Last updated: 2022-11-14

Checks: 7 0

Knit directory: emlr_obs_analysis/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210412) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 40f357d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/other/
    Ignored:    output/presentation/
    Ignored:    output/publication/

Untracked files:
    Untracked:  code/results_publication_backup_incl_ensemble_uncertainty_20221111.Rmd

Unstaged changes:
    Deleted:    analysis/MLR_target_budgets.Rmd
    Deleted:    analysis/MLR_target_column_inventories.Rmd
    Deleted:    analysis/MLR_target_zonal_sections.Rmd
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/G19_zonal_sections.Rmd) and HTML (docs/G19_zonal_sections.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html cc337dd jens-daniel-mueller 2022-11-11 Build site.
html ec60f68 jens-daniel-mueller 2022-11-07 Build site.
html e99640e jens-daniel-mueller 2022-07-29 Build site.
html 08c00b4 jens-daniel-mueller 2022-07-16 Build site.
html 692c937 jens-daniel-mueller 2022-07-16 Build site.
html b44c72a jens-daniel-mueller 2022-07-03 Build site.
html 6e173bf jens-daniel-mueller 2022-06-30 updated regional budget plots
html a13a7cf jens-daniel-mueller 2022-06-28 Build site.
html b52b159 jens-daniel-mueller 2022-06-27 Build site.
html 09b0780 jens-daniel-mueller 2022-05-24 Build site.
html 25da2fb jens-daniel-mueller 2022-05-24 Build site.
Rmd aba19e4 jens-daniel-mueller 2022-05-24 rebuild with multi model assesment
html e09320d jens-daniel-mueller 2022-04-12 Build site.
html 8dca96a jens-daniel-mueller 2022-04-12 Build site.
html acad2e2 jens-daniel-mueller 2022-04-09 Build site.
html c3a6238 jens-daniel-mueller 2022-03-08 Build site.
html de557de jens-daniel-mueller 2022-01-28 Build site.
html 9753eb8 jens-daniel-mueller 2022-01-26 Build site.
html f347cd7 jens-daniel-mueller 2022-01-18 Build site.
html 513630f jens-daniel-mueller 2022-01-18 Build site.
html d7dfc7c jens-daniel-mueller 2022-01-18 Build site.
html 9fe8eff jens-daniel-mueller 2022-01-13 Build site.
html 269809e jens-daniel-mueller 2022-01-12 Build site.
html 1696b98 jens-daniel-mueller 2022-01-11 Build site.
html 570e738 jens-daniel-mueller 2022-01-10 Build site.
Rmd d3903e6 jens-daniel-mueller 2022-01-10 rebuild with child docs
html 7e0a36b jens-daniel-mueller 2021-11-21 Build site.
html e505a4b jens-daniel-mueller 2021-11-09 Build site.
html 71920de jens-daniel-mueller 2021-11-04 Build site.
html f7c3da2 jens-daniel-mueller 2021-11-03 Build site.
Rmd 582b24e jens-daniel-mueller 2021-11-03 rebuild with G19 runs

1 Uncertainty limit

sd_uncertainty_limit <- 1.5

2 Read files

# identify required version IDs

Version_IDs <-
  list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
             pattern = "v_G0")
for (i_Version_IDs in Version_IDs) {
  # i_Version_IDs <- Version_IDs[1]
  
  print(i_Version_IDs)
  
  path_version_data     <-
  paste(path_observations,
        i_Version_IDs,
        "/data/",
        sep = "")
  
  # load and join data files
  
  dcant_zonal <-
    read_csv(paste(path_version_data,
                   "dcant_zonal.csv",
                   sep = ""))
  
  dcant_zonal_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_mod_truth.csv",
                   sep = ""))
  
  dcant_zonal <- bind_rows(dcant_zonal,
                         dcant_zonal_mod_truth)
  
  dcant_profile <-
    read_csv(paste(path_version_data,
                   "dcant_profile.csv",
                   sep = ""))
  
  dcant_profile_mod_truth <-
    read_csv(paste(path_version_data,
                   "dcant_profile_mod_truth.csv",
                   sep = ""))
  
  dcant_profile <- bind_rows(dcant_profile,
                             dcant_profile_mod_truth)
  
  dcant_budget_basin_AIP_layer <-
    read_csv(paste(path_version_data,
                   "dcant_budget_basin_AIP_layer.csv",
                   sep = ""))
  
  dcant_zonal_bias <-
    read_csv(paste(path_version_data,
                   "dcant_zonal_bias.csv",
                   sep = ""))
  

  dcant_zonal <- dcant_zonal %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_profile <- dcant_profile %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_budget_basin_AIP_layer <- dcant_budget_basin_AIP_layer %>% 
    mutate(Version_ID = i_Version_IDs)
  
  dcant_zonal_bias <- dcant_zonal_bias %>% 
    mutate(Version_ID = i_Version_IDs)
  
  params_local <-
    read_rds(paste(path_version_data,
                   "params_local.rds",
                   sep = ""))
  
  params_local <- bind_cols(
    Version_ID = i_Version_IDs,
    MLR_basins = params_local$MLR_basins,
    tref1 = params_local$tref1,
    tref2 = params_local$tref2,
    gap_filling = params_local$gap_filling,
    rarefication = params_local$rarefication,
    rarefication_threshold = params_local$rarefication_threshold,
    MLR_predictors = str_c(params_local$MLR_predictors, collapse = "+"),
    vif_max = params_local$vif_max
  )
  
  tref <- read_csv(paste(path_version_data,
                         "tref.csv",
                         sep = ""))
  
  params_local <- params_local %>% 
    mutate(median_year_1 = sort(tref$median_year)[1],
           median_year_2 = sort(tref$median_year)[2],
           duration = median_year_2 - median_year_1,
           period = paste(median_year_1, "-", median_year_2))
  
  if (exists("dcant_zonal_all")) {
    dcant_zonal_all <- bind_rows(dcant_zonal_all, dcant_zonal)
  }
  
  if (!exists("dcant_zonal_all")) {
    dcant_zonal_all <- dcant_zonal
  }

  if (exists("dcant_profile_all")) {
    dcant_profile_all <- bind_rows(dcant_profile_all, dcant_profile)
  }
  
  if (!exists("dcant_profile_all")) {
    dcant_profile_all <- dcant_profile
  }

  if (exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <-
      bind_rows(dcant_budget_basin_AIP_layer_all,
                dcant_budget_basin_AIP_layer)
  }
  
  if (!exists("dcant_budget_basin_AIP_layer_all")) {
    dcant_budget_basin_AIP_layer_all <- dcant_budget_basin_AIP_layer
  }

  if (exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- bind_rows(dcant_zonal_bias_all, dcant_zonal_bias)
  }
  
  if (!exists("dcant_zonal_bias_all")) {
    dcant_zonal_bias_all <- dcant_zonal_bias
  }

  if (exists("params_local_all")) {
    params_local_all <- bind_rows(params_local_all, params_local)
  }
  
  if (!exists("params_local_all")) {
    params_local_all <- params_local
  }
  
  
}
[1] "v_G001"
[1] "v_G002"
[1] "v_G003"
[1] "v_G004"
[1] "v_G005"
[1] "v_G006"
rm(dcant_zonal, dcant_zonal_bias, dcant_zonal_mod_truth,
   dcant_budget_basin_AIP_layer,
   tref)

dcant_zonal_all <- full_join(dcant_zonal_all,
                           params_local_all)

dcant_profile_all <- full_join(dcant_profile_all,
                           params_local_all)

dcant_budget_basin_AIP_layer_all <-
  full_join(dcant_budget_basin_AIP_layer_all,
            params_local_all)

dcant_zonal_bias_all <- full_join(dcant_zonal_bias_all,
                                params_local_all)

3 Individual cases

3.1 Absoulte values

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant",
      plot_slabs = "n",
      subtitle_text = paste(
        "data_source: ",
        unique(.x$data_source),
        "| basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[4]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[5]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[6]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03
p_dcant_Indian_1994_2004 <-
  dcant_zonal_all %>%
  filter(data_source %in% c("obs"),
         basin_AIP == "Indian") %>%
  p_section_zonal_continous_depth(var = "dcant",
                                  plot_slabs = "n",
                                  subtitle_text = "Indian Ocean") +
  facet_grid(MLR_basins ~ period)

# ggsave(plot = p_dcant_Indian_1994_2004,
#        path = "output/publication",
#        filename = "FigS_zonal_indian_1994_2004.png",
#        height = 8,
#        width = 5)

3.2 Biases

dcant_zonal_bias_all %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
ec60f68 jens-daniel-mueller 2022-11-07
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

3.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot(aes(dcant_bias, col = MLR_basins)) +
  scale_color_brewer(palette = "Dark2") +
  geom_vline(xintercept = 0) +
  geom_density() +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

3.3 Bias correlation eras

dcant_zonal_bias_all_corr <- dcant_zonal_bias_all %>%
  select(lat, depth, basin_AIP, dcant_bias, MLR_basins, period) %>% 
  pivot_wider(names_from = period,
              values_from = dcant_bias, 
              names_prefix = "dcant_bias ")

dcant_zonal_bias_all_corr %>% 
  ggplot(aes(`dcant_bias 1994 - 2004`, `dcant_bias 2004 - 2014`)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_bin2d() +
  coord_fixed() +
  facet_grid(MLR_basins ~ basin_AIP) +
  scale_fill_viridis_c()

3.4 Concentration profiles

3.4.1 Data source

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = data_source, fill = data_source
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_ribbon(
        aes(xmin = dcant - dcant_sd,
            xmax = dcant + dcant_sd),
        alpha = 0.2,
        col = "transparent"
      ) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(MLR_basins ~ basin_AIP)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

3.4.2 Basin separation

dcant_profile_all %>%
  group_split(period) %>%
  map(
    ~ ggplot(data = .x,
             aes(
               dcant, depth,
               col = MLR_basins, fill = MLR_basins
             )) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

3.4.3 Era

dcant_profile_all %>%
  arrange(depth) %>%
  # filter(period != "1994 - 2014") %>%
  group_split(data_source) %>%
  map(
    ~ ggplot(
      data = .x,
      aes(
        dcant,
        depth,
        col = period,
        group = interaction(MLR_basins, period)
      )
    ) +
      geom_hline(yintercept = params_global$inventory_depth_standard) +
      geom_vline(xintercept = 0) +
      geom_path() +
      scale_y_reverse() +
      labs(title = paste("data_source", unique(.x$data_source))) +
      facet_grid(. ~ basin_AIP)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

3.5 Layer budgets

dcant_budget_basin_AIP_layer_all %>%
  filter(estimate == "dcant") %>% 
  mutate(dcant = value,
         inv_depth = fct_inorder(as.factor(inv_depth))) %>% 
  group_split(period) %>%
  # head(1) %>% 
  map(
    ~ ggplot(data = .x,
             aes(dcant, inv_depth,
                 fill = MLR_basins)) +
      geom_vline(xintercept = 0) +
      geom_col(position = "dodge") +
      scale_y_discrete(limits = rev) +
      scale_fill_brewer(palette = "Dark2") +
      labs(title = paste("period", unique(.x$period))) +
      facet_grid(data_source ~ basin_AIP)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4 Ensemble

dcant_zonal_ensemble <- dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(lat, depth, basin_AIP, data_source, period) %>%
  summarise(
    dcant_ensemble_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_range = max(dcant) - min(dcant)
  ) %>%
  ungroup()


dcant_budget_basin_AIP_layer_ensemble <-
  dcant_budget_basin_AIP_layer_all %>%
  mutate(inv_depth = fct_inorder(as.factor(inv_depth))) %>%
  filter(data_source %in% c("mod", "obs"),
         estimate == "dcant") %>%
  rename(dcant = value) %>%
  group_by(inv_depth, data_source, period, basin_AIP) %>%
  summarise(
    dcant_mean = mean(dcant),
    dcant_sd = sd(dcant),
    dcant_max = max(dcant),
    dcant_min = min(dcant)
  ) %>%
  ungroup()

4.1 Mean

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_ensemble_mean",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.2 Mean bias

dcant_zonal_ensemble_bias <- full_join(
  dcant_zonal_ensemble %>%
    filter(data_source == "mod") %>% 
    select(lat, depth, basin_AIP, period, dcant_ensemble_mean, dcant_sd),
  dcant_zonal_all %>%
    filter(data_source == "mod_truth",
           MLR_basins == "2") %>% 
    select(lat, depth, basin_AIP, period, dcant_mod_truth = dcant)
)

dcant_zonal_ensemble_bias <- dcant_zonal_ensemble_bias %>% 
  mutate(dcant_mean_bias = dcant_ensemble_mean - dcant_mod_truth)

dcant_zonal_ensemble_bias %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_mean_bias",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
        unique(.x$basin_AIP)
      )
    ) +
      facet_grid(. ~ period)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.2.1 Density distribution

dcant_zonal_bias_all %>%
  ggplot() +
  scale_color_manual(values = c("red", "grey")) +
  geom_vline(xintercept = 0) +
  geom_density(aes(dcant_bias, group = MLR_basins, col = "Individual")) +
  geom_density(data = dcant_zonal_ensemble_bias,
               aes(dcant_mean_bias, col = "Ensemble")) +
  facet_grid(period ~.) +
  coord_cartesian(xlim = c(-10, 10))

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.3 Mean depth layer budgets

dcant_lat_grid_ensemble %>%
  ggplot(aes(lat_grid, dcant_mean)) +
  geom_hline(yintercept = 0) +
  geom_col(position = "dodge",
           fill = "grey80",
           col = "grey20") +
  geom_errorbar(aes(
    ymin = dcant_min,
    ymax = dcant_max
  ),
  col = "grey20",
  width = 0) +
  scale_color_brewer(palette = "Set1") +
  coord_flip() +
  scale_fill_brewer(palette = "Dark2") +
  facet_grid(data_source ~ period)

4.4 Standard deviation

dcant_zonal_ensemble %>%
  group_by(basin_AIP) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_sd",
      breaks = c(seq(0,4,0.4), Inf),
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP))
    ) +
      facet_grid(data_source ~ period)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.5 SD as uncertainty

uncertainty_grid <- dcant_zonal_ensemble %>%
  filter(dcant_sd > sd_uncertainty_limit) %>% 
  distinct(depth, lat, data_source, period, basin_AIP)

uncertainty_grid <- uncertainty_grid %>%
  mutate(
    lat_grid = cut(lat, seq(-90, 90, 5), seq(-87.5, 87.5, 5)),
    lat_grid = as.numeric(as.character(lat_grid)),
    depth_grid = cut(depth, seq(0, 1e4, 500), seq(250, 1e4, 500)),
    depth_grid = as.numeric(as.character(depth_grid))
  ) %>%
  distinct(depth_grid, lat_grid, data_source, period, basin_AIP)

uncertainty_grid %>%
  filter(data_source == "obs") %>%
  ggplot() +
  geom_point(aes(lat_grid, depth_grid),
             shape = 3) +
  facet_grid(basin_AIP ~ period) +
  scale_y_reverse()

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.6 SD vs bias

dcant_zonal_ensemble_bias %>% 
  ggplot(aes(dcant_mean_bias, dcant_sd)) +
  geom_bin2d() +
  scale_fill_viridis_c() +
  facet_grid(basin_AIP ~ period)

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03
dcant_zonal_ensemble_bias %>% 
  select(dcant_ensemble_mean, dcant_mean_bias, period) %>% 
  pivot_longer(dcant_ensemble_mean:dcant_mean_bias,
               names_to = "estimate",
               values_to = "value") %>% 
  ggplot(aes(value, col=estimate, linetype = period)) +
  scale_color_brewer(palette = "Set1") +
  geom_density()

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03
dcant_zonal_ensemble %>% 
  ggplot(aes(dcant_sd)) +
  geom_histogram() +
  facet_grid(data_source ~ period) +
  coord_cartesian(ylim = c(0,50))

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

4.7 Composed figure

uncertainty_grid <- uncertainty_grid %>%
  filter(data_source == "obs")

p_zonal_ensemble <- dcant_zonal_ensemble %>%
  filter(data_source == "obs") %>%
  p_section_zonal_continous_depth(var = "dcant_ensemble_mean",
                                  plot_slabs = "n",
                                  title_text = NULL) +
  geom_point(data = uncertainty_grid,
             aes(lat_grid, depth_grid),
             shape = 3,
             col = "white") +
  facet_grid(basin_AIP ~ period,
             switch = "y") +
  theme(legend.position = "left",
        strip.background.y = element_blank(),
        strip.text.y = element_blank())

p_profiles <-
  dcant_profile_all %>%
  arrange(depth) %>%
  filter(data_source == "obs") %>%
  ggplot(aes(
           dcant,
           depth,
           col = period,
           fill = "grey80",
           group = interaction(MLR_basins, period)
         )) +
  geom_hline(yintercept = params_global$inventory_depth_standard) +
  geom_vline(xintercept = 0) +
  geom_path() +
  scale_y_reverse(name = "Depth (m)",
                  limits = c(5000,0)) +
  scale_x_continuous(name = expression(Delta * C[ant] ~ (µmol~kg^{-1}))) +
  coord_cartesian(expand = 0) +
  scale_color_brewer(palette = "Set1") +
  facet_grid(basin_AIP ~.) +
  theme(legend.position = "top",
        legend.direction = "vertical",
        legend.title = element_blank(),
        strip.background = element_blank(),
        strip.text = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_layer_budget <- dcant_budget_basin_AIP_layer_ensemble %>%
  filter(data_source == "obs") %>%
  mutate(depth =
           as.numeric(str_split(inv_depth, " - ", simplify = TRUE)[, 1]) + 250) %>%
  filter(depth < 5000) %>% 
  ggplot(aes(dcant_mean, inv_depth, col = period)) +
  geom_col(position = "dodge",
           orientation = "y",
           fill = "grey80") +
  geom_errorbar(
    aes(xmin = dcant_min,
        xmax = dcant_max),
    width = 0,
    position = position_dodge(width = 0.9)
  ) +
  scale_color_brewer(palette = "Set1", guide = "none") +
  scale_x_continuous(
    limits = c(0, NA),
    expand = c(0, 0),
    name = expression(Delta * C[ant] ~ (PgC))
  ) +
  scale_y_discrete(name = "Depth intervals (m)",
                   limits = rev) +
  facet_grid(basin_AIP ~ .) +
  theme(legend.position = "top",
        legend.title = element_blank(),
        axis.text.y = element_blank(),
        axis.title.y = element_blank(),
        axis.ticks.y = element_blank())


p_zonal_ensemble + p_profiles + p_layer_budget +
  plot_layout(widths = c(5,1,1)) +
  plot_annotation(tag_levels = 'a')

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
09b0780 jens-daniel-mueller 2022-05-24
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03
# ggsave("output/publication/Fig_zonal_mean.png",
#        width=15.25,
#        height=9.27)

5 Cases vs ensemble

5.1 Offset from mean

dcant_zonal_all <- full_join(dcant_zonal_all %>% select(-dcant_sd),
                             dcant_zonal_ensemble)

dcant_zonal_all <- dcant_zonal_all %>%
  mutate(dcant_offset = dcant - dcant_ensemble_mean)


legend_title <- expression(atop(Delta * C[ant, offset],
                                (mu * mol ~ kg ^ {
                                  -1
                                })))

dcant_zonal_all %>%
  filter(data_source %in% c("mod", "obs")) %>%
  group_by(basin_AIP, data_source) %>%
  group_split() %>%
  # head(1) %>%
  map(
    ~ p_section_zonal_continous_depth(
      df = .x,
      var = "dcant_offset",
      col = "divergent",
      plot_slabs = "n",
      subtitle_text = paste("basin:",
                            unique(.x$basin_AIP),
                            "| data_source",
                            unique(.x$data_source))
    ) +
      facet_grid(MLR_basins ~ period)
  )
[[1]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[2]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[3]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[4]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[5]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

[[6]]

Version Author Date
e99640e jens-daniel-mueller 2022-07-29
b44c72a jens-daniel-mueller 2022-07-03
6e173bf jens-daniel-mueller 2022-06-30
a13a7cf jens-daniel-mueller 2022-06-28
b52b159 jens-daniel-mueller 2022-06-27
e09320d jens-daniel-mueller 2022-04-12
c3a6238 jens-daniel-mueller 2022-03-08
9753eb8 jens-daniel-mueller 2022-01-26
9fe8eff jens-daniel-mueller 2022-01-13
570e738 jens-daniel-mueller 2022-01-10
71920de jens-daniel-mueller 2021-11-04
f7c3da2 jens-daniel-mueller 2021-11-03

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] geomtextpath_0.1.0 colorspace_2.0-2   marelac_2.1.10     shape_1.4.6       
 [5] ggforce_0.3.3      metR_0.11.0        scico_1.3.0        patchwork_1.1.1   
 [9] collapse_1.7.0     forcats_0.5.1      stringr_1.4.0      dplyr_1.0.7       
[13] purrr_0.3.4        readr_2.1.1        tidyr_1.1.4        tibble_3.1.6      
[17] ggplot2_3.3.5      tidyverse_1.3.1    workflowr_1.7.0   

loaded via a namespace (and not attached):
 [1] fs_1.5.2           bit64_4.0.5        lubridate_1.8.0    gsw_1.0-6         
 [5] RColorBrewer_1.1-2 httr_1.4.2         rprojroot_2.0.2    tools_4.1.2       
 [9] backports_1.4.1    bslib_0.3.1        utf8_1.2.2         R6_2.5.1          
[13] DBI_1.1.2          withr_2.4.3        tidyselect_1.1.1   processx_3.5.2    
[17] bit_4.0.4          compiler_4.1.2     git2r_0.29.0       textshaping_0.3.6 
[21] cli_3.1.1          rvest_1.0.2        xml2_1.3.3         isoband_0.2.5     
[25] labeling_0.4.2     sass_0.4.0         scales_1.1.1       checkmate_2.0.0   
[29] SolveSAPHE_2.1.0   callr_3.7.0        systemfonts_1.0.3  digest_0.6.29     
[33] rmarkdown_2.11     oce_1.5-0          pkgconfig_2.0.3    htmltools_0.5.2   
[37] highr_0.9          dbplyr_2.1.1       fastmap_1.1.0      rlang_1.0.2       
[41] readxl_1.3.1       rstudioapi_0.13    jquerylib_0.1.4    generics_0.1.1    
[45] farver_2.1.0       jsonlite_1.7.3     vroom_1.5.7        magrittr_2.0.1    
[49] Rcpp_1.0.8         munsell_0.5.0      fansi_1.0.2        lifecycle_1.0.1   
[53] stringi_1.7.6      whisker_0.4        yaml_2.2.1         MASS_7.3-55       
[57] grid_4.1.2         parallel_4.1.2     promises_1.2.0.1   crayon_1.4.2      
[61] haven_2.4.3        hms_1.1.1          seacarb_3.3.0      knitr_1.37        
[65] ps_1.6.0           pillar_1.6.4       reprex_2.0.1       glue_1.6.0        
[69] evaluate_0.14      getPass_0.2-2      data.table_1.14.2  modelr_0.1.8      
[73] vctrs_0.3.8        tzdb_0.2.0         tweenr_1.0.2       httpuv_1.6.5      
[77] cellranger_1.1.0   gtable_0.3.0       polyclip_1.10-0    assertthat_0.2.1  
[81] xfun_0.29          broom_0.7.11       later_1.3.0        viridisLite_0.4.0 
[85] ellipsis_0.3.2