Last updated: 2022-01-31
Checks: 7 0
Knit directory: emlr_obs_analysis/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210412)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 5c948ae. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: data/
Ignored: output/other/
Ignored: output/publication/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/results_publication.Rmd
) and HTML (docs/results_publication.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 5c948ae | jens-daniel-mueller | 2022-01-31 | added time series vs atm pco2 |
html | de557de | jens-daniel-mueller | 2022-01-28 | Build site. |
html | 5f2aed0 | jens-daniel-mueller | 2022-01-27 | Build site. |
Rmd | 54c9e26 | jens-daniel-mueller | 2022-01-27 | added layer budget profiles |
html | eccd82b | jens-daniel-mueller | 2022-01-26 | Build site. |
Rmd | c5577d3 | jens-daniel-mueller | 2022-01-26 | added meand sd to offset mean concentrations profiles |
html | c6fe495 | jens-daniel-mueller | 2022-01-26 | Build site. |
Rmd | e0e7974 | jens-daniel-mueller | 2022-01-26 | added offset mean concentrations profiles |
html | 9753eb8 | jens-daniel-mueller | 2022-01-26 | Build site. |
html | b1d7720 | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 0210ed5 | jens-daniel-mueller | 2022-01-21 | added mean concentrations profiles per 5 basins |
html | d6b399a | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | da17a07 | jens-daniel-mueller | 2022-01-21 | added mean concentrations profiles |
html | c499be8 | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | d941871 | jens-daniel-mueller | 2022-01-21 | run color map test |
html | e572075 | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 99b6c92 | jens-daniel-mueller | 2022-01-21 | run color map test |
html | 4fe7150 | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 0379e99 | jens-daniel-mueller | 2022-01-21 | script cleaning |
html | 49b41cf | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 2c82651 | jens-daniel-mueller | 2022-01-21 | added map of scaled absolute change |
html | c0807e8 | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 5dd3d7a | jens-daniel-mueller | 2022-01-21 | added map of scaled relative change |
html | 22b421f | jens-daniel-mueller | 2022-01-21 | Build site. |
Rmd | 2c3fa75 | jens-daniel-mueller | 2022-01-21 | cleaned alluvial plots |
html | 1a35f1f | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | e58f510 | jens-daniel-mueller | 2022-01-20 | added relative changes to alluvial plots |
html | b503ae1 | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | 2eb2567 | jens-daniel-mueller | 2022-01-20 | added relative changes to alluvial plots |
html | cc31f4b | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | 416e107 | jens-daniel-mueller | 2022-01-20 | added delta dcant map |
html | 11a800b | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | 81a40d5 | jens-daniel-mueller | 2022-01-20 | updated alluvial plots |
html | 3087804 | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | 2ae5966 | jens-daniel-mueller | 2022-01-20 | updated alluvial plots |
html | 6d566d5 | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | 4901b0f | jens-daniel-mueller | 2022-01-20 | updated alluvial plots |
html | 44796b1 | jens-daniel-mueller | 2022-01-20 | Build site. |
Rmd | cdbd92c | jens-daniel-mueller | 2022-01-20 | created alluvial plots |
html | 48ec4c6 | jens-daniel-mueller | 2022-01-19 | Build site. |
Rmd | 0fb2ae5 | jens-daniel-mueller | 2022-01-19 | printed column inv from AIP standard runs |
html | f347cd7 | jens-daniel-mueller | 2022-01-18 | Build site. |
Rmd | 86b711c | jens-daniel-mueller | 2022-01-18 | plot hemisphere budgets and publication results |
version_id_pattern <- "103"
# identify required version IDs
Version_IDs_1 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_1", version_id_pattern))
Version_IDs_2 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_2", version_id_pattern))
Version_IDs_3 <- list.files(path = "/nfs/kryo/work/jenmueller/emlr_cant/observations",
pattern = paste0("v_3", version_id_pattern))
Version_IDs <- c(Version_IDs_1, Version_IDs_2, Version_IDs_3)
print(Version_IDs)
[1] "v_1103" "v_2103" "v_3103"
for (i_Version_IDs in Version_IDs) {
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
params_local <-
read_rds(paste(path_version_data,
"params_local.rds",
sep = ""))
params_local <- bind_cols(
Version_ID = i_Version_IDs,
tref1 = params_local$tref1,
tref2 = params_local$tref2
)
tref <- read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
params_local <- params_local %>%
mutate(
median_year_1 = sort(tref$median_year)[1],
median_year_2 = sort(tref$median_year)[2],
duration = median_year_2 - median_year_1,
period = paste(median_year_1, "-", median_year_2)
)
if (exists("params_local_all")) {
params_local_all <- bind_rows(params_local_all, params_local)
}
if (!exists("params_local_all")) {
params_local_all <- params_local
}
}
rm(params_local,
tref)
params_local_all <- params_local_all %>%
select(Version_ID, period, tref2)
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_budget_global <-
read_csv(paste(path_version_data,
"dcant_budget_global.csv",
sep = ""))
dcant_budget_global_mod_truth <-
read_csv(paste(
path_version_data,
"dcant_budget_global_mod_truth.csv",
sep = ""
))
#
# dcant_budget_global_bias <-
# read_csv(paste(path_version_data,
# "dcant_budget_global_bias.csv",
# sep = ""))
#
# lm_best_predictor_counts <-
# read_csv(paste(path_version_data,
# "lm_best_predictor_counts.csv",
# sep = ""))
#
# lm_best_dcant <-
# read_csv(paste(path_version_data,
# "lm_best_dcant.csv",
# sep = ""))
dcant_budget_global <- bind_rows(dcant_budget_global,
dcant_budget_global_mod_truth)
dcant_budget_global <- dcant_budget_global %>%
mutate(Version_ID = i_Version_IDs)
# dcant_budget_global_bias <- dcant_budget_global_bias %>%
# mutate(Version_ID = i_Version_IDs)
#
# lm_best_predictor_counts <- lm_best_predictor_counts %>%
# mutate(Version_ID = i_Version_IDs)
#
# lm_best_dcant <- lm_best_dcant %>%
# mutate(Version_ID = i_Version_IDs)
if (exists("dcant_budget_global_all")) {
dcant_budget_global_all <-
bind_rows(dcant_budget_global_all, dcant_budget_global)
}
if (!exists("dcant_budget_global_all")) {
dcant_budget_global_all <- dcant_budget_global
}
# if (exists("dcant_budget_global_bias_all")) {
# dcant_budget_global_bias_all <-
# bind_rows(dcant_budget_global_bias_all,
# dcant_budget_global_bias)
# }
#
# if (!exists("dcant_budget_global_bias_all")) {
# dcant_budget_global_bias_all <- dcant_budget_global_bias
# }
#
#
# if (exists("lm_best_predictor_counts_all")) {
# lm_best_predictor_counts_all <-
# bind_rows(lm_best_predictor_counts_all, lm_best_predictor_counts)
# }
#
# if (!exists("lm_best_predictor_counts_all")) {
# lm_best_predictor_counts_all <- lm_best_predictor_counts
# }
#
# if (exists("lm_best_dcant_all")) {
# lm_best_dcant_all <-
# bind_rows(lm_best_dcant_all, lm_best_dcant)
# }
#
# if (!exists("lm_best_dcant_all")) {
# lm_best_dcant_all <- lm_best_dcant
# }
#
# if (exists("params_local_all")) {
# params_local_all <- bind_rows(params_local_all, params_local)
# }
#
# if (!exists("params_local_all")) {
# params_local_all <- params_local
# }
#
}
rm(
dcant_budget_global,
# dcant_budget_global_bias,
dcant_budget_global_mod_truth
# lm_best_predictor_counts,
# lm_best_dcant
)
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
print(i_Version_IDs)
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_budget_basin_MLR <-
read_csv(paste(path_version_data,
"dcant_budget_basin_MLR.csv",
sep = ""))
dcant_budget_basin_MLR_mod_truth <-
read_csv(paste(
path_version_data,
"dcant_budget_basin_MLR_mod_truth.csv",
sep = ""
))
dcant_budget_basin_MLR <- bind_rows(dcant_budget_basin_MLR,
dcant_budget_basin_MLR_mod_truth)
dcant_budget_basin_MLR <- dcant_budget_basin_MLR %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_budget_basin_MLR_all")) {
dcant_budget_basin_MLR_all <-
bind_rows(dcant_budget_basin_MLR_all, dcant_budget_basin_MLR)
}
if (!exists("dcant_budget_basin_MLR_all")) {
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR
}
}
[1] "v_1103"
[1] "v_2103"
[1] "v_3103"
rm(
dcant_budget_basin_MLR,
dcant_budget_basin_MLR_mod_truth
)
dcant_budget_global_all <- dcant_budget_global_all %>%
filter(estimate == "dcant",
method == "total") %>%
select(-c(estimate, method)) %>%
rename(dcant = value)
# dcant_budget_global_all_depth <- dcant_budget_global_all
dcant_budget_global_all <- dcant_budget_global_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
# dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
# filter(estimate == "dcant") %>%
# select(-c(estimate))
# dcant_budget_global_bias_all_depth <- dcant_budget_global_bias_all
#
# dcant_budget_global_bias_all <- dcant_budget_global_bias_all %>%
# filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
filter(estimate == "dcant",
method == "total") %>%
select(-c(estimate, method)) %>%
rename(dcant = value)
dcant_budget_basin_MLR_all <- dcant_budget_basin_MLR_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
for (i_Version_IDs in Version_IDs) {
# i_Version_IDs <- Version_IDs[1]
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_inv <-
read_csv(paste(path_version_data,
"dcant_inv.csv",
sep = ""))
dcant_inv_mod_truth <-
read_csv(paste(path_version_data,
"dcant_inv_mod_truth.csv",
sep = "")) %>%
filter(method == "total") %>%
select(-method)
dcant_inv_bias <-
read_csv(paste(path_version_data,
"dcant_inv_bias.csv",
sep = "")) %>%
mutate(Version_ID = i_Version_IDs)
dcant_inv <- bind_rows(dcant_inv,
dcant_inv_mod_truth) %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_lat_grid <-
read_csv(paste(path_version_data,
"dcant_budget_lat_grid.csv",
sep = "")) %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_lon_grid <-
read_csv(paste(path_version_data,
"dcant_budget_lon_grid.csv",
sep = "")) %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_inv_all")) {
dcant_inv_all <- bind_rows(dcant_inv_all, dcant_inv)
}
if (!exists("dcant_inv_all")) {
dcant_inv_all <- dcant_inv
}
if (exists("dcant_inv_bias_all")) {
dcant_inv_bias_all <- bind_rows(dcant_inv_bias_all, dcant_inv_bias)
}
if (!exists("dcant_inv_bias_all")) {
dcant_inv_bias_all <- dcant_inv_bias
}
if (exists("dcant_budget_lat_grid_all")) {
dcant_budget_lat_grid_all <- bind_rows(dcant_budget_lat_grid_all, dcant_budget_lat_grid)
}
if (!exists("dcant_budget_lat_grid_all")) {
dcant_budget_lat_grid_all <- dcant_budget_lat_grid
}
if (exists("dcant_budget_lon_grid_all")) {
dcant_budget_lon_grid_all <- bind_rows(dcant_budget_lon_grid_all, dcant_budget_lon_grid)
}
if (!exists("dcant_budget_lon_grid_all")) {
dcant_budget_lon_grid_all <- dcant_budget_lon_grid
}
}
rm(dcant_inv,
dcant_inv_bias,
dcant_inv_mod_truth,
dcant_budget_lat_grid,
dcant_budget_lon_grid)
dcant_inv_all <- dcant_inv_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>%
filter(inv_depth == params_global$inventory_depth_standard)
dcant_budget_lat_grid_all <- dcant_budget_lat_grid_all %>%
pivot_wider(names_from = estimate,
values_from = value) %>%
filter(period != "1994 - 2014",
method == "total")
dcant_budget_lon_grid_all <- dcant_budget_lon_grid_all %>%
pivot_wider(names_from = estimate,
values_from = value) %>%
filter(period != "1994 - 2014",
method == "total")
for (i_Version_IDs in Version_IDs) {
path_version_data <-
paste(path_observations,
i_Version_IDs,
"/data/",
sep = "")
# load and join data files
dcant_zonal <-
read_csv(paste(path_version_data,
"dcant_zonal.csv",
sep = ""))
dcant_zonal_mod_truth <-
read_csv(paste(path_version_data,
"dcant_zonal_mod_truth.csv",
sep = ""))
dcant_zonal <- bind_rows(dcant_zonal,
dcant_zonal_mod_truth)
dcant_profile <-
read_csv(paste(path_version_data,
"dcant_profile.csv",
sep = ""))
dcant_profile_mod_truth <-
read_csv(paste(path_version_data,
"dcant_profile_mod_truth.csv",
sep = ""))
dcant_profile_basin_MLR <-
read_csv(paste(path_version_data,
"dcant_profile_basin_MLR.csv",
sep = ""))
dcant_profile <- bind_rows(dcant_profile,
dcant_profile_mod_truth)
dcant_budget_basin_AIP_layer <-
read_csv(paste(path_version_data,
"dcant_budget_basin_AIP_layer.csv",
sep = ""))
dcant_budget_basin_MLR_layer <-
read_csv(paste(path_version_data,
"dcant_budget_basin_MLR_layer.csv",
sep = ""))
dcant_zonal_bias <-
read_csv(paste(path_version_data,
"dcant_zonal_bias.csv",
sep = ""))
dcant_zonal <- dcant_zonal %>%
mutate(Version_ID = i_Version_IDs)
dcant_profile <- dcant_profile %>%
mutate(Version_ID = i_Version_IDs)
dcant_profile_basin_MLR <- dcant_profile_basin_MLR %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_basin_AIP_layer <- dcant_budget_basin_AIP_layer %>%
mutate(Version_ID = i_Version_IDs)
dcant_budget_basin_MLR_layer <- dcant_budget_basin_MLR_layer %>%
mutate(Version_ID = i_Version_IDs)
dcant_zonal_bias <- dcant_zonal_bias %>%
mutate(Version_ID = i_Version_IDs)
if (exists("dcant_zonal_all")) {
dcant_zonal_all <- bind_rows(dcant_zonal_all, dcant_zonal)
}
if (!exists("dcant_zonal_all")) {
dcant_zonal_all <- dcant_zonal
}
if (exists("dcant_profile_all")) {
dcant_profile_all <- bind_rows(dcant_profile_all, dcant_profile)
}
if (!exists("dcant_profile_all")) {
dcant_profile_all <- dcant_profile
}
if (exists("dcant_profile_basin_MLR_all")) {
dcant_profile_basin_MLR_all <- bind_rows(dcant_profile_basin_MLR_all, dcant_profile_basin_MLR)
}
if (!exists("dcant_profile_basin_MLR_all")) {
dcant_profile_basin_MLR_all <- dcant_profile_basin_MLR
}
if (exists("dcant_budget_basin_AIP_layer_all")) {
dcant_budget_basin_AIP_layer_all <-
bind_rows(dcant_budget_basin_AIP_layer_all,
dcant_budget_basin_AIP_layer)
}
if (!exists("dcant_budget_basin_AIP_layer_all")) {
dcant_budget_basin_AIP_layer_all <- dcant_budget_basin_AIP_layer
}
if (exists("dcant_budget_basin_MLR_layer_all")) {
dcant_budget_basin_MLR_layer_all <-
bind_rows(dcant_budget_basin_MLR_layer_all,
dcant_budget_basin_MLR_layer)
}
if (!exists("dcant_budget_basin_MLR_layer_all")) {
dcant_budget_basin_MLR_layer_all <- dcant_budget_basin_MLR_layer
}
if (exists("dcant_zonal_bias_all")) {
dcant_zonal_bias_all <- bind_rows(dcant_zonal_bias_all, dcant_zonal_bias)
}
if (!exists("dcant_zonal_bias_all")) {
dcant_zonal_bias_all <- dcant_zonal_bias
}
}
rm(dcant_zonal, dcant_zonal_bias, dcant_zonal_mod_truth,
dcant_budget_basin_AIP_layer, dcant_budget_basin_MLR_layer)
co2_atm <-
read_csv(paste(path_preprocessing,
"co2_atm.csv",
sep = ""))
dcant_pgc_label <- expression(Delta * C["ant"]~(PgC))
dcant_umol_label <- expression(Delta * C[ant]~(mu * mol ~ kg ^ {-1}))
dcant_layer_budget_label <-
expression(Delta ~ C[ant] ~ "budget per 500m depth layer (PgC)")
dcant_inv_all %>%
filter(data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "dcant",
subtitle_text = paste("data_source:",
unique(.x$data_source))) +
facet_grid(period ~ .) +
theme(axis.text = element_blank(),
axis.ticks = element_blank())
)
[[1]]
[[2]]
breaks <- c(-Inf, seq(0, 16, 2), Inf)
legend_title <- expression(atop(Delta * C["ant"],
(mol ~ m ^ {
-2
})))
breaks_n <- length(breaks) - 1
dcant_inv_all_color_test <- dcant_inv_all %>%
filter(data_source %in% c("obs"),
period == "2004 - 2014") %>%
mutate(dcant_int = cut(dcant,
breaks,
right = FALSE))
scico_continous_palettes <- c(
"acton",
"bamako",
"batlow",
"bilbao",
"buda",
"davos",
"devon",
"grayC",
"hawaii",
"imola",
"lajolla",
"lapaz",
"nuuk",
"oslo",
"tokyo",
"turku"
)
for (i_palette in scico_continous_palettes) {
p_reg <- map +
geom_tile(data = dcant_inv_all_color_test,
aes(lon, lat, fill = dcant_int)) +
scale_fill_scico_d(
palette = i_palette,
drop = FALSE,
name = legend_title,
guide = "none"
) +
# guides(fill = guide_colorsteps(barheight = unit(3, "cm"))) +
labs(title = i_palette)
p_rev <- map +
geom_tile(data = dcant_inv_all_color_test,
aes(lon, lat, fill = dcant_int)) +
scale_fill_scico_d(
palette = i_palette,
drop = FALSE,
name = legend_title,
direction = -1,
guide = "none"
) +
# guides(fill = guide_colorsteps(barheight = unit(3, "cm"))) +
labs(title = paste(i_palette, "rev"))
print(p_reg | p_rev)
}
viridis_continous_palettes <- c(
"civides",
"magma",
"inferno",
"plasma"
)
for (i_palette in viridis_continous_palettes) {
p_reg <- map +
geom_tile(data = dcant_inv_all_color_test,
aes(lon, lat, fill = dcant_int)) +
scale_fill_viridis_d(
option = i_palette,
drop = FALSE,
name = legend_title,
guide = "none"
) +
# guides(fill = guide_colorsteps(barheight = unit(3, "cm"))) +
labs(title = i_palette)
p_rev <- map +
geom_tile(data = dcant_inv_all_color_test,
aes(lon, lat, fill = dcant_int)) +
scale_fill_viridis_d(
option = i_palette,
drop = FALSE,
name = legend_title,
direction = -1,
guide = "none"
) +
# guides(fill = guide_colorsteps(barheight = unit(3, "cm"))) +
labs(title = paste(i_palette, "rev"))
print(p_reg | p_rev)
}
dcant_inv_all %>%
filter(data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
select(data_source, lon, lat, basin_AIP, period, dcant) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(delta_dcant = `2004 - 2014` - `1994 - 2004`) %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "delta_dcant",
subtitle_text = paste("data_source:",
unique(.x$data_source)),
col = "divergent") +
# facet_grid(period ~ .) +
theme(axis.text = element_blank(),
axis.ticks = element_blank())
)
[[1]]
[[2]]
dcant_budget_scaling <- dcant_budget_global_all %>%
filter(#data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
select(data_source, period, dcant) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(dcant_scaling = `2004 - 2014` / `1994 - 2004`) %>%
select(data_source, dcant_scaling)
left_join(dcant_inv_all,
dcant_budget_scaling) %>%
filter(#data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
select(data_source, lon, lat, basin_AIP, period, dcant, dcant_scaling) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(delta_dcant = `2004 - 2014` - `1994 - 2004`*dcant_scaling) %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "delta_dcant",
subtitle_text = paste("data_source:",
unique(.x$data_source)),
col = "divergent") +
# facet_grid(period ~ .) +
theme(axis.text = element_blank(),
axis.ticks = element_blank())
)
[[1]]
[[2]]
Version | Author | Date |
---|---|---|
4fe7150 | jens-daniel-mueller | 2022-01-21 |
[[3]]
dcant_inv_all %>%
filter(data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "dcant_pos",
subtitle_text = paste("data_source:",
unique(.x$data_source))) +
facet_grid(period ~ .) +
theme(axis.text = element_blank(),
axis.ticks = element_blank())
)
[[1]]
[[2]]
dcant_zonal_all %>%
filter(data_source == "obs",
period != "1994 - 2014",
depth <= params_global$inventory_depth_standard) %>%
p_section_zonal_continous_depth(var = "dcant",
plot_slabs = "n",
title_text = NULL) +
facet_grid(basin_AIP ~ period)
dcant_zonal_all %>%
filter(data_source %in% c("mod", "obs"),
period != "1994 - 2014") %>%
select(data_source, lat, depth, basin_AIP, period, dcant) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(delta_dcant = `2004 - 2014` - `1994 - 2004`) %>%
group_by(data_source) %>%
group_split() %>%
# head(1) %>%
map(
~ p_section_zonal_continous_depth(
df = .x,
var = "delta_dcant",
plot_slabs = "n",
title_text = NULL,
col = "bias"
) +
facet_grid(basin_AIP ~ .)
)
[[1]]
[[2]]
dcant_profile_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014") %>%
group_split(data_source) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(dcant,
depth)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_ribbon(
aes(
xmin = dcant - dcant_sd,
xmax = dcant + dcant_sd,
fill = period
),
alpha = 0.3
) +
geom_path(aes(col = period)) +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(0, 100, 500, seq(1500, 5000, 1000))) +
coord_cartesian(expand = 0) +
scale_color_brewer(palette = "Set1", name = "mean \u00B1 sd") +
scale_fill_brewer(palette = "Set1", name = "mean \u00B1 sd") +
labs(
title = paste("data_source", unique(.x$data_source)),
y = "Depth (m)",
x = dcant_umol_label
) +
facet_wrap(~ basin_AIP,
ncol = 2)
)
[[1]]
[[2]]
[[3]]
dcant_profile_basin_MLR_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014",
MLR_basins == "5") %>%
group_split(data_source) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(dcant,
depth)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_ribbon(
aes(
xmin = dcant - dcant_sd,
xmax = dcant + dcant_sd,
fill = period
),
alpha = 0.3
) +
geom_path(aes(col = period)) +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(0, 100, 500, seq(1500, 5000, 1000))) +
coord_cartesian(expand = 0) +
scale_color_brewer(palette = "Set1", name = "mean \u00B1 sd") +
scale_fill_brewer(palette = "Set1", name = "mean \u00B1 sd") +
labs(
title = paste("data_source", unique(.x$data_source)),
y = "Depth (m)",
x = dcant_umol_label
) +
facet_wrap( ~ basin,
ncol = 2)
)
[[1]]
[[2]]
delta <- dcant_profile_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014") %>%
select(data_source, depth, basin_AIP, period, dcant) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(delta_dcant = `2004 - 2014` - `1994 - 2004`) %>%
select(-c(`2004 - 2014`, `1994 - 2004`))
delta_sd <- dcant_profile_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014") %>%
select(data_source, depth, basin_AIP, period, dcant_sd) %>%
pivot_wider(names_from = period,
values_from = dcant_sd) %>%
mutate(delta_dcant_sd = (`2004 - 2014` + `1994 - 2004`) / 2) %>%
select(-c(`2004 - 2014`, `1994 - 2004`))
dcant_profile_all_delta <- full_join(delta, delta_sd)
rm(delta, delta_sd)
dcant_profile_all_delta %>%
group_split(data_source) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(delta_dcant,
depth)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_ribbon(
aes(
xmin = delta_dcant - delta_dcant_sd,
xmax = delta_dcant + delta_dcant_sd
),
alpha = 0.3
) +
geom_path() +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(0, 100, 500, seq(1500, 5000, 1000))) +
coord_cartesian(expand = 0) +
scale_color_brewer(palette = "Set1", name = "mean \u00B1 sd") +
scale_fill_brewer(palette = "Set1", name = "mean \u00B1 sd") +
labs(title = paste("data_source", unique(.x$data_source)),
y = "Depth (m)",
x = dcant_umol_label) +
facet_wrap( ~ basin_AIP,
ncol = 2))
[[1]]
[[2]]
[[3]]
delta <- dcant_profile_basin_MLR_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014",
MLR_basins == "5") %>%
select(data_source, depth, basin, period, dcant) %>%
pivot_wider(names_from = period,
values_from = dcant) %>%
mutate(delta_dcant = `2004 - 2014` - `1994 - 2004`) %>%
select(-c(`2004 - 2014`, `1994 - 2004`))
delta_sd <- dcant_profile_basin_MLR_all %>%
arrange(depth) %>%
filter(period != "1994 - 2014",
MLR_basins == "5") %>%
select(data_source, depth, basin, period, dcant_sd) %>%
pivot_wider(names_from = period,
values_from = dcant_sd) %>%
mutate(delta_dcant_sd = (`2004 - 2014` + `1994 - 2004`) / 2) %>%
select(-c(`2004 - 2014`, `1994 - 2004`))
dcant_profile_basin_MLR_all_delta <- full_join(delta, delta_sd)
rm(delta, delta_sd)
dcant_profile_basin_MLR_all_delta %>%
group_split(data_source) %>%
# head(3) %>%
map(
~ ggplot(data = .x,
aes(delta_dcant,
depth)) +
geom_hline(yintercept = params_global$inventory_depth_standard) +
geom_vline(xintercept = 0) +
geom_ribbon(aes(
xmin = delta_dcant - delta_dcant_sd,
xmax = delta_dcant + delta_dcant_sd
),
alpha = 0.3)+
geom_path() +
scale_y_continuous(trans = trans_reverser("sqrt"),
breaks = c(0, 100, 500, seq(1500, 5000, 1000))) +
coord_cartesian(expand = 0) +
scale_color_brewer(palette = "Set1", name = "mean \u00B1 sd") +
scale_fill_brewer(palette = "Set1", name = "mean \u00B1 sd") +
labs(
title = paste("data_source", unique(.x$data_source)),
y = "Depth (m)",
x = dcant_umol_label
) +
facet_wrap( ~ basin,
ncol = 2)
)
[[1]]
[[2]]
dcant_budget_basin_MLR_all_plot <- dcant_budget_basin_MLR_all %>%
filter(period != "1994 - 2014",
data_source == "obs") %>%
mutate(
basin = str_replace(basin, "_", ". "),
basin = fct_relevel(
basin,
"N. Pacific",
"S. Pacific",
"N. Atlantic",
"S. Atlantic",
"Indian"
)
)
g1 <- dcant_budget_basin_MLR_all_plot %>%
ggplot(aes(
y = dcant,
x = period,
alluvium = basin,
fill = basin,
stratum = basin
)) +
stat_alluvium(decreasing = FALSE) +
stat_stratum(decreasing = FALSE) +
stat_stratum(geom = "text",
decreasing = FALSE,
aes(label = paste(
round(after_stat(max-min),1)
# 100*round(after_stat(prop), 2), "%"
))) +
ggrepel::geom_label_repel(
data = dcant_budget_basin_MLR_all_plot %>% filter(period == "2004 - 2014"),
stat = "stratum",
size = 4,
nudge_x = .5,
point.padding = 3,
aes(fill = basin, label = basin),
decreasing = FALSE
)+
scale_fill_brewer(palette = "Paired", guide = "none") +
scale_y_continuous(limits = c(0, 32), expand = c(0, 0)) +
labs(y = dcant_pgc_label) +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
axis.title.x = element_blank()) +
theme_classic()
newdat <- tibble(layer_data(g1))
change <-
newdat %>%
select(x, alluvium, count) %>%
pivot_wider(names_from = x,
values_from = count) %>%
mutate(dcant_change = round(100*(`2` - `1`) / `1`)) %>%
select(alluvium, dcant_change)
coord <- newdat %>%
filter(x == 2) %>%
select(x, y, alluvium)
new_layer <- full_join(
change,
coord
)
new_layer <- new_layer %>%
mutate(dcant_change = as.character(dcant_change),
dcant_change = if_else(str_detect(dcant_change, "-"),
dcant_change,
paste0("+", dcant_change)),
dcant_change = paste(dcant_change, "%"))
g1 +
geom_text(data = new_layer,
aes(
x = x - 0.3,
y = y,
label = dcant_change
),
inherit.aes = FALSE)
g2 <- dcant_budget_basin_MLR_all_plot %>%
ggplot(aes(
y = dcant,
x = period,
alluvium = basin,
fill = basin,
stratum = basin,
label = basin
)) +
geom_alluvium() +
geom_stratum() +
stat_stratum(geom = "text",
aes(label = paste(
round(after_stat(count),1)
# 100*round(after_stat(prop), 2), "%"
))) +
ggrepel::geom_label_repel(
data = dcant_budget_basin_MLR_all_plot %>% filter(period == "2004 - 2014"),
stat = "stratum",
size = 4,
nudge_x = .5,
point.padding = 3,
aes(fill = basin)
)+
scale_fill_brewer(palette = "Paired", guide = "none") +
scale_color_brewer(palette = "Paired", guide = "none") +
scale_y_continuous(limits = c(0, 33), expand = c(0, 0)) +
guides(y = "none") +
labs(title = dcant_pgc_label) +
theme_classic() +
theme(axis.text.x = element_text(angle = 45, hjust = 1),
axis.title.x = element_blank(),
axis.title.y = element_blank(),
plot.title = element_text(hjust = 0.5))
newdat <- tibble(layer_data(g2))
change_basin <-
newdat %>%
select(x, alluvium, count) %>%
pivot_wider(names_from = x,
values_from = count) %>%
mutate(dcant_change = round(100*(`2` - `1`) / `1`)) %>%
select(alluvium, dcant_change)
coord_basin <- newdat %>%
filter(x == 2) %>%
select(x, y, alluvium)
new_layer_basin <- full_join(
change_basin,
coord_basin
)
new_layer_basin <- new_layer_basin %>%
mutate(dcant_change = as.character(dcant_change),
dcant_change = if_else(str_detect(dcant_change, "-"),
dcant_change,
paste0("+", dcant_change)),
dcant_change = paste(dcant_change, "%"))
new_layer_total <-
newdat %>%
select(x, alluvium, count) %>%
group_by(x) %>%
summarise(dcant_change = sum(count)) %>%
ungroup()
new_layer_total <- new_layer_total %>%
mutate(y = dcant_change,
dcant_change = as.character(round(dcant_change,1)),
dcant_change = paste("global:",dcant_change))
g2 +
geom_text(data = new_layer_basin,
aes(
x = x - 0.3,
y = y,
label = dcant_change
),
inherit.aes = FALSE) +
geom_label(data = new_layer_total,
aes(
x = x,
y = y + 1,
label = dcant_change
),
inherit.aes = FALSE)
dcant_budget_basin_AIP_layer_all %>%
filter(estimate == "dcant",
period != "1994 - 2014",
inv_depth <= 3000) %>%
rename(dcant = value) %>%
ggplot(aes(dcant, inv_depth, col=period)) +
geom_vline(xintercept = 0) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(250, 3000, 500)) +
scale_color_brewer(palette = "Dark2") +
facet_grid(basin_AIP ~ data_source) +
labs(y = dcant_layer_budget_label)
Version | Author | Date |
---|---|---|
5f2aed0 | jens-daniel-mueller | 2022-01-27 |
dcant_budget_basin_MLR_layer_all %>%
filter(estimate == "dcant",
period != "1994 - 2014",
inv_depth <= 3000) %>%
rename(dcant = value) %>%
ggplot(aes(dcant, inv_depth, col=period)) +
geom_vline(xintercept = 0) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(250, 3000, 500)) +
scale_color_brewer(palette = "Dark2") +
facet_grid(basin ~ data_source) +
labs(y = dcant_layer_budget_label)
Version | Author | Date |
---|---|---|
5f2aed0 | jens-daniel-mueller | 2022-01-27 |
dcant_budget_basin_MLR_layer_all %>%
filter(estimate == "dcant",
period != "1994 - 2014",
inv_depth <= 3000) %>%
rename(dcant = value) %>%
arrange(inv_depth) %>%
group_by(data_source, basin, period) %>%
mutate(dcant_cum = cumsum(dcant)) %>%
ungroup() %>%
ggplot(aes(dcant_cum, inv_depth, col=period)) +
geom_vline(xintercept = 0) +
geom_path() +
geom_point() +
scale_y_reverse(breaks = seq(250, 3000, 500)) +
scale_color_brewer(palette = "Dark2") +
facet_grid(basin ~ data_source) +
labs(y = dcant_layer_budget_label)
Version | Author | Date |
---|---|---|
5f2aed0 | jens-daniel-mueller | 2022-01-27 |
dcant_budget_global_ts <- dcant_budget_global_all %>%
filter(data_source == "obs",
period != "1994 - 2014") %>%
select(year = tref2, dcant_mean = dcant) %>%
mutate(dcant_sd = 3)
tcant_S04 <- bind_cols(year = 1994, dcant_mean = 118, dcant_sd = 19)
tcant_ts <- full_join(dcant_budget_global_ts, tcant_S04)
tcant_ts <- left_join(tcant_ts, co2_atm)
co2_atm_pi <- bind_cols(pCO2 = 280, dcant_mean = 0, year = 1750, dcant_sd = 0)
tcant_ts <- full_join(tcant_ts, co2_atm_pi)
tcant_ts <- tcant_ts %>%
arrange(year) %>%
mutate(tcant = cumsum(dcant_mean),
tcant_sd = cumsum(dcant_sd))
tcant_ts %>%
ggplot(aes(pCO2, tcant, ymin = tcant - tcant_sd, ymax = tcant + tcant_sd)) +
geom_ribbon(fill = "grey80") +
geom_point() +
geom_line() +
scale_x_continuous(breaks = seq(280, 400, 30),
sec.axis = dup_axis(labels = c(1750, 1940, 1980, 2000, 2015),
name = "Year")) +
geom_text(aes(label = year), nudge_x = -5, nudge_y = 5) +
labs(x = expression(Atmospheric~pCO[2]~(µatm)),
y = expression(Total~oceanic~C[ant]~(PgC)))
# ggsave(path = "output/publication",
# filename = "Fig_global_dcant_budget_vs_atm_pCO2.png",
# height = 4,
# width = 7)
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3
Matrix products: default
BLAS: /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] ggalluvial_0.12.3 ggforce_0.3.3 metR_0.11.0 scico_1.3.0
[5] patchwork_1.1.1 collapse_1.7.0 forcats_0.5.1 stringr_1.4.0
[9] dplyr_1.0.7 purrr_0.3.4 readr_2.1.1 tidyr_1.1.4
[13] tibble_3.1.6 ggplot2_3.3.5 tidyverse_1.3.1 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] fs_1.5.2 lubridate_1.8.0 bit64_4.0.5 RColorBrewer_1.1-2
[5] httr_1.4.2 rprojroot_2.0.2 tools_4.1.2 backports_1.4.1
[9] bslib_0.3.1 utf8_1.2.2 R6_2.5.1 DBI_1.1.2
[13] colorspace_2.0-2 withr_2.4.3 tidyselect_1.1.1 processx_3.5.2
[17] bit_4.0.4 compiler_4.1.2 git2r_0.29.0 cli_3.1.1
[21] rvest_1.0.2 xml2_1.3.3 isoband_0.2.5 labeling_0.4.2
[25] sass_0.4.0 scales_1.1.1 checkmate_2.0.0 callr_3.7.0
[29] digest_0.6.29 rmarkdown_2.11 pkgconfig_2.0.3 htmltools_0.5.2
[33] highr_0.9 dbplyr_2.1.1 fastmap_1.1.0 rlang_0.4.12
[37] readxl_1.3.1 rstudioapi_0.13 jquerylib_0.1.4 generics_0.1.1
[41] farver_2.1.0 jsonlite_1.7.3 vroom_1.5.7 magrittr_2.0.1
[45] Rcpp_1.0.8 munsell_0.5.0 fansi_1.0.2 lifecycle_1.0.1
[49] stringi_1.7.6 whisker_0.4 yaml_2.2.1 MASS_7.3-55
[53] grid_4.1.2 ggrepel_0.9.1 parallel_4.1.2 promises_1.2.0.1
[57] crayon_1.4.2 haven_2.4.3 hms_1.1.1 knitr_1.37
[61] ps_1.6.0 pillar_1.6.4 reprex_2.0.1 glue_1.6.0
[65] evaluate_0.14 getPass_0.2-2 data.table_1.14.2 modelr_0.1.8
[69] vctrs_0.3.8 tzdb_0.2.0 tweenr_1.0.2 httpuv_1.6.5
[73] cellranger_1.1.0 gtable_0.3.0 polyclip_1.10-0 assertthat_0.2.1
[77] xfun_0.29 broom_0.7.11 later_1.3.0 viridisLite_0.4.0
[81] ellipsis_0.3.2