Last updated: 2020-12-12
Checks: 7 0
Knit directory: emlr_obs_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version a1aaa71. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: analysis/_site.yml
Modified: code/Workflowr_project_managment.R
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/eMLR_data_preparation.Rmd
) and HTML (docs/eMLR_data_preparation.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 7d82772 | jens-daniel-mueller | 2020-12-11 | Build site. |
Rmd | 6069c23 | jens-daniel-mueller | 2020-12-11 | selectable basinmask, try 5 |
html | 7788175 | jens-daniel-mueller | 2020-12-09 | Build site. |
Rmd | 64b795c | jens-daniel-mueller | 2020-12-09 | added histograms after data preparation |
html | b01a367 | jens-daniel-mueller | 2020-12-09 | Build site. |
html | 24a632f | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 92dca91 | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 6a8004b | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 70bf1a5 | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 7555355 | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 143d6fa | jens-daniel-mueller | 2020-12-07 | Build site. |
html | 3c8a83c | jens-daniel-mueller | 2020-12-04 | Build site. |
Rmd | e11f455 | jens-daniel-mueller | 2020-12-04 | improved output plots by using stat_2d instead of points |
html | abc6818 | jens-daniel-mueller | 2020-12-03 | Build site. |
Rmd | 992ba15 | jens-daniel-mueller | 2020-12-03 | rebuild with variable inventory depth |
html | 090e4d5 | jens-daniel-mueller | 2020-12-02 | Build site. |
Rmd | c98d27b | jens-daniel-mueller | 2020-12-02 | cleaned subsetting and data preparation |
html | 37e9dac | jens-daniel-mueller | 2020-12-02 | Build site. |
Rmd | 9ff071b | jens-daniel-mueller | 2020-12-02 | minor improvement of tref adejustment, formatting |
html | 7c25f7a | jens-daniel-mueller | 2020-12-02 | Build site. |
html | ec8dc38 | jens-daniel-mueller | 2020-12-02 | Build site. |
html | c987de1 | jens-daniel-mueller | 2020-12-02 | Build site. |
html | f8358f8 | jens-daniel-mueller | 2020-12-02 | Build site. |
html | b03ddb8 | jens-daniel-mueller | 2020-12-02 | Build site. |
Rmd | 9183e8f | jens-daniel-mueller | 2020-12-02 | revised assignment of era to eras |
html | 22d0127 | jens-daniel-mueller | 2020-12-01 | Build site. |
html | 0ff728b | jens-daniel-mueller | 2020-12-01 | Build site. |
html | b02b7a4 | jens-daniel-mueller | 2020-12-01 | Build site. |
Rmd | 60bea48 | jens-daniel-mueller | 2020-12-01 | auto eras naming |
html | cf19652 | jens-daniel-mueller | 2020-11-30 | Build site. |
Rmd | 2842970 | jens-daniel-mueller | 2020-11-30 | cleaned for eMLR part only |
html | 196be51 | jens-daniel-mueller | 2020-11-30 | Build site. |
Rmd | 7a4b015 | jens-daniel-mueller | 2020-11-30 | first rebuild on ETH server |
Rmd | bc61ce3 | Jens Müller | 2020-11-30 | Initial commit |
html | bc61ce3 | Jens Müller | 2020-11-30 | Initial commit |
Required are:
GLODAP <-
read_csv(paste(path_version_data,
"GLODAPv2.2020_clean.csv",
sep = ""))
GLODAP_obs_grid <-
read_csv(paste(path_version_data,
"GLODAPv2.2020_clean_obs_grid.csv",
sep = ""))
S04_cant_3d <-
read_csv(paste(path_preprocessing,
"S04_cant_3d.csv",
sep = ""))
co2_atm <-
read_csv(paste(path_preprocessing,
"co2_atm.csv",
sep = ""))
The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an erroneous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.
GLODAP <- GLODAP %>%
mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))
C* serves as a conservative tracer of anthropogenic CO2 uptake. It is derived from measured DIC by removing the impact of
Contributions of those processes are estimated from phosphate and alkalinity concentrations.
The stoichiometric nutrient ratios for the production and mineralization of organic matter were set to:
C* was calculated as:
print(b_cstar)
function (tco2, phosphate, talk)
{
cstar = tco2 - (params_local$rCP * phosphate) - 0.5 * (talk -
(params_local$rNP * phosphate))
return(cstar)
}
GLODAP <- GLODAP %>%
mutate(rCP_phosphate = -params_local$rCP * phosphate,
talk_05 = -0.5 * talk,
rNP_phosphate_05 = -0.5 * params_local$rNP * phosphate,
cstar = b_cstar(tco2, phosphate, talk))
The reference year adjustment relies on an apriori estimate of Cant at a given location and depth, which is used as a scaling factor for the concurrent change in atmospheric CO2. The underlying assumption is a transient steady state for the oceanic Cant uptake. Here, Cant from the GLODAP mapped Climatology was used.
Note that eq. 6 in Clement and Gruber (2018) misses pCO2 pre-industrial in the denominator. Here we use the equation published in Gruber et al. (2019).
S04_cant_3d_obs <- left_join(
GLODAP_obs_grid,
S04_cant_3d %>% select(-c(cant, eras))
)
# calculate number of cant data points per grid cell
S04_cant_3d_obs <- S04_cant_3d_obs %>%
group_by(lon, lat) %>%
mutate(n = n()) %>%
ungroup()
# S04_cant_3d_obs %>%
# filter(n <= 1) %>%
# ggplot(aes(lon,lat)) +
# geom_point(data = GLODAP_obs_grid, aes(lon, lat)) +
# geom_point(col = "red")
rm(S04_cant_3d, GLODAP_obs_grid)
GLODAP_cant_obs <- full_join(GLODAP, S04_cant_3d_obs)
rm(GLODAP, S04_cant_3d_obs)
# fill number of cant data points per grid cell to all observations
GLODAP_cant_obs <- GLODAP_cant_obs %>%
group_by(lon, lat) %>%
fill(n, .direction = "updown") %>%
ungroup()
The mapped Cant product was merged with GLODAP observation by:
# interpolate cant to observation depth
GLODAP_cant_obs_int <- GLODAP_cant_obs %>%
filter(n > 1) %>%
group_by(lat, lon) %>%
arrange(depth) %>%
mutate(cant_pos_int = approxfun(depth, cant_pos, rule = 2)(depth)) %>%
ungroup()
# set cant for observation depth if only one cant available
GLODAP_cant_obs_set <- GLODAP_cant_obs %>%
filter(n == 1) %>%
group_by(lat, lon) %>%
mutate(cant_pos_int = mean(cant_pos, na.rm = TRUE)) %>%
ungroup()
# bin data sets with interpolated and set cant
GLODAP_cant_obs <- bind_rows(GLODAP_cant_obs_int, GLODAP_cant_obs_set)
rm(GLODAP_cant_obs_int, GLODAP_cant_obs_set)
ggplot() +
geom_path(
data = GLODAP_cant_obs %>%
filter(lat == 48.5, lon == 165.5,!is.na(cant_pos)) %>%
arrange(depth),
aes(cant_pos, depth, col = "mapped")
) +
geom_point(
data = GLODAP_cant_obs %>%
filter(lat == 48.5, lon == 165.5,!is.na(cant_pos)) %>%
arrange(depth),
aes(cant_pos, depth, col = "mapped")
) +
geom_point(
data = GLODAP_cant_obs %>%
filter(lat == 48.5, lon == 165.5, date == ymd("2018-06-27")),
aes(cant_pos_int, depth, col = "interpolated")
) +
scale_y_reverse() +
scale_color_brewer(palette = "Dark2", name = "") +
labs(title = "Cant interpolation to sampling depth - example profile")
# remove cant data at grid cells without observations
GLODAP <- GLODAP_cant_obs %>%
filter(!is.na(cstar)) %>%
mutate(cant_pos = cant_pos_int) %>%
select(-cant_pos_int, n)
rm(GLODAP_cant_obs)
GLODAP observations were merged with mean annual atmospheric pCO2 levels by year.
GLODAP <- left_join(GLODAP, co2_atm)
Cant for median year of each era was calculated by applying alpha = 0.28/13 * (median year - 1994) to the estimate of Sabine et al. (2004).
# assign reference year
GLODAP <- GLODAP %>%
group_by(era) %>%
mutate(tref = median(year)) %>%
ungroup()
# calculate reference year
tref <- GLODAP %>%
group_by(era) %>%
summarise(year = median(year)) %>%
ungroup()
# extract atm pCO2 at reference year
co2_atm_tref <- right_join(co2_atm, tref) %>%
select(-year) %>%
rename(pCO2_tref = pCO2)
# merge atm pCO2 at tref with GLODAP
GLODAP <- full_join(GLODAP, co2_atm_tref)
rm(co2_atm, tref)
# scale cant to reference year
GLODAP <- GLODAP %>%
mutate(alpha = (tref - 1994) * (0.28 / 13),
cant_pos = cant_pos * (1 + alpha))
# calculate cstar for reference year
GLODAP <- GLODAP %>%
mutate(
cstar_tref_delta =
((pCO2 - pCO2_tref) / (pCO2_tref - params_local$preind_atm_pCO2)) * cant_pos,
cstar_tref = cstar - cstar_tref_delta)
GLODAP %>%
ggplot(aes(cstar_tref_delta)) +
geom_histogram(binwidth = 1) +
labs(title = "Histogramm with binwidth = 1")
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
7788175 | jens-daniel-mueller | 2020-12-09 |
24a632f | jens-daniel-mueller | 2020-12-07 |
6a8004b | jens-daniel-mueller | 2020-12-07 |
70bf1a5 | jens-daniel-mueller | 2020-12-07 |
7555355 | jens-daniel-mueller | 2020-12-07 |
143d6fa | jens-daniel-mueller | 2020-12-07 |
37e9dac | jens-daniel-mueller | 2020-12-02 |
0ff728b | jens-daniel-mueller | 2020-12-01 |
b02b7a4 | jens-daniel-mueller | 2020-12-01 |
196be51 | jens-daniel-mueller | 2020-11-30 |
bc61ce3 | Jens Müller | 2020-11-30 |
GLODAP %>%
sample_n(1e4) %>%
ggplot(aes(year, cstar_tref_delta, col = cant_pos)) +
geom_point() +
scale_color_viridis_c() +
labs(title = "Time series of random subsample 1e4")
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
7788175 | jens-daniel-mueller | 2020-12-09 |
24a632f | jens-daniel-mueller | 2020-12-07 |
6a8004b | jens-daniel-mueller | 2020-12-07 |
70bf1a5 | jens-daniel-mueller | 2020-12-07 |
7555355 | jens-daniel-mueller | 2020-12-07 |
143d6fa | jens-daniel-mueller | 2020-12-07 |
37e9dac | jens-daniel-mueller | 2020-12-02 |
0ff728b | jens-daniel-mueller | 2020-12-01 |
b02b7a4 | jens-daniel-mueller | 2020-12-01 |
196be51 | jens-daniel-mueller | 2020-11-30 |
bc61ce3 | Jens Müller | 2020-11-30 |
GLODAP %>%
ggplot(aes(year, cstar_tref_delta)) +
geom_bin2d(binwidth = 1) +
scale_fill_viridis_c(trans = "log10") +
labs(title = "Heatmap with binwidth = 1")
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
7788175 | jens-daniel-mueller | 2020-12-09 |
24a632f | jens-daniel-mueller | 2020-12-07 |
6a8004b | jens-daniel-mueller | 2020-12-07 |
70bf1a5 | jens-daniel-mueller | 2020-12-07 |
7555355 | jens-daniel-mueller | 2020-12-07 |
143d6fa | jens-daniel-mueller | 2020-12-07 |
090e4d5 | jens-daniel-mueller | 2020-12-02 |
37e9dac | jens-daniel-mueller | 2020-12-02 |
0ff728b | jens-daniel-mueller | 2020-12-01 |
b02b7a4 | jens-daniel-mueller | 2020-12-01 |
196be51 | jens-daniel-mueller | 2020-11-30 |
bc61ce3 | Jens Müller | 2020-11-30 |
A selected section is plotted to demonstrate the magnitude of various parameters and corrections relevant to C*.
GLODAP_cruise <- GLODAP %>%
filter(cruise %in% params_global$cruises_meridional)
map +
geom_path(data = GLODAP_cruise %>%
arrange(date),
aes(lon, lat)) +
geom_point(data = GLODAP_cruise %>%
arrange(date),
aes(lon, lat, col = date)) +
scale_color_viridis_c(trans = "date") +
labs(title = paste("Cruise year:", mean(GLODAP_cruise$year)))
lat_section <-
GLODAP_cruise %>%
ggplot(aes(lat, depth)) +
scale_y_reverse() +
scale_fill_viridis_c() +
theme(axis.title.x = element_blank())
for (i_var in c("tco2",
"rCP_phosphate",
"talk_05",
"rNP_phosphate_05",
"cstar",
"cstar_tref")) {
print(lat_section +
stat_summary_2d(aes(z = tco2))+
scale_fill_viridis_c(name = i_var)
)
}
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
7788175 | jens-daniel-mueller | 2020-12-09 |
6a8004b | jens-daniel-mueller | 2020-12-07 |
7555355 | jens-daniel-mueller | 2020-12-07 |
143d6fa | jens-daniel-mueller | 2020-12-07 |
3c8a83c | jens-daniel-mueller | 2020-12-04 |
090e4d5 | jens-daniel-mueller | 2020-12-02 |
37e9dac | jens-daniel-mueller | 2020-12-02 |
0ff728b | jens-daniel-mueller | 2020-12-01 |
b02b7a4 | jens-daniel-mueller | 2020-12-01 |
196be51 | jens-daniel-mueller | 2020-11-30 |
bc61ce3 | Jens Müller | 2020-11-30 |
rm(lat_section, GLODAP_cruise)
# remove columns not required for further analysis
GLODAP <- GLODAP %>%
select(-c(rCP_phosphate:cstar, cant_pos:cstar_tref_delta))
The following boundaries for isoneutral slabs were defined:
Continuous neutral densities (gamma) values from GLODAP are grouped into isoneutral slabs.
GLODAP <- m_cut_gamma(GLODAP, "gamma")
GLODAP_cruise <- GLODAP %>%
filter(cruise %in% params_global$cruises_meridional)
lat_section <-
GLODAP_cruise %>%
ggplot(aes(lat, depth)) +
scale_y_reverse() +
theme(legend.position = "bottom")
lat_section +
geom_point(aes(col = gamma_slab)) +
scale_color_viridis_d()
rm(lat_section, GLODAP_cruise)
# this section was only used to calculate gamma locally, and compare it to the value provided in GLODAP data set
GLODAP_cruise <- GLODAP %>%
filter(cruise %in% params_global$cruises_meridional)
library(oce)
library(gsw)
# calculate pressure from depth
GLODAP_cruise <- GLODAP_cruise %>%
mutate(CTDPRS = gsw_p_from_z(-depth,
lat))
GLODAP_cruise <- GLODAP_cruise %>%
mutate(THETA = swTheta(salinity = sal,
temperature = temp,
pressure = CTDPRS,
referencePressure = 0,
longitude = lon-180,
latitude = lat))
GLODAP_cruise <- GLODAP_cruise %>%
rename(LATITUDE = lat,
LONGITUDE = lon,
SALNTY = sal,
gamma_provided = gamma)
library(reticulate)
source_python(here::here("code/python_scripts",
"Gamma_GLODAP_python.py"))
GLODAP_cruise <- calculate_gamma(GLODAP_cruise)
GLODAP_cruise <- GLODAP_cruise %>%
mutate(gamma_delta = gamma_provided - GAMMA)
lat_section <-
GLODAP_cruise %>%
ggplot(aes(LATITUDE, CTDPRS)) +
scale_y_reverse() +
theme(legend.position = "bottom")
lat_section +
stat_summary_2d(aes(z = gamma_delta)) +
scale_color_viridis_c()
GLODAP_cruise %>%
ggplot(aes(gamma_delta))+
geom_histogram()
rm(lat_section, GLODAP_cruise, cruises_meridional)
GLODAP <- GLODAP %>%
mutate(gamma_slab = factor(gamma_slab),
gamma_slab = factor(gamma_slab, levels = rev(levels(gamma_slab))))
for (i_basin in unique(GLODAP$basin)) {
# i_basin <- unique(GLODAP$basin)[3]
print(
GLODAP %>%
filter(basin == i_basin) %>%
ggplot(aes(lat, gamma_slab)) +
geom_bin2d(binwidth = 5) +
scale_fill_viridis_c(
option = "magma",
direction = -1,
trans = "log10"
) +
scale_x_continuous(breaks = seq(-100, 100, 20),
limits = c(params_global$lat_min,
params_global$lat_max)) +
facet_grid(era ~ .) +
labs(title = paste("MLR region: ", i_basin))
)
}
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
Version | Author | Date |
---|---|---|
7d82772 | jens-daniel-mueller | 2020-12-11 |
GLODAP_vars <- GLODAP %>%
select(cstar_tref,
sal,
temp,
oxygen,
aou,
silicate,
phosphate,
phosphate_star)
GLODAP_vars_long <- GLODAP_vars %>%
pivot_longer(cstar_tref:phosphate_star, names_to = "variable", values_to = "value")
GLODAP_vars_long %>%
ggplot(aes(value)) +
geom_histogram() +
facet_wrap(~ variable,
ncol = 2,
scales = "free")
rm(GLODAP_vars, GLODAP_vars_long)
Zonal and meridional section plots are produce for each cruise individually and can be downloaded here.
if (params_local$plot_all_figures == "y") {
cruises <- GLODAP %>%
group_by(cruise) %>%
summarise(date_mean = mean(date, na.rm = TRUE),
n = n()) %>%
ungroup() %>%
arrange(date_mean)
GLODAP <- full_join(GLODAP, cruises)
n <- 0
for (i_cruise in unique(cruises$cruise)) {
# i_cruise <- unique(cruises$cruise)[1]
n <- n + 1
print(n)
GLODAP_cruise <- GLODAP %>%
filter(cruise == i_cruise) %>%
arrange(date)
cruises_cruise <- cruises %>%
filter(cruise == i_cruise)
map_plot <-
map +
geom_point(data = GLODAP_cruise,
aes(lon, lat, col = date)) +
scale_color_viridis_c(trans = "date") +
labs(title = paste("Mean date:", cruises_cruise$date_mean,
"| cruise:", cruises_cruise$cruise,
"| n(samples):", cruises_cruise$n))
lon_section <- GLODAP_cruise %>%
ggplot(aes(lon, depth)) +
scale_y_reverse() +
scale_fill_viridis_c()
lon_tco2 <- lon_section+
stat_summary_2d(aes(z=tco2))
lon_talk <- lon_section+
stat_summary_2d(aes(z=talk))
lon_phosphate <- lon_section+
stat_summary_2d(aes(z=phosphate))
lon_oxygen <- lon_section+
stat_summary_2d(aes(z=oxygen))
lon_aou <- lon_section+
stat_summary_2d(aes(z=aou))
lon_phosphate_star <- lon_section+
stat_summary_2d(aes(z=phosphate_star))
lon_nitrate <- lon_section+
stat_summary_2d(aes(z=nitrate))
lon_cstar <- lon_section+
stat_summary_2d(aes(z=cstar_tref))
lat_section <- GLODAP_cruise %>%
ggplot(aes(lat, depth)) +
scale_y_reverse() +
scale_fill_viridis_c()
lat_tco2 <- lat_section+
stat_summary_2d(aes(z=tco2))
lat_talk <- lat_section+
stat_summary_2d(aes(z=talk))
lat_phosphate <- lat_section+
stat_summary_2d(aes(z=phosphate))
lat_oxygen <- lat_section+
stat_summary_2d(aes(z=oxygen))
lat_aou <- lat_section+
stat_summary_2d(aes(z=aou))
lat_phosphate_star <- lat_section+
stat_summary_2d(aes(z=phosphate_star))
lat_nitrate <- lat_section+
stat_summary_2d(aes(z=nitrate))
lat_cstar <- lat_section+
stat_summary_2d(aes(z=cstar_tref))
hist_tco2 <- GLODAP_cruise %>%
ggplot(aes(tco2)) +
geom_histogram()
hist_talk <- GLODAP_cruise %>%
ggplot(aes(talk)) +
geom_histogram()
hist_phosphate <- GLODAP_cruise %>%
ggplot(aes(phosphate)) +
geom_histogram()
hist_oxygen <- GLODAP_cruise %>%
ggplot(aes(oxygen)) +
geom_histogram()
hist_aou <- GLODAP_cruise %>%
ggplot(aes(aou)) +
geom_histogram()
hist_phosphate_star <- GLODAP_cruise %>%
ggplot(aes(phosphate_star)) +
geom_histogram()
hist_nitrate <- GLODAP_cruise %>%
ggplot(aes(nitrate)) +
geom_histogram()
hist_cstar <- GLODAP_cruise %>%
ggplot(aes(cstar_tref)) +
geom_histogram()
(map_plot /
((hist_tco2 / hist_talk / hist_phosphate / hist_cstar) |
(hist_oxygen / hist_phosphate_star / hist_nitrate / hist_aou)
)) |
((lat_tco2 / lat_talk / lat_phosphate / lat_oxygen / lat_aou / lat_phosphate_star / lat_nitrate / lat_cstar) |
(lon_tco2 / lon_talk / lon_phosphate / lon_oxygen / lon_aou /lon_phosphate_star / lon_nitrate / lon_cstar))
ggsave(
path = paste(path_version_figures, "Cruise_sections_histograms/", sep = ""),
filename = paste(
"Cruise_date",
cruises_cruise$date_mean,
"count",
cruises_cruise$n,
"cruiseID",
cruises_cruise$cruise,
".png",
sep = "_"
),
width = 20, height = 12)
rm(map_plot,
lon_section, lat_section,
lat_tco2, lat_talk, lat_phosphate, lon_tco2, lon_talk, lon_phosphate,
GLODAP_cruise, cruises_cruise)
}
}
# rename the cstar variable,
# in scripts downstrea from here, we refer to cstar as the value adjusted to the reference year
GLODAP <- GLODAP %>%
rename(cstar = cstar_tref)
GLODAP %>% write_csv(paste(path_version_data,
"GLODAPv2.2020_MLR_fitting_ready.csv",
sep = ""))
co2_atm_tref %>% write_csv(paste(path_version_data,
"co2_atm_tref.csv",
sep = ""))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.1
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.7.9 marelac_2.1.10 shape_1.4.5 metR_0.9.0
[5] scico_1.2.0 patchwork_1.1.0 collapse_1.4.2 forcats_0.5.0
[9] stringr_1.4.0 dplyr_1.0.2 purrr_0.3.4 readr_1.4.0
[13] tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.2 tidyverse_1.3.0
[17] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] httr_1.4.2 viridisLite_0.3.0 jsonlite_1.7.1
[4] here_0.1 modelr_0.1.8 assertthat_0.2.1
[7] blob_1.2.1 cellranger_1.1.0 yaml_2.2.1
[10] pillar_1.4.7 backports_1.1.10 lattice_0.20-41
[13] glue_1.4.2 RcppEigen_0.3.3.7.0 digest_0.6.27
[16] RColorBrewer_1.1-2 promises_1.1.1 checkmate_2.0.0
[19] rvest_0.3.6 colorspace_2.0-0 htmltools_0.5.0
[22] httpuv_1.5.4 Matrix_1.2-18 pkgconfig_2.0.3
[25] broom_0.7.2 seacarb_3.2.14 haven_2.3.1
[28] scales_1.1.1 whisker_0.4 later_1.1.0.1
[31] git2r_0.27.1 farver_2.0.3 generics_0.0.2
[34] ellipsis_0.3.1 withr_2.3.0 cli_2.2.0
[37] magrittr_2.0.1 crayon_1.3.4 readxl_1.3.1
[40] evaluate_0.14 fs_1.5.0 fansi_0.4.1
[43] xml2_1.3.2 RcppArmadillo_0.10.1.2.0 oce_1.2-0
[46] tools_4.0.3 data.table_1.13.2 hms_0.5.3
[49] lifecycle_0.2.0 munsell_0.5.0 reprex_0.3.0
[52] gsw_1.0-5 compiler_4.0.3 rlang_0.4.9
[55] grid_4.0.3 rstudioapi_0.13 labeling_0.4.2
[58] rmarkdown_2.5 testthat_3.0.0 gtable_0.3.0
[61] DBI_1.1.0 R6_2.5.0 knitr_1.30
[64] rprojroot_2.0.2 stringi_1.5.3 parallel_4.0.3
[67] Rcpp_1.0.5 vctrs_0.3.5 dbplyr_1.4.4
[70] tidyselect_1.1.0 xfun_0.18