Last updated: 2022-04-01

Checks: 7 0

Knit directory: emlr_obs_preprocessing/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version fdb43d3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/
    Ignored:    output/

Untracked files:
    Untracked:  code/IO_1990_own_crossover_analysis_backup.R
    Untracked:  code/analysis_regional_clusters.Rmd
    Untracked:  code/read_GLODAPv2_2020.Rmd

Unstaged changes:
    Modified:   analysis/_site.yml
    Deleted:    analysis/analysis_regional_clusters.Rmd
    Modified:   analysis/read_GLODAPv2_2021.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/read_RECCAP2_flux_products.Rmd) and HTML (docs/read_RECCAP2_flux_products.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 2565e71 jens-daniel-mueller 2022-02-17 Build site.
Rmd 78b36b3 jens-daniel-mueller 2022-02-17 read Seaflux data
html 163d599 jens-daniel-mueller 2022-02-17 Build site.
Rmd 7611648 jens-daniel-mueller 2022-02-17 read Seaflux data
html 6e65117 jens-daniel-mueller 2022-02-16 Build site.
html 008f1c0 jens-daniel-mueller 2022-02-15 Build site.
Rmd 5e4080a jens-daniel-mueller 2022-02-15 testrun new script

1 Read data

1.1 fgco2 global integrals

1.1.1 RECCAP2

products <- list.files(path_reccap2_surface_co2)

products <-
  products[!str_detect(products, pattern = "\\.")]

# Remove data sets that do not meet formatting requirements

products <-
  products[!str_detect(products, pattern = "JMAMLR_v20210312")]

products <-
  products[!str_detect(products, pattern = "JMAMLR_v20211202")]

products <-
  products[!str_detect(products, pattern = "LDEO_2021_clim_RECCAP2_v20210702")]

products <-
  products[!str_detect(products, pattern = "spco2_LDEO_HPD_1985-2018_v20211210")]

products <-
  products[!str_detect(products, pattern = "NIES-nn_v202011")]

products <-
  products[!str_detect(products, pattern = "SOMFFN_v20211121")]

products <-
  products[!str_detect(products, pattern = "AOML_EXTRAT_v20211130")]

### loop

for (i_products in products) {
  # i_products <- products[5]
  
  path_product <- paste(path_reccap2_surface_co2,
                        i_products,
                        sep = "/")
  
  product_file_name <-
    list.files(path_product, pattern = "fgco2_glob")
  
  RECCAP2 <-
    tidync(paste(path_product,
                 product_file_name,
                 sep = "/"))
  
  RECCAP2 <- RECCAP2 %>%
    hyper_tibble()
  
  RECCAP2 <- RECCAP2 %>%
    mutate(product = i_products)
  
  if (exists("RECCAP2_all")) {
    RECCAP2_all <- bind_rows(RECCAP2_all, RECCAP2)
  }
  
  if (!exists("RECCAP2_all")) {
    RECCAP2_all <- RECCAP2
  }
  
}

1.1.2 Seaflux

SeaFlux_file_name <- paste0(path_seaflux_surface_co2,
                             "SeaFlux_v2021.04_fgco2_global.nc")

SeaFlux <-
  tidync(SeaFlux_file_name) %>% 
  hyper_tibble()

ncmeta::nc_atts(SeaFlux_file_name)
# A tibble: 9 × 4
     id name        variable     value       
  <int> <chr>       <chr>        <named list>
1     0 units       time         <chr [1]>   
2     1 calendar    time         <chr [1]>   
3     0 description wind         <chr [1]>   
4     0 description product      <chr [1]>   
5     0 _FillValue  fgco2_global <dbl [1]>   
6     1 units       fgco2_global <chr [1]>   
7     2 long_name   fgco2_global <chr [1]>   
8     3 product     fgco2_global <chr [1]>   
9     4 description fgco2_global <chr [1]>   
ncmeta::nc_atts(SeaFlux_file_name, "time") %>% tidyr::unnest(cols = c(value))
# A tibble: 2 × 4
     id name     variable value                
  <int> <chr>    <chr>    <chr>                
1     0 units    time     days since 1982-01-15
2     1 calendar time     proleptic_gregorian  
SeaFlux <- SeaFlux %>% 
  mutate(date = as.Date(time, origin = '1982-01-15'),
         year = year(date))

2 Timeseries

2.1 RECCAP2

RECCAP2_all <- RECCAP2_all %>% 
  mutate(date = as.Date(time, origin = '1980-01-01'),
         year = year(date)) %>% 
  select(product, year, date, fgco2_glob)


RECCAP2_all %>% 
  ggplot(aes(date, fgco2_glob, col=product)) +
  geom_line() +
  theme(legend.position = "bottom")

Version Author Date
2565e71 jens-daniel-mueller 2022-02-17
163d599 jens-daniel-mueller 2022-02-17
RECCAP2_all_annual <- RECCAP2_all %>% 
  group_by(year, product) %>% 
  summarise(fgco2_glob = mean(fgco2_glob)) %>% 
  ungroup()
  

RECCAP2_all_annual %>% 
  ggplot(aes(year, fgco2_glob, col=product)) +
  geom_line() +
  theme(legend.position = "bottom")

Version Author Date
2565e71 jens-daniel-mueller 2022-02-17
163d599 jens-daniel-mueller 2022-02-17
RECCAP2_all_annual_cum_1994 <- RECCAP2_all_annual %>% 
  filter(year >= 1994) %>% 
  arrange(year) %>% 
  group_by(product) %>% 
  mutate(fgco2_glob_cum = cumsum(fgco2_glob)) %>% 
  ungroup()
  

RECCAP2_all_annual_cum_1994 %>%
  ggplot(aes(year, fgco2_glob_cum, col = product)) +
  geom_line() +
  geom_point(shape = 21, fill = "white") +
  theme(legend.position = "bottom")

Version Author Date
163d599 jens-daniel-mueller 2022-02-17
RECCAP2_all_annual_ensemble <- RECCAP2_all_annual %>%
  filter(product != "UOEX_Wat20_1985_2019_v20211204") %>% 
  group_by(year) %>%
  summarise(fgco2_glob_sd = sd(fgco2_glob),
            fgco2_glob = mean(fgco2_glob)) %>%
  ungroup()

ggplot() +
  geom_ribbon(
    data =
      RECCAP2_all_annual_ensemble,
    aes(
      year,
      ymax = fgco2_glob + fgco2_glob_sd,
      ymin = fgco2_glob - fgco2_glob_sd,
      fill = "ensemble SD"
    ), alpha = 0.3
  ) +
  geom_line(data =
              RECCAP2_all_annual,
            aes(year, fgco2_glob, group = product, col = "individual products")) +
  geom_line(data =
              RECCAP2_all_annual_ensemble,
            aes(year, fgco2_glob, col = "ensemble mean"), size = 1) +
  scale_fill_manual(values = "red") +
  scale_color_manual(values = c("red", "grey50")) +
  theme(legend.position = "bottom",
        legend.title = element_blank())

Version Author Date
163d599 jens-daniel-mueller 2022-02-17

2.2 Seaflux

SeaFlux <- SeaFlux %>% 
  mutate(fgco2_glob = -fgco2_global) %>% 
  select(product, wind, year, date, fgco2_glob)


SeaFlux %>% 
  ggplot(aes(date, fgco2_glob, col=wind)) +
  geom_line() +
  theme(legend.position = "bottom") +
  facet_wrap(~ product)

Version Author Date
163d599 jens-daniel-mueller 2022-02-17
SeaFlux_annual <- SeaFlux %>% 
  filter(wind %in% c("CCMP2", "ERA5", "JRA55")) %>% 
  group_by(year, product) %>% 
  summarise(fgco2_glob = mean(fgco2_glob)) %>% 
  ungroup()
  

SeaFlux_annual %>% 
  ggplot(aes(year, fgco2_glob, col=product)) +
  geom_line() +
  theme(legend.position = "bottom")

Version Author Date
163d599 jens-daniel-mueller 2022-02-17
SeaFlux_annual_cum_1994 <- SeaFlux_annual %>% 
  filter(year >= 1994) %>% 
  arrange(year) %>% 
  group_by(product) %>% 
  mutate(fgco2_glob_cum = cumsum(fgco2_glob)) %>% 
  ungroup()
  

SeaFlux_annual_cum_1994 %>%
  ggplot(aes(year, fgco2_glob_cum, col = product)) +
  geom_line() +
  geom_point(shape = 21, fill = "white") +
  theme(legend.position = "bottom")

Version Author Date
163d599 jens-daniel-mueller 2022-02-17
SeaFlux_annual_ensemble <- SeaFlux_annual %>%
  group_by(year) %>%
  summarise(fgco2_glob_sd = sd(fgco2_glob),
            fgco2_glob = mean(fgco2_glob)) %>%
  ungroup()

ggplot() +
  geom_ribbon(
    data =
      SeaFlux_annual_ensemble,
    aes(
      year,
      ymax = fgco2_glob + fgco2_glob_sd,
      ymin = fgco2_glob - fgco2_glob_sd,
      fill = "ensemble SD"
    ), alpha = 0.3
  ) +
  geom_line(data =
              SeaFlux_annual,
            aes(year, fgco2_glob, group = product, col = "individual products")) +
  geom_line(data =
              SeaFlux_annual_ensemble,
            aes(year, fgco2_glob, col = "ensemble mean"), size = 1) +
  scale_fill_manual(values = "red") +
  scale_color_manual(values = c("red", "grey50")) +
  theme(legend.position = "bottom",
        legend.title = element_blank())

Version Author Date
163d599 jens-daniel-mueller 2022-02-17

2.3 Comparison

ggplot() +
  geom_line(data = SeaFlux_annual,
            aes(year, fgco2_glob, group = product,
                col = "Seaflux")) +
  geom_line(data = RECCAP2_all_annual,
            aes(year, fgco2_glob, group = product,
                col = "RECCAP2")) +
  scale_color_brewer(palette = "Dark2") +
  theme(legend.position = "bottom",
        legend.title = element_blank())

Version Author Date
2565e71 jens-daniel-mueller 2022-02-17
ggplot() +
  geom_line(data = SeaFlux_annual_cum_1994,
            aes(year, fgco2_glob_cum, group = product,
                col = "Seaflux")) +
  geom_line(data = RECCAP2_all_annual_cum_1994,
            aes(year, fgco2_glob_cum, group = product,
                col = "RECCAP2")) +
  scale_color_brewer(palette = "Dark2") +
  theme(legend.position = "bottom",
        legend.title = element_blank())

Version Author Date
2565e71 jens-daniel-mueller 2022-02-17

3 Write files

RECCAP2_all %>%
  write_csv(paste0(path_preprocessing,
                   "fgco2_glob_RECCAP2_all.csv"))

RECCAP2_all_annual %>%
  write_csv(paste0(path_preprocessing,
                   "fgco2_glob_RECCAP2_all_annual.csv"))

SeaFlux %>%
  write_csv(paste0(path_preprocessing,
                   "fgco2_glob_Seaflux.csv"))

SeaFlux_annual %>%
  write_csv(paste0(path_preprocessing,
                   "fgco2_glob_Seaflux_annual.csv"))

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.3

Matrix products: default
BLAS:   /usr/local/R-4.1.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.1.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.8.0 tidync_0.2.4    ggforce_0.3.3   metR_0.11.0    
 [5] scico_1.3.0     patchwork_1.1.1 collapse_1.7.0  forcats_0.5.1  
 [9] stringr_1.4.0   dplyr_1.0.7     purrr_0.3.4     readr_2.1.1    
[13] tidyr_1.1.4     tibble_3.1.6    ggplot2_3.3.5   tidyverse_1.3.1
[17] workflowr_1.7.0

loaded via a namespace (and not attached):
 [1] fs_1.5.2           bit64_4.0.5        RColorBrewer_1.1-2 httr_1.4.2        
 [5] rprojroot_2.0.2    tools_4.1.2        backports_1.4.1    bslib_0.3.1       
 [9] utf8_1.2.2         R6_2.5.1           DBI_1.1.2          colorspace_2.0-2  
[13] withr_2.4.3        tidyselect_1.1.1   processx_3.5.2     bit_4.0.4         
[17] compiler_4.1.2     git2r_0.29.0       cli_3.1.1          rvest_1.0.2       
[21] RNetCDF_2.5-2      xml2_1.3.3         labeling_0.4.2     sass_0.4.0        
[25] scales_1.1.1       checkmate_2.0.0    callr_3.7.0        digest_0.6.29     
[29] rmarkdown_2.11     pkgconfig_2.0.3    htmltools_0.5.2    highr_0.9         
[33] dbplyr_2.1.1       fastmap_1.1.0      rlang_0.4.12       readxl_1.3.1      
[37] rstudioapi_0.13    jquerylib_0.1.4    generics_0.1.1     farver_2.1.0      
[41] jsonlite_1.7.3     vroom_1.5.7        magrittr_2.0.1     ncmeta_0.3.0      
[45] Rcpp_1.0.8         munsell_0.5.0      fansi_1.0.2        lifecycle_1.0.1   
[49] stringi_1.7.6      whisker_0.4        yaml_2.2.1         MASS_7.3-55       
[53] grid_4.1.2         parallel_4.1.2     promises_1.2.0.1   crayon_1.4.2      
[57] haven_2.4.3        hms_1.1.1          knitr_1.37         ps_1.6.0          
[61] pillar_1.6.4       reprex_2.0.1       glue_1.6.0         evaluate_0.14     
[65] getPass_0.2-2      data.table_1.14.2  modelr_0.1.8       vctrs_0.3.8       
[69] tzdb_0.2.0         tweenr_1.0.2       httpuv_1.6.5       cellranger_1.1.0  
[73] gtable_0.3.0       polyclip_1.10-0    assertthat_0.2.1   xfun_0.29         
[77] broom_0.7.11       later_1.3.0        ncdf4_1.19         ellipsis_0.3.2