Last updated: 2020-12-14

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 923aa7f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_cant_calculation.Rmd) and HTML (docs/mapping_cant_calculation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 923aa7f jens-daniel-mueller 2020-12-14 rebuild with new path and auto folder creation
html 984697e jens-daniel-mueller 2020-12-12 Build site.
html 3ebff89 jens-daniel-mueller 2020-12-12 Build site.
Rmd a1aaa71 jens-daniel-mueller 2020-12-12 selectable basinmask, rebuild
html 7788175 jens-daniel-mueller 2020-12-09 Build site.
Rmd 64b795c jens-daniel-mueller 2020-12-09 added histograms after data preparation
html b01a367 jens-daniel-mueller 2020-12-09 Build site.
Rmd 71c63b0 jens-daniel-mueller 2020-12-09 rerun with variable predictor assignment
html 24a632f jens-daniel-mueller 2020-12-07 Build site.
html 92dca91 jens-daniel-mueller 2020-12-07 Build site.
html 6a8004b jens-daniel-mueller 2020-12-07 Build site.
html 70bf1a5 jens-daniel-mueller 2020-12-07 Build site.
html 7555355 jens-daniel-mueller 2020-12-07 Build site.
html 143d6fa jens-daniel-mueller 2020-12-07 Build site.
html 3c8a83c jens-daniel-mueller 2020-12-04 Build site.
Rmd e11f455 jens-daniel-mueller 2020-12-04 improved output plots by using stat_2d instead of points
html abc6818 jens-daniel-mueller 2020-12-03 Build site.
Rmd 992ba15 jens-daniel-mueller 2020-12-03 rebuild with variable inventory depth
html c8c2e7b jens-daniel-mueller 2020-12-03 Build site.
Rmd 83203db jens-daniel-mueller 2020-12-03 calculate cant with variable inventory depth
html 090e4d5 jens-daniel-mueller 2020-12-02 Build site.
html 7c25f7a jens-daniel-mueller 2020-12-02 Build site.
html ec8dc38 jens-daniel-mueller 2020-12-02 Build site.
html dfde8b7 jens-daniel-mueller 2020-12-02 Build site.
html c987de1 jens-daniel-mueller 2020-12-02 Build site.
html 902f65a jens-daniel-mueller 2020-12-02 Build site.
Rmd 1d71aff jens-daniel-mueller 2020-12-02 revised plots in mapping steps
html f8358f8 jens-daniel-mueller 2020-12-02 Build site.
Rmd 3ba472c jens-daniel-mueller 2020-12-02 revised plots in mapping steps
html b03ddb8 jens-daniel-mueller 2020-12-02 Build site.
Rmd 9183e8f jens-daniel-mueller 2020-12-02 revised assignment of era to eras
html 22d0127 jens-daniel-mueller 2020-12-01 Build site.
html 0ff728b jens-daniel-mueller 2020-12-01 Build site.
html f8f449c jens-daniel-mueller 2020-12-01 Build site.
Rmd bcfa1a9 jens-daniel-mueller 2020-12-01 auto eras naming
html cf19652 jens-daniel-mueller 2020-11-30 Build site.
Rmd 2842970 jens-daniel-mueller 2020-11-30 cleaned for eMLR part only
html 196be51 jens-daniel-mueller 2020-11-30 Build site.
Rmd 7a4b015 jens-daniel-mueller 2020-11-30 first rebuild on ETH server
Rmd bc61ce3 Jens Müller 2020-11-30 Initial commit
html bc61ce3 Jens Müller 2020-11-30 Initial commit

1 Predictor fields

Currently, we use combined predictor fields:

  • WOA18: S, T, and derived variables
  • GLODAP16: Oxygen, PO4, NO3, Silicate, and derived variables
predictors <-
  read_csv(paste(path_version_data,
                 "W18_st_G16_opsn.csv",
                 sep = ""))

predictors_surface <-
  read_csv(paste(path_version_data,
                 "W18_st_G16_opsn_surface.csv",
                 sep = ""))

2 Atm. pCO2

co2_atm_tref <-
  read_csv(paste(path_version_data,
                 "co2_atm_tref.csv",
                 sep = ""))

3 Load MLR models

lm_all_wide <-
  read_csv(paste(path_version_data,
                 "lm_all_cant.csv",
                 sep = ""))

4 Merge MLRs + climatologies

lm_all_wide <- lm_all_wide %>% 
  mutate(model = str_remove(model, "Cstar ~ "))
   
cant <- full_join(predictors, lm_all_wide)

rm(predictors, lm_all_wide)

5 Map cant

5.1 Deep water

5.2 Apply MLRs to predictor

cant <- b_cant(cant)

5.2.1 Sections by model

Zonal sections plots are produced for every 20° longitude, each era and for all models individually and can be downloaded here.

if (params_local$plot_all_figures == "y") {

for (i_eras in unique(cant$eras)) {
  # i_eras <- unique(cant$eras)[2]
  cant_eras <- cant %>%
    filter(eras == i_eras)
  
  for (i_lon in params_global$longitude_sections_regular) {
    # i_lon <- params_global$longitude_sections_regular[7]
    cant_eras_lon <- cant_eras %>%
      filter(lon == i_lon)
    
    limits = max(abs(cant_eras_lon$cant)) * c(-1,1)
    
    cant_eras_lon %>%
      ggplot(aes(lat, depth, z = cant)) +
      stat_summary_2d(fun = "mean",
                      na.rm = TRUE,
                      bins = 20,
                      col = "grey") +
      scale_fill_scico(
        name = "Cant",
        palette = "vik",
        limit = limits
      ) +
      scale_y_reverse(limits = c(params_global$plotting_depth,NA)) +
      scale_x_continuous(limits = c(-85, 85)) +
      labs(title = paste("eras:", i_eras,
                         "| lon:", i_lon,
                         "|", params_local$Version_ID)) +
      facet_wrap( ~ model, ncol = 5)
    
    ggsave(
      paste(
        path_version_figures,
        "Cant_model_sections/",
        paste("Cant_model",
              i_eras,
              "lon",
              i_lon,
              "section.png",
              sep = "_"),
        sep = ""
      ),
      width = 17,
      height = 9
    )
    
  }
}
}

5.3 Surface water

As outlined in Gruber et al. (2019), a transient equilibrium approach was applied to estimate cant in surface waters, assuming that the CO2 system in these waters has followed the increase in atmospheric CO2 closely.

Using eq 10.2.16 from OBD, the change in anthropogenic CO2 in the upper ocean was computed as:

tCant,eq(t2,ref − t1,ref) = 1∕γ ⋅ DIC/pCO2 ⋅ (pCO2atm (t2ref)− pCO2atm (t1ref))

, where DIC and pCO2 are the in situ values, where γ is the buffer (Revelle) factor and where we evaluated the right-hand side using seacarb employing the Mehrbach constants as refitted by Dickson and Millero using the climatological values for temperature, salinity, DIC and Alk.

5.3.1 pCO2 climatology

# calculate pCO2 from talk and tco2 climatology
predictors_surface <- predictors_surface %>% 
  mutate(pCO2 = carb(flag = 15,
                     var1 = TAlk*1e-6,
                     var2 = TCO2*1e-6,
                     S = sal,
                     T = temp,
                     P = depth/10,
                     Pt = phosphate*1e-6,
                     Sit = silicate*1e-6,
                     k1k2 = "l")$pCO2)
p_map_climatology(
  df = predictors_surface,
  var = "pCO2")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_section_climatology_regular(
  df = predictors_surface,
  var = "pCO2")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
f8358f8 jens-daniel-mueller 2020-12-02
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5.3.2 Revelle factor

predictors_surface <- predictors_surface %>% 
  mutate(rev_fac = buffer(flag = 15,
                     var1 = TAlk*1e-6,
                     var2 = TCO2*1e-6,
                     S = sal,
                     T = temp,
                     P = depth/10,
                     Pt = phosphate*1e-6,
                     Sit = silicate*1e-6,
                     k1k2 = "l")$BetaD)
p_map_climatology(
  df = predictors_surface,
  var = "rev_fac")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_section_climatology_regular(
  df = predictors_surface,
  var = "rev_fac")

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
f8358f8 jens-daniel-mueller 2020-12-02
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5.3.3 Cant

# calculate increase in atm pCO2 between eras
co2_atm_tref <- co2_atm_tref %>% 
  arrange(pCO2_tref) %>% 
  mutate(d_pCO2_tref = pCO2_tref - lag(pCO2_tref),
         eras = paste(lag(era), era, sep = " --> ")) %>% 
  drop_na() %>% 
  select(eras, d_pCO2_tref)

cant_surface <- full_join(predictors_surface, co2_atm_tref,
                          by = character())

# calculate cant
cant_surface <- cant_surface %>% 
  mutate(cant = (1 / rev_fac) * (TCO2 / pCO2) * d_pCO2_tref)

# calculate positive cant
cant_surface <- cant_surface %>%
  mutate(cant_pos = if_else(cant < 0, 0, cant))
# i_eras <- unique(cant_average$eras)[2]

for (i_eras in unique(cant_surface$eras)) {
  print(
    p_map_climatology(df = cant_surface %>% filter(eras == i_eras),
                      var = "cant")  +
      labs(subtitle = paste("era:", i_eras))
  )
  
}

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
f8358f8 jens-daniel-mueller 2020-12-02
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
# i_eras <- unique(cant_surface$eras)[2]

for (i_eras in unique(cant_surface$eras)) {
  print(
    p_section_climatology_regular(df = cant_surface %>% filter(eras == i_eras),
                                  var = "cant") +
      labs(subtitle = paste("era:", i_eras))
  )
  
}

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
f8358f8 jens-daniel-mueller 2020-12-02
b03ddb8 jens-daniel-mueller 2020-12-02
22d0127 jens-daniel-mueller 2020-12-01
0ff728b jens-daniel-mueller 2020-12-01
f8f449c jens-daniel-mueller 2020-12-01
cf19652 jens-daniel-mueller 2020-11-30
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
3ebff89 jens-daniel-mueller 2020-12-12
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02

5.4 Mean Cant fields

Mean and sd are calculated for cant in each grid cell (XYZ), basin and era combination. Calculations are performed for all cant values vs positive values only. This averaging step summarizes the information derived from ten best fitting MLRs.

5.4.1 Deep water averaging

cant_average <- m_cant_model_average(cant)
cant_average <- m_cut_gamma(cant_average, "gamma")

# split data set for individual predictor contributions and total cant
cant_predictor_average <- cant_average %>% 
  select(-c("cant", "cant_pos", ends_with("_sd")))

cant_average <- cant_average %>% 
  select(lon, lat, depth, eras, basin, basin_AIP,
            cant, cant_pos, cant_sd, cant_pos_sd,
            gamma, gamma_sd, gamma_slab)
# i_eras <- unique(cant_average$eras)[2]

for (i_eras in unique(cant_surface$eras)) {
  print(
    p_map_climatology(
      df = cant_average %>% filter(eras == i_eras),
      var = "cant_pos",
      subtitle_text = paste("era:", i_eras)
    )
  )
  
}

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
090e4d5 jens-daniel-mueller 2020-12-02
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
090e4d5 jens-daniel-mueller 2020-12-02
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02
# i_eras <- unique(cant_surface$eras)[2]

for (i_eras in unique(cant_surface$eras)) {
  print(
    p_section_climatology_regular(
      df = cant_average %>% filter(eras == i_eras),
      var = "cant_pos",
      subtitle_text = paste("era:", i_eras)
    )
  )
}

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
090e4d5 jens-daniel-mueller 2020-12-02
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03
090e4d5 jens-daniel-mueller 2020-12-02
7c25f7a jens-daniel-mueller 2020-12-02
902f65a jens-daniel-mueller 2020-12-02

5.4.2 Surface water averaging

cant_surface_average <- m_cant_model_average(cant_surface)
cant_surface_average <- m_cut_gamma(cant_surface_average, "gamma")
rm(cant_surface)

5.4.3 Join surface and deep water

cant_average <- full_join(cant_average, cant_surface_average)
rm(cant_surface_average)

5.5 Mean cant sections

For each basin and era combination, the zonal mean cant is calculated, again for all vs positive only values. Likewise, sd is calculated for the averaging of the mean basin fields.

cant_average_zonal <- m_cant_zonal_mean(cant_average)
cant_average_zonal <- m_cut_gamma(cant_average_zonal, "gamma_mean")

5.6 Mean cant sections by coefficient

For each basin and era combination, the zonal mean cant is calculated by model coefficient.

cant_predictor_average_zonal <-
  m_cant_predictor_zonal_mean(cant_predictor_average)

cant_predictor_average_zonal <-
  m_cut_gamma(cant_predictor_average_zonal, "gamma")

5.7 Inventory calculation

To calculate cant column inventories, we:

  1. Multiple layer thickness with cant concentration to get a layer inventory
  2. For each horizontal grid cell and era, sum cant layer inventories from 150 - 3000 m

Step 2 is performed again for all cant and positive cant values only

cant_inv <- m_cant_inv(cant_average)

p_map_cant_inv(
  df = cant_inv,
  var = "cant_pos_inv",
  subtitle_text = "for predefined integration depths"
) +
  facet_grid(inv_depth ~ eras)

Version Author Date
984697e jens-daniel-mueller 2020-12-12
3ebff89 jens-daniel-mueller 2020-12-12
7788175 jens-daniel-mueller 2020-12-09
24a632f jens-daniel-mueller 2020-12-07
6a8004b jens-daniel-mueller 2020-12-07
70bf1a5 jens-daniel-mueller 2020-12-07
7555355 jens-daniel-mueller 2020-12-07
143d6fa jens-daniel-mueller 2020-12-07
abc6818 jens-daniel-mueller 2020-12-03

6 Write csv

cant_average %>%
  write_csv(paste(path_version_data,
                  "cant_3d.csv", sep = ""))

cant_predictor_average %>%
  write_csv(paste(path_version_data,
                  "cant_predictor_3d.csv", sep = ""))

cant_average_zonal %>%
  write_csv(paste(path_version_data,
                  "cant_zonal.csv", sep = ""))

cant_predictor_average_zonal %>%
  write_csv(paste(path_version_data,
                  "cant_predictor_zonal.csv", sep = ""))

cant_inv %>%
  write_csv(paste(path_version_data,
                  "cant_inv.csv", sep = ""))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.1

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] seacarb_3.2.14  oce_1.2-0       gsw_1.0-5       testthat_3.0.0 
 [5] metR_0.9.0      scico_1.2.0     patchwork_1.1.0 collapse_1.4.2 
 [9] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2     purrr_0.3.4    
[13] readr_1.4.0     tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.2  
[17] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               jsonlite_1.7.1           viridisLite_0.3.0       
 [4] here_0.1                 modelr_0.1.8             assertthat_0.2.1        
 [7] blob_1.2.1               cellranger_1.1.0         yaml_2.2.1              
[10] pillar_1.4.7             backports_1.1.10         lattice_0.20-41         
[13] glue_1.4.2               RcppEigen_0.3.3.7.0      digest_0.6.27           
[16] promises_1.1.1           checkmate_2.0.0          rvest_0.3.6             
[19] colorspace_2.0-0         htmltools_0.5.0          httpuv_1.5.4            
[22] Matrix_1.2-18            pkgconfig_2.0.3          broom_0.7.2             
[25] haven_2.3.1              scales_1.1.1             whisker_0.4             
[28] later_1.1.0.1            git2r_0.27.1             farver_2.0.3            
[31] generics_0.0.2           ellipsis_0.3.1           withr_2.3.0             
[34] cli_2.2.0                magrittr_2.0.1           crayon_1.3.4            
[37] readxl_1.3.1             evaluate_0.14            fs_1.5.0                
[40] fansi_0.4.1              xml2_1.3.2               RcppArmadillo_0.10.1.2.0
[43] tools_4.0.3              data.table_1.13.2        hms_0.5.3               
[46] lifecycle_0.2.0          munsell_0.5.0            reprex_0.3.0            
[49] isoband_0.2.2            compiler_4.0.3           rlang_0.4.9             
[52] grid_4.0.3               rstudioapi_0.13          labeling_0.4.2          
[55] rmarkdown_2.5            gtable_0.3.0             DBI_1.1.0               
[58] R6_2.5.0                 lubridate_1.7.9          knitr_1.30              
[61] rprojroot_2.0.2          stringi_1.5.3            parallel_4.0.3          
[64] Rcpp_1.0.5               vctrs_0.3.5              dbplyr_1.4.4            
[67] tidyselect_1.1.0         xfun_0.18