom_col() +
      scale_fill_brewer(palette = "Dark2") +
      facet_grid(inv_depth ~ period) +
      labs(title = paste("data_source:", unique(.x$data_source)))
  )
[[1]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

4.2.3.2 Biases

dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_basin_AIP_bias_all_depth %>%
  ggplot(aes(dcant_bias_rel, MLR_basins, fill = basin_AIP)) +
  geom_vline(xintercept = 0) +
  geom_col(position = "dodge") +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

5 Steady state

dcant_obs_budget_all %>%
  group_by(inv_depth) %>%
  group_split() %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(estimate, dcant_pos, fill = basin_AIP)) +
      scale_fill_brewer(palette = "Dark2") +
      geom_col() +
      facet_grid(MLR_basins ~ period) +
      labs(title = paste("inventory depth:",unique(.x$inv_depth)))
  )
[[1]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[3]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[4]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[5]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

6 Predictor analysis

lm_best_predictor_counts_all <-
  full_join(lm_best_predictor_counts_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_predictor_counts_all <- lm_best_predictor_counts_all %>% 
  mutate(n_predictors_total = rowSums(across(aou:temp), na.rm = TRUE)/10)

lm_best_predictor_counts_all %>%
  ggplot(aes(x = MLR_basins, y = n_predictors_total)) +
  # ggdist::stat_halfeye(
  #   adjust = .5,
  #   width = .6,
  #   .width = 0,
  #   justification = -.2,
  #   point_colour = NA
  # ) +
  geom_boxplot(width = 0.5,
               outlier.shape = NA) +
  gghalves::geom_half_point(
    side = "l",
    range_scale = .4,
    alpha = .5,
    aes(col = gamma_slab)
  ) +
  scale_color_viridis_d() +
  facet_grid(basin ~ data_source)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
lm_best_predictor_counts_all %>%
  pivot_longer(aou:temp,
               names_to = "predictor",
               values_to = "count") %>%
  group_split(predictor) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(MLR_basins, count, color = gamma_slab)) +
      geom_jitter(alpha = 0.5) +
      scale_color_viridis_d() +
      labs(title = paste0("predictor:", unique(.x$predictor))) +
      coord_cartesian(ylim = c(0, 10)) +
      facet_grid(basin ~ data_source)
  )
[[1]]
Warning: Removed 1 rows containing missing values (geom_point).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[2]]
Warning: Removed 43 rows containing missing values (geom_point).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[3]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[4]]
Warning: Removed 6 rows containing missing values (geom_point).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[5]]
Warning: Removed 3 rows containing missing values (geom_point).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[6]]
Warning: Removed 4 rows containing missing values (geom_point).

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

[[7]]

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
lm_best_dcant_all <-
  full_join(lm_best_dcant_all,
            params_local_all)
Joining, by = "Version_ID"
lm_best_dcant_all %>%
  count(basin, data_source, gamma_slab, MLR_basins, period) %>%
  ggplot(aes(MLR_basins, n)) +
  geom_jitter(height = 0, alpha = 0.3) +
  facet_grid(basin ~ data_source)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16

7 Drift and bias

dcant_budget_global_all_dissic %>%
  filter(estimate == "dcant") %>%
  ggplot(aes(inv_depth, value, col = !!sym(config))) +
  geom_hline(yintercept = 0) +
  scale_color_brewer(palette = "Dark2") +
  geom_point() +
  geom_path() +
  labs(y = "DIC change (PgC)") +
  facet_grid(data_source ~ period, scales = "free_y")

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  filter(estimate == "dcant") %>%
  select(inv_depth, dcant_bias, contribution, !!sym(config), period) %>%
  pivot_wider(names_from = contribution,
              values_from = dcant_bias)

dcant_budget_global_bias_all_decomposition <-
  full_join(
    dcant_budget_global_bias_all_decomposition,
    dcant_budget_global_bias_all_depth %>%
      select(inv_depth, !!sym(config), period, mod_truth)
  )
Joining, by = c("inv_depth", "MLR_basins", "period")
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `delta C* - mod_truth`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* prediction error`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset`,
    `C* prediction error` + `delta C* - mod_truth`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(`dcant offset`, `C* drift`, col = !!sym(config))) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    `dcant offset` - `C* drift`,
    `C* prediction error`,
    col = !!sym(config)
  )) +
  geom_vline(xintercept = 0, col = "grey50") +
  geom_hline(yintercept = 0, col = "grey50") +
  geom_abline(intercept = 0, slope = 1) +
  geom_point() +
  coord_fixed() +
  scale_color_brewer(palette = "Dark2") +
  facet_grid(inv_depth ~ period)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset` - `C* drift`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  mutate(
    `dcant offset rel` = 100 * `dcant offset` / mod_truth,
    `dcant offset rel corr` = 100 * (`dcant offset` - `C* drift`) / mod_truth,
    `C* prediction error rel` = 100 * (`C* prediction error`) / mod_truth
  )

dcant_budget_global_bias_all_decomposition %>%
  ggplot(aes(
    x = period,
    fill = !!sym(config),
    col = !!sym(config)
  )) +
  geom_hline(yintercept = 0) +
  geom_point(
    aes(y = `dcant offset rel`, shape = "dcant offset"),
    position = position_nudge(x = -0.05),
    alpha = 0.5
  ) +
  geom_point(
    aes(y = `dcant offset rel corr`, shape = "dcant offset - C* drift"),
    position = position_nudge(x = 0.05),
    alpha = 0.5
  ) +
  scale_color_brewer(palette = "Dark2") +
  scale_fill_brewer(palette = "Dark2") +
  scale_shape_manual(values = c(21,23)) +
  facet_grid(inv_depth ~ .)

Version Author Date
08c00b4 jens-daniel-mueller 2022-07-16
dcant_budget_global_bias_all_decomposition <-
  dcant_budget_global_bias_all_decomposition %>%
  pivot_longer(-c(inv_depth:period),
               names_to = "estimate",
               values_to = "value")


dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth'. You can override using the
`.groups` argument.
inv_depth estimate mean sd
100 C* drift 0.2033333 0.0740032
100 C* prediction error 0.0202778 0.6012774
100 C* prediction error rel 1.2445991 16.8328254
100 dcant offset -0.3742778 0.4574778
100 dcant offset rel -7.3321094 11.8265494
100 dcant offset rel corr -11.6241762 11.5214128
100 delta C* - mod_truth -0.3946667 0.2164184
100 mod_truth 4.7563333 1.7425592
500 C* drift 1.3446667 0.4893907
500 C* prediction error -1.1031667 1.0475348
500 C* prediction error rel -6.2074660 6.5491181
500 dcant offset -0.7257778 1.0105811
500 dcant offset rel -3.9700692 6.7160995
500 dcant offset rel corr -11.9364347 6.2087231
500 delta C* - mod_truth 0.3773333 0.1374833
500 mod_truth 16.9600000 6.2242462
1000 C* drift 3.1486667 1.1458415
1000 C* prediction error -2.7698889 1.5592573
1000 C* prediction error rel -11.9908029 5.4255708
1000 dcant offset -0.6831667 1.2227539
1000 dcant offset rel -2.7828079 5.7945821
1000 dcant offset rel corr -16.6918776 5.1300242
1000 delta C* - mod_truth 2.0866667 0.7598902
1000 mod_truth 22.7516667 8.3557301
3000 C* drift 3.9900000 1.4521475
3000 C* prediction error -1.9164444 1.4393130
3000 C* prediction error rel -7.4302737 5.2819113
3000 dcant offset 0.7018889 1.3071930
3000 dcant offset rel 2.8488699 5.5723298
3000 dcant offset rel corr -12.7952747 5.3394121
3000 delta C* - mod_truth 2.6026667 0.9469936
3000 mod_truth 25.6453333 9.4254881
10000 C* drift 3.3760000 1.2289476
10000 C* prediction error -0.7759444 1.9044856
10000 C* prediction error rel -2.9014054 7.8477604
10000 dcant offset 0.9943333 1.9228977
10000 dcant offset rel 3.9516768 7.9989164
10000 dcant offset rel corr -9.0871993 7.8368508
10000 delta C* - mod_truth 1.7546667 0.6384472
10000 mod_truth 26.0420000 9.5725748
dcant_budget_global_bias_all_decomposition %>%
  group_by(inv_depth, estimate, period) %>%
  summarise(mean = mean(value),
            sd = sd(value)) %>%
  ungroup() %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
`summarise()` has grouped output by 'inv_depth', 'estimate'. You can override
using the `.groups` argument.
inv_depth estimate period mean sd
100 C* drift 1994 - 2004 0.1550000 0.0000000
100 C* drift 1994 - 2014 0.3050000 0.0000000
100 C* drift 2004 - 2014 0.1500000 0.0000000
100 C* prediction error 1994 - 2004 0.7088333 0.0741038
100 C* prediction error 1994 - 2014 0.0526667 0.1360569
100 C* prediction error 2004 - 2014 -0.7006667 0.1063591
100 C* prediction error rel 1994 - 2004 21.3568344 2.2327134
100 C* prediction error rel 1994 - 2014 0.7382488 1.9071608
100 C* prediction error rel 2004 - 2014 -18.3612858 2.7871892
100 dcant offset 1994 - 2004 0.2193333 0.0738936
100 dcant offset 1994 - 2014 -0.5388333 0.1358903
100 dcant offset 2004 - 2014 -0.8033333 0.1067533
100 dcant offset rel 1994 - 2004 6.6084162 2.2263820
100 dcant offset rel 1994 - 2014 -7.5530324 1.9048258
100 dcant offset rel 2004 - 2014 -21.0517121 2.7975183
100 dcant offset rel corr 1994 - 2004 1.9383348 2.2263820
100 dcant offset rel corr 1994 - 2014 -11.8283338 1.9048258
100 dcant offset rel corr 2004 - 2014 -24.9825297 2.7975183
100 delta C* - mod_truth 1994 - 2004 -0.4900000 0.0000000
100 delta C* - mod_truth 1994 - 2014 -0.5910000 0.0000000
100 delta C* - mod_truth 2004 - 2014 -0.1030000 0.0000000
100 mod_truth 1994 - 2004 3.3190000 0.0000000
100 mod_truth 1994 - 2014 7.1340000 0.0000000
100 mod_truth 2004 - 2014 3.8160000 0.0000000
500 C* drift 1994 - 2004 1.0250000 0.0000000
500 C* drift 1994 - 2014 2.0170000 0.0000000
500 C* drift 2004 - 2014 0.9920000 0.0000000
500 C* prediction error 1994 - 2004 0.0330000 0.5412692
500 C* prediction error 1994 - 2014 -1.6325000 0.9266343
500 C* prediction error 2004 - 2014 -1.7100000 0.5021127
500 C* prediction error rel 1994 - 2004 0.2809706 4.6085079
500 C* prediction error rel 1994 - 2014 -6.4170597 3.6424304
500 C* prediction error rel 2004 - 2014 -12.4863089 3.6663946
500 dcant offset 1994 - 2004 0.3248333 0.5411353
500 dcant offset 1994 - 2014 -1.0663333 0.9267003
500 dcant offset 2004 - 2014 -1.4358333 0.5019982
500 dcant offset rel 1994 - 2004 2.7657159 4.6073670
500 dcant offset rel 1994 - 2014 -4.1915618 3.6426899
500 dcant offset rel 2004 - 2014 -10.4843617 3.6655580
500 dcant offset rel corr 1994 - 2004 -5.9614020 4.6073670
500 dcant offset rel corr 1994 - 2014 -12.1200210 3.6426899
500 dcant offset rel corr 2004 - 2014 -17.7278812 3.6655580
500 delta C* - mod_truth 1994 - 2004 0.2920000 0.0000000
500 delta C* - mod_truth 1994 - 2014 0.5660000 0.0000000
500 delta C* - mod_truth 2004 - 2014 0.2740000 0.0000000
500 mod_truth 1994 - 2004 11.7450000 0.0000000
500 mod_truth 1994 - 2014 25.4400000 0.0000000
500 mod_truth 2004 - 2014 13.6950000 0.0000000
1000 C* drift 1994 - 2004 2.3950000 0.0000000
1000 C* drift 1994 - 2014 4.7230000 0.0000000
1000 C* drift 2004 - 2014 2.3280000 0.0000000
1000 C* prediction error 1994 - 2004 -1.2641667 0.9282410
1000 C* prediction error 1994 - 2014 -4.1310000 1.4321545
1000 C* prediction error 2004 - 2014 -2.9145000 0.6203092
1000 C* prediction error rel 1994 - 2004 -8.0520170 5.9123631
1000 C* prediction error rel 1994 - 2014 -12.1047851 4.1965437
1000 C* prediction error rel 2004 - 2014 -15.8156067 3.3661233
1000 dcant offset 1994 - 2004 0.2928333 0.9282410
1000 dcant offset 1994 - 2014 -1.0003333 1.4324789
1000 dcant offset 2004 - 2014 -1.3420000 0.6205855
1000 dcant offset rel 1994 - 2004 1.8651805 5.9123631
1000 dcant offset rel 1994 - 2014 -2.9312079 4.1974944
1000 dcant offset rel 2004 - 2014 -7.2823964 3.3676228
1000 dcant offset rel corr 1994 - 2004 -13.3895966 5.9123631
1000 dcant offset rel corr 1994 - 2014 -16.7706899 4.1974944
1000 dcant offset rel corr 2004 - 2014 -19.9153462 3.3676228
1000 delta C* - mod_truth 1994 - 2004 1.5570000 0.0000000
1000 delta C* - mod_truth 1994 - 2014 3.1310000 0.0000000
1000 delta C* - mod_truth 2004 - 2014 1.5720000 0.0000000
1000 mod_truth 1994 - 2004 15.7000000 0.0000000
1000 mod_truth 1994 - 2014 34.1270000 0.0000000
1000 mod_truth 2004 - 2014 18.4280000 0.0000000
3000 C* drift 1994 - 2004 3.0410000 0.0000000
3000 C* drift 1994 - 2014 5.9850000 0.0000000
3000 C* drift 2004 - 2014 2.9440000 0.0000000
3000 C* prediction error 1994 - 2004 -1.1256667 1.2851958
3000 C* prediction error 1994 - 2014 -2.8568333 1.6204702
3000 C* prediction error 2004 - 2014 -1.7668333 0.9630212
3000 C* prediction error rel 1994 - 2004 -6.3813303 7.2856905
3000 C* prediction error rel 1994 - 2014 -7.4265190 4.2125149
3000 C* prediction error rel 2004 - 2014 -8.4829716 4.6236853
3000 dcant offset 1994 - 2004 0.8546667 1.3369243
3000 dcant offset 1994 - 2014 1.0468333 1.6205714
3000 dcant offset 2004 - 2014 0.2041667 0.9633679
3000 dcant offset rel 1994 - 2004 4.8450491 7.5789361
3000 dcant offset rel 1994 - 2014 2.7213095 4.2127780
3000 dcant offset rel 2004 - 2014 0.9802509 4.6253501
3000 dcant offset rel corr 1994 - 2004 -12.3941799 7.5789361
3000 dcant offset rel corr 1994 - 2014 -12.8370767 4.2127780
3000 dcant offset rel corr 2004 - 2014 -13.1545676 4.6253501
3000 delta C* - mod_truth 1994 - 2004 1.9330000 0.0000000
3000 delta C* - mod_truth 1994 - 2014 3.9040000 0.0000000
3000 delta C* - mod_truth 2004 - 2014 1.9710000 0.0000000
3000 mod_truth 1994 - 2004 17.6400000 0.0000000
3000 mod_truth 1994 - 2014 38.4680000 0.0000000
3000 mod_truth 2004 - 2014 20.8280000 0.0000000
10000 C* drift 1994 - 2004 2.5830000 0.0000000
10000 C* drift 1994 - 2014 5.0640000 0.0000000
10000 C* drift 2004 - 2014 2.4810000 0.0000000
10000 C* prediction error 1994 - 2004 -0.2643333 2.0817886
10000 C* prediction error 1994 - 2014 -1.1653333 2.4868109
10000 C* prediction error 2004 - 2014 -0.8981667 1.1401673
10000 C* prediction error rel 1994 - 2004 -1.4765576 11.6288047
10000 C* prediction error rel 1994 - 2014 -2.9832151 6.3661543
10000 C* prediction error rel 2004 - 2014 -4.2444434 5.3880594
10000 dcant offset 1994 - 2004 1.0856667 2.1042040
10000 dcant offset 1994 - 2014 1.4663333 2.4869912
10000 dcant offset 2004 - 2014 0.4310000 1.1404636
10000 dcant offset rel 1994 - 2004 6.0644993 11.7540160
10000 dcant offset rel 1994 - 2014 3.7537653 6.3666159
10000 dcant offset rel 2004 - 2014 2.0367657 5.3894598
10000 dcant offset rel corr 1994 - 2004 -8.3640562 11.7540160
10000 dcant offset rel corr 1994 - 2014 -9.2099088 6.3666159
10000 dcant offset rel corr 2004 - 2014 -9.6876329 5.3894598
10000 delta C* - mod_truth 1994 - 2004 1.3030000 0.0000000
10000 delta C* - mod_truth 1994 - 2014 2.6320000 0.0000000
10000 delta C* - mod_truth 2004 - 2014 1.3290000 0.0000000
10000 mod_truth 1994 - 2004 17.9020000 0.0000000
10000 mod_truth 1994 - 2014 39.0630000 0.0000000
10000 mod_truth 2004 - 2014 21.1610000 0.0000000

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.4   geomtextpath_0.1.0 colorspace_2.0-2   marelac_2.1.10    
 [5] shape_1.4.6        ggforce_0.3.3      metR_0.11.0        scico_1.3.0       
 [9] patchwork_1.1.1    collapse_1.7.0     forcats_0.5.1      stringr_1.4.0     
[13] dplyr_1.0.7        purrr_0.3.4        readr_2.1.1        tidyr_1.1.4       
[17] tibble_3.1.6       ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] fs_1.5.2           gghalves_0.1.1     bit64_4.0.5        lubridate_1.8.0   
 [5] gsw_1.0-6          RColorBrewer_1.1-2 webshot_0.5.2      httr_1.4.2        
 [9] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
[13] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          withr_2.4.3       
[17] tidyselect_1.1.1   processx_3.5.2     bit_4.0.4          compiler_4.1.2    
[21] git2r_0.29.0       textshaping_0.3.6  cli_3.1.1          rvest_1.0.2       
[25] xml2_1.3.3         labeling_0.4.2     sass_0.4.0         scales_1.1.1      
[29] checkmate_2.0.0    SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3 
[33] digest_0.6.29      svglite_2.0.0      rmarkdown_2.11     oce_1.5-0         
[37] pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9          dbplyr_2.1.1      
[41] fastmap_1.1.0      rlang_1.0.2        readxl_1.3.1       rstudioapi_0.13   
[45] jquerylib_0.1.4    generics_0.1.1     farver_2.1.0       jsonlite_1.7.3    
[49] vroom_1.5.7        magrittr_2.0.1     Rcpp_1.0.8         munsell_0.5.0     
[53] fansi_1.0.2        lifecycle_1.0.1    stringi_1.7.6      whisker_0.4       
[57] yaml_2.2.1         MASS_7.3-55        grid_4.1.2         parallel_4.1.2    
[61] promises_1.2.0.1   crayon_1.4.2       haven_2.4.3        hms_1.1.1         
[65] seacarb_3.3.0      knitr_1.37         ps_1.6.0           pillar_1.6.4      
[69] reprex_2.0.1       glue_1.6.0         evaluate_0.14      getPass_0.2-2     
[73] data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8        tzdb_0.2.0        
[77] tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0   gtable_0.3.0      
[81] polyclip_1.10-0    assertthat_0.2.1   xfun_0.29          broom_0.7.11      
[85] later_1.3.0        viridisLite_0.4.0  ellipsis_0.3.2     here_1.0.1