Last updated: 2020-12-17

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a84ff3c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  code/dump/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_this_study_vs_Gruber_2019.Rmd) and HTML (docs/analysis_this_study_vs_Gruber_2019.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html f3a708f jens-daniel-mueller 2020-12-17 Build site.
html e4ca289 jens-daniel-mueller 2020-12-16 Build site.
html 158fe26 jens-daniel-mueller 2020-12-15 Build site.
html 7a9a4cb jens-daniel-mueller 2020-12-15 Build site.
html 61b263c jens-daniel-mueller 2020-12-15 Build site.
html efe21ef jens-daniel-mueller 2020-12-15 Build site.
html 953caf3 jens-daniel-mueller 2020-12-15 Build site.
html 42daf5c jens-daniel-mueller 2020-12-14 Build site.
Rmd 923aa7f jens-daniel-mueller 2020-12-14 rebuild with new path and auto folder creation
html 984697e jens-daniel-mueller 2020-12-12 Build site.
html 3ebff89 jens-daniel-mueller 2020-12-12 Build site.
html b01a367 jens-daniel-mueller 2020-12-09 Build site.
html 24a632f jens-daniel-mueller 2020-12-07 Build site.
html 92dca91 jens-daniel-mueller 2020-12-07 Build site.
html 6a8004b jens-daniel-mueller 2020-12-07 Build site.
html 70bf1a5 jens-daniel-mueller 2020-12-07 Build site.
html 7555355 jens-daniel-mueller 2020-12-07 Build site.
html 143d6fa jens-daniel-mueller 2020-12-07 Build site.
html abc6818 jens-daniel-mueller 2020-12-03 Build site.
html e99ca63 jens-daniel-mueller 2020-12-03 Build site.
Rmd 6ba5854 jens-daniel-mueller 2020-12-03 rebuild with variable inventory depth
html 090e4d5 jens-daniel-mueller 2020-12-02 Build site.
html 7c25f7a jens-daniel-mueller 2020-12-02 Build site.
html ec8dc38 jens-daniel-mueller 2020-12-02 Build site.
html dfde8b7 jens-daniel-mueller 2020-12-02 Build site.
html c987de1 jens-daniel-mueller 2020-12-02 Build site.
html 9eb4281 jens-daniel-mueller 2020-12-02 Build site.
html 478f74d jens-daniel-mueller 2020-12-02 Build site.
html 902f65a jens-daniel-mueller 2020-12-02 Build site.
html 22d0127 jens-daniel-mueller 2020-12-01 Build site.
html 0ff728b jens-daniel-mueller 2020-12-01 Build site.
html 92edddb jens-daniel-mueller 2020-12-01 Build site.
Rmd 4843275 jens-daniel-mueller 2020-12-01 auto eras naming
html cf19652 jens-daniel-mueller 2020-11-30 Build site.
html 196be51 jens-daniel-mueller 2020-11-30 Build site.
Rmd 7a4b015 jens-daniel-mueller 2020-11-30 first rebuild on ETH server
Rmd bc61ce3 Jens Müller 2020-11-30 Initial commit
html bc61ce3 Jens Müller 2020-11-30 Initial commit

1 Data sources

Following Cant estimates from this study (JDM) and Gruber 2019 (G19) are used:

  • Zonal mean (basin, lat, depth)
  • Inventories (lat, lon)

1.1 This study

cant_zonal_JDM <-
  read_csv(paste(path_version_data,
                 "cant_zonal.csv",
                 sep = ""))

cant_zonal_JDM <- cant_zonal_JDM %>%
  filter(eras == unique(cant_zonal_JDM$eras)[1]) %>%
  select(lat,
         depth,
         basin_AIP,
         cant_mean,
         cant_pos_mean,
         cant_sd,
         cant_pos_sd)


cant_inv_JDM <-
  read_csv(paste(path_version_data,
                 "cant_inv.csv",
                 sep = ""))

cant_inv_JDM <- cant_inv_JDM %>%
  filter(eras == unique(cant_inv_JDM$eras)[1],
         inv_depth == params_global$inventory_depth_standard) %>%
  select(-c(eras))

1.2 Gruber 2019

cant_inv_G19 <-
  read_csv(paste(path_preprocessing,
                 "G19_cant_inv.csv",
                 sep = ""))

cant_inv_G19 <- cant_inv_G19 %>%
  select(-eras)

cant_zonal_G19 <-
  read_csv(paste(path_preprocessing,
                 "G19_cant_zonal.csv",
                 sep = ""))

cant_zonal_G19 <- cant_zonal_G19 %>%
  filter(eras == "JGOFS_GO") %>%
  select(lat,
         depth,
         basin_AIP,
         cant_mean,
         cant_pos_mean,
         cant_sd,
         cant_pos_sd)

1.3 Join data sets

Inventories and zonal sections are merged, and differences calculate per grid cell.

cant_inv_long <- bind_rows(
  cant_inv_JDM %>%  mutate(estimate = "JDM"),
  cant_inv_G19 %>%  mutate(estimate = "G19")
  )

cant_inv_wide <- cant_inv_long %>% 
  pivot_wider(names_from = estimate, values_from = cant_pos_inv:cant_inv) %>% 
  drop_na()

cant_inv_wide <- cant_inv_wide %>% 
  mutate(cant_pos_inv_offset = cant_pos_inv_JDM - cant_pos_inv_G19,
         cant_inv_offset = cant_inv_JDM - cant_inv_G19,
         estimate = "JDM - G19")
cant_zonal_long <- bind_rows(
  cant_zonal_JDM %>%  mutate(estimate = "JDM"),
  cant_zonal_G19 %>%  mutate(estimate = "G19")
  )

cant_zonal_wide <- cant_zonal_long %>% 
  pivot_wider(names_from = estimate, values_from = cant_mean:cant_pos_sd) %>% 
  drop_na()

cant_zonal_wide <- cant_zonal_wide %>% 
  mutate(cant_pos_mean_offset = cant_pos_mean_JDM - cant_pos_mean_G19,
         cant_mean_offset = cant_mean_JDM - cant_mean_G19,
         estimate = "JDM - G19")

2 Cant budgets

Global Cant inventories were estimated in units of Pg C, based on all vs positive only Cant estimates. Please note that here we only added cant values in the upper m and do not apply additional corrections for areas not covered.

cant_inv_budget <- cant_inv_long %>% 
  mutate(surface_area = earth_surf(lat, lon),
         cant_inv_grid = cant_inv*surface_area,
         cant_pos_inv_grid = cant_pos_inv*surface_area) %>% 
  group_by(basin_AIP, estimate) %>% 
  summarise(cant_total = sum(cant_inv_grid)*12*1e-15,
            cant_total = round(cant_total,1),
            cant_pos_total = sum(cant_pos_inv_grid)*12*1e-15,
            cant_pos_total = round(cant_pos_total,1)) %>% 
  ungroup()


cant_inv_budget %>%
  gt(rowname_col = "basin_AIP",
     groupname_col = c("estimate")) %>% 
  summary_rows(
    groups = TRUE,
    fns = list(total = "sum")
  )
cant_total cant_pos_total
G19
Atlantic 10.8 11.0
Indian 5.9 7.1
Pacific 12.8 13.4
total 29.50 31.50
JDM
Atlantic 9.9 10.5
Indian 13.2 13.4
Pacific 12.6 13.4
total 35.70 37.30
rm(cant_inv_budget)

3 Cant - positive only

In a first series of plots we explore the distribution of Cant, taking only positive estimates into account (positive here refers to the mean cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

3.1 Inventory map

3.1.1 Absolute values

Column inventory of positive cant between the surface and m water depth per horizontal grid cell (lat x lon).

# i_estimate <- unique(cant_inv_long$estimate)[1]

for (i_estimate in unique(cant_inv_long$estimate)) {
  
  print(
    p_map_cant_inv(
      cant_inv_long %>% filter(estimate == i_estimate),
      subtitle_text = paste("Estimate:", i_estimate))
    )
  
}

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
ec8dc38 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.1.2 Offset

Column inventory of positive cant between the surface and m water depth per horizontal grid cell (lat x lon).

p_map_cant_inv_offset(cant_inv_wide,
                      "cant_pos_inv_offset",
                      subtitle_text = "JDM - G19")

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
ec8dc38 jens-daniel-mueller 2020-12-02
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.2 Zonal mean sections

3.2.1 Absolute values

# i_basin_AIP <- unique(cant_zonal_long$basin_AIP)[1]
# i_estimate <- unique(cant_zonal_long$estimate)[1]

for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {
  for (i_estimate in unique(cant_zonal_long$estimate)) {
   
     print(
      p_section_zonal(
        df = cant_zonal_long %>%
          filter(basin_AIP == i_basin_AIP,
                 estimate == i_estimate),
        var = "cant_pos_mean",
        plot_slabs = "n",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| estimate:", i_estimate)
      )
      
    )
    
  }
}

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.2.2 Offset

# i_basin_AIP <- unique(cant_zonal_wide$basin_AIP)[1]
# i_estimate <- unique(cant_zonal_wide$estimate)[1]

for (i_basin_AIP in unique(cant_zonal_wide$basin_AIP)) {
    print(
      p_section_zonal(
        df = cant_zonal_wide %>%
          filter(basin_AIP == i_basin_AIP),
        var = "cant_pos_mean_offset",
        breaks = params_global$breaks_cant_offset,
        plot_slabs = "n",
        col = "divergent",
        subtitle_text =
          paste("Basin:", i_basin_AIP)
      )
    )
  }

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4 Cant - all

In a first series of plots we explore the distribution of cant, taking only positive estimates into account (positive here refers to the mean cant estimate across 10 eMLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

4.1 Inventory map

4.1.1 Absolute values

Column inventory of Cant (including positive and negative values) between the surface and m water depth per horizontal grid cell (lat x lon).

# i_estimate <- unique(cant_inv_long$estimate)[1] 

for (i_estimate in unique(cant_inv_long$estimate)) {
  
  print(
    p_map_cant_inv(
    cant_inv_long %>% filter(estimate == i_estimate),
    subtitle_text = paste("Estimate:", i_estimate),
    col = "divergent")
  )
  
}

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
ec8dc38 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.1.2 Offset

p_map_cant_inv_offset(
  df = cant_inv_wide,
  var = "cant_inv_offset",
  subtitle_text = "JDM - G19")

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
ec8dc38 jens-daniel-mueller 2020-12-02
dfde8b7 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.2 Zonal mean sections

4.2.1 Absolute values

# i_basin_AIP <- unique(df$basin_AIP)[1]
# i_estimate <- unique(df$estimate)[1]

for (i_basin_AIP in unique(cant_zonal_long$basin_AIP)) {
  for (i_estimate in unique(cant_zonal_long$estimate)) {
   
     print(
      p_section_zonal(
        df = cant_zonal_long %>%
          filter(basin_AIP == i_basin_AIP,
                 estimate == i_estimate),
        var = "cant_mean",
        col = "divergent",
        breaks = params_global$breaks_cant,
        plot_slabs = "n",
        legend_title = expression(atop(Delta * C[ant],
                                          (mu * mol ~ kg ^ {-1}))),
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| estimate:", i_estimate)
      )
      
    )
    
  }
}

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.2.2 Offset

# i_basin_AIP <- unique(cant_zonal_wide$basin_AIP)[1]
# i_estimate <- unique(cant_zonal_wide$estimate)[1]

for (i_basin_AIP in unique(cant_zonal_wide$basin_AIP)) {

     print(
      p_section_zonal(
        df = cant_zonal_wide %>%
          filter(basin_AIP == i_basin_AIP),
        var = "cant_mean_offset",
        plot_slabs = "n",
        col = "divergent",
        breaks = params_global$breaks_cant_offset,
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| estimate:", i_estimate)
      )
      
    )
}

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e4ca289 jens-daniel-mueller 2020-12-16
158fe26 jens-daniel-mueller 2020-12-15
7a9a4cb jens-daniel-mueller 2020-12-15
61b263c jens-daniel-mueller 2020-12-15
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
090e4d5 jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
0ff728b jens-daniel-mueller 2020-12-01
92edddb jens-daniel-mueller 2020-12-01
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5 Known issues

Deviations between this study and the results by Gruber et al (2019), short G19, for the same period, might be attributable to following known differences in the implementation of the eMLR(C*) method:

  • GLODAPv2_2020 here vs an extended version of GLODAPv2 in G19
  • flagging: Here, we accept f flags 0 and 2 (except for tco2, where only 0 is accepted). G19 claim to use 0 throughout, yet have a high coverage of talk observations in the SE Pacific
  • Neutral density calculation: Here and in GLODAPv2_2020 a polynomial approximation is used, whereas G19 uses the original Matlab code
  • Predictor climatology: Here we used WOA18, whereas G19 used WOA13
  • Missing data in the GLODAP mapped climatology, eg NO3 at surface, where not filled in this study
  • cant on neutral density levels calculate as slab mean, rather than on one surface
  • Here, surface delta cant were calculated based on Luecker constants, rather than Mehrbach as in G19
  • Here, pCO2 was calculated from DIC/TA Climatology

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.1

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2        marelac_2.1.10  shape_1.4.5     scales_1.1.1   
 [5] metR_0.9.0      scico_1.2.0     patchwork_1.1.0 collapse_1.4.2 
 [9] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2     purrr_0.3.4    
[13] readr_1.4.0     tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.2  
[17] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               sass_0.2.0               jsonlite_1.7.1          
 [4] here_0.1                 modelr_0.1.8             assertthat_0.2.1        
 [7] blob_1.2.1               cellranger_1.1.0         yaml_2.2.1              
[10] pillar_1.4.7             backports_1.1.10         lattice_0.20-41         
[13] glue_1.4.2               RcppEigen_0.3.3.7.0      digest_0.6.27           
[16] promises_1.1.1           checkmate_2.0.0          rvest_0.3.6             
[19] colorspace_2.0-0         htmltools_0.5.0          httpuv_1.5.4            
[22] Matrix_1.2-18            pkgconfig_2.0.3          broom_0.7.2             
[25] seacarb_3.2.14           haven_2.3.1              whisker_0.4             
[28] later_1.1.0.1            git2r_0.27.1             farver_2.0.3            
[31] generics_0.0.2           ellipsis_0.3.1           withr_2.3.0             
[34] cli_2.2.0                magrittr_2.0.1           crayon_1.3.4            
[37] readxl_1.3.1             evaluate_0.14            fs_1.5.0                
[40] fansi_0.4.1              xml2_1.3.2               RcppArmadillo_0.10.1.2.0
[43] oce_1.2-0                tools_4.0.3              data.table_1.13.2       
[46] hms_0.5.3                lifecycle_0.2.0          munsell_0.5.0           
[49] reprex_0.3.0             gsw_1.0-5                isoband_0.2.2           
[52] compiler_4.0.3           rlang_0.4.9              grid_4.0.3              
[55] rstudioapi_0.13          labeling_0.4.2           rmarkdown_2.5           
[58] testthat_3.0.0           gtable_0.3.0             DBI_1.1.0               
[61] R6_2.5.0                 lubridate_1.7.9          knitr_1.30              
[64] rprojroot_2.0.2          stringi_1.5.3            parallel_4.0.3          
[67] Rcpp_1.0.5               vctrs_0.3.5              dbplyr_1.4.4            
[70] tidyselect_1.1.0         xfun_0.18