Last updated: 2021-03-23

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 6601b92. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   code/Workflowr_project_managment.R
    Modified:   data/auxillary/params_local.rds

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_predictor_preparation.Rmd) and HTML (docs/mapping_predictor_preparation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 380d215 jens-daniel-mueller 2021-03-21 Build site.
html 33b385b jens-daniel-mueller 2021-03-20 Build site.
html 330dcd0 jens-daniel-mueller 2021-03-20 Build site.
html 83a13de jens-daniel-mueller 2021-03-20 Build site.
html cf98c6d jens-daniel-mueller 2021-03-16 Build site.
Rmd a9930ea jens-daniel-mueller 2021-03-16 one thick slab
html a1d52ff jens-daniel-mueller 2021-03-15 Build site.
html 0bade3b jens-daniel-mueller 2021-03-15 Build site.
html 27c1f4b jens-daniel-mueller 2021-03-14 Build site.
html af75ebf jens-daniel-mueller 2021-03-14 Build site.
html 5017709 jens-daniel-mueller 2021-03-11 Build site.
html 585b07f jens-daniel-mueller 2021-03-11 Build site.
html 6482ed7 jens-daniel-mueller 2021-03-11 Build site.
html 85a5ed2 jens-daniel-mueller 2021-03-10 Build site.
html 00688a1 jens-daniel-mueller 2021-03-05 Build site.
html 6c0bec6 jens-daniel-mueller 2021-03-05 Build site.
html 3c2ec33 jens-daniel-mueller 2021-03-05 Build site.
html af70b94 jens-daniel-mueller 2021-03-04 Build site.
html 86406d5 jens-daniel-mueller 2021-02-24 Build site.
html 3d3b4cc jens-daniel-mueller 2021-02-23 Build site.
html 7b672f7 jens-daniel-mueller 2021-01-11 Build site.
html e5c81bf jens-daniel-mueller 2021-01-07 Build site.
Rmd fe13638 jens-daniel-mueller 2021-01-07 removed GLODAP gamma filter, target variable mapped by eras+era
html 318609d jens-daniel-mueller 2020-12-23 adapted more variable predictor selection
html ae8463c jens-daniel-mueller 2020-12-23 Build site.
Rmd 689843e jens-daniel-mueller 2020-12-23 test 106
html 0aa2b50 jens-daniel-mueller 2020-12-23 remove html before duplication
html 39113c3 jens-daniel-mueller 2020-12-23 Build site.
html 2886da0 jens-daniel-mueller 2020-12-19 Build site.
html 02f0ee9 jens-daniel-mueller 2020-12-18 cleaned up for copying template
html 965dba3 jens-daniel-mueller 2020-12-18 Build site.
html 5d452fe jens-daniel-mueller 2020-12-18 Build site.
Rmd ca65bf5 jens-daniel-mueller 2020-12-18 rebuild after final cleaning
html 7bcb4eb jens-daniel-mueller 2020-12-18 Build site.
html d397028 jens-daniel-mueller 2020-12-18 Build site.
html 7131186 jens-daniel-mueller 2020-12-17 Build site.
html 22b07fb jens-daniel-mueller 2020-12-17 Build site.
html f3a708f jens-daniel-mueller 2020-12-17 Build site.
html e4ca289 jens-daniel-mueller 2020-12-16 Build site.
html 158fe26 jens-daniel-mueller 2020-12-15 Build site.
html 7a9a4cb jens-daniel-mueller 2020-12-15 Build site.
html 61b263c jens-daniel-mueller 2020-12-15 Build site.
html 4d612dd jens-daniel-mueller 2020-12-15 Build site.
html e91cebd jens-daniel-mueller 2020-12-15 Build site.
html f9da012 jens-daniel-mueller 2020-12-15 Build site.
html 953caf3 jens-daniel-mueller 2020-12-15 Build site.
html 42daf5c jens-daniel-mueller 2020-12-14 Build site.
Rmd 923aa7f jens-daniel-mueller 2020-12-14 rebuild with new path and auto folder creation
html 984697e jens-daniel-mueller 2020-12-12 Build site.
html 3ebff89 jens-daniel-mueller 2020-12-12 Build site.
Rmd a1aaa71 jens-daniel-mueller 2020-12-12 selectable basinmask, rebuild
html b01a367 jens-daniel-mueller 2020-12-09 Build site.
html 24a632f jens-daniel-mueller 2020-12-07 Build site.
html 92dca91 jens-daniel-mueller 2020-12-07 Build site.
html 6a8004b jens-daniel-mueller 2020-12-07 Build site.
html 70bf1a5 jens-daniel-mueller 2020-12-07 Build site.
html 7555355 jens-daniel-mueller 2020-12-07 Build site.
html 143d6fa jens-daniel-mueller 2020-12-07 Build site.
html abc6818 jens-daniel-mueller 2020-12-03 Build site.
html 090e4d5 jens-daniel-mueller 2020-12-02 Build site.
html 7c25f7a jens-daniel-mueller 2020-12-02 Build site.
html ec8dc38 jens-daniel-mueller 2020-12-02 Build site.
html c987de1 jens-daniel-mueller 2020-12-02 Build site.
html f8358f8 jens-daniel-mueller 2020-12-02 Build site.
html b03ddb8 jens-daniel-mueller 2020-12-02 Build site.
html 22d0127 jens-daniel-mueller 2020-12-01 Build site.
html 0ff728b jens-daniel-mueller 2020-12-01 Build site.
html f8f449c jens-daniel-mueller 2020-12-01 Build site.
html cf19652 jens-daniel-mueller 2020-11-30 Build site.
html 196be51 jens-daniel-mueller 2020-11-30 Build site.
Rmd 7a4b015 jens-daniel-mueller 2020-11-30 first rebuild on ETH server
Rmd bc61ce3 Jens Müller 2020-11-30 Initial commit
html bc61ce3 Jens Müller 2020-11-30 Initial commit

1 Required data

Currently, following data sets are used for mapping:

  • GLODAPv2_2016b_MappedClimatologies, with variables
    • Phosphate (-> phosphate_star)
    • Silicate
    • Oxygen (-> AOU)
    • TAlk (surface only)
    • TCO2 (surface only)
variables <-
  c("oxygen", "PO4", "silicate", "NO3", "TAlk")

# i_variable <- variables[1]

for (i_variable in variables) {
  temp <- read_csv(paste(
    path_preprocessing,
    paste("GLODAPv2_2016_MappedClimatology_", i_variable, ".csv", sep = ""),
    sep = ""
  ))
  
  if (exists("GLODAP_predictors")) {
    GLODAP_predictors <- full_join(GLODAP_predictors, temp)
  }
  
  if (!exists("GLODAP_predictors")) {
    GLODAP_predictors <- temp
  }
}

rm(temp, i_variable, variables)

GLODAP_predictors <- GLODAP_predictors %>%
  rename(phosphate = PO4,
         nitrate = NO3,
         talk = TAlk)

# removed na's attributable to slightly different coverage of predictor fields
GLODAP_predictors <- GLODAP_predictors %>%
  drop_na()
variables <-
  c("PO4", "silicate", "TAlk", "TCO2")

for (i_variable in variables) {
  temp <- read_csv(paste(
    path_preprocessing,
    paste("GLODAPv2_2016_MappedClimatology_", i_variable, ".csv", sep = ""),
    sep = ""
  ))
  
  if (exists("GLODAP_predictors_CO2")) {
    GLODAP_predictors_CO2 <- full_join(GLODAP_predictors_CO2, temp)
  }
  
  if (!exists("GLODAP_predictors_CO2")) {
    GLODAP_predictors_CO2 <- temp
  }
}

rm(temp, i_variable, variables)


GLODAP_predictors_CO2 <- GLODAP_predictors_CO2 %>%
  rename(phosphate = PO4)

# removed na's attributable to slightly different coverage of predictor fields
GLODAP_predictors_CO2 <- GLODAP_predictors_CO2 %>%
  drop_na()
  • World Ocean Atlas 2018
    • Salinity
    • Temperature
    • Neutral density
WOA18_predictors <-
  read_csv(paste(path_preprocessing,
                 "WOA18_sal_temp.csv",
                 sep = ""))

2 Join WOA18 + GLODAP

WOA18 and GLODAP predictor climatologies are merged. Only horizontal grid cells with observations from both predictor fields are kept.

# join deep water predictors
predictors <- full_join(
  GLODAP_predictors,
  WOA18_predictors)

rm(GLODAP_predictors)

predictors <- predictors %>% 
  drop_na()

# join surface water predictors
predictors_surface <- full_join(
  GLODAP_predictors_CO2,
  WOA18_predictors)

predictors_surface <- predictors_surface %>% 
  drop_na()

2.1 Apply density threshold

The predictor field was split into two parts:

  1. Deep water: neutral densities >= 26 and depth >= 150m
  2. Shallow water: rest
# predictors for deep waters
predictors <- predictors %>%
  filter(depth >= params_local$depth_min | gamma >= params_local$gamma_min)

# predictors for surface waters
predictors_surface <- predictors_surface %>%
  filter(depth < params_local$depth_min,
         gamma < params_local$gamma_min)

2.2 Apply basin mask

Data outside the WOA18 basin mask were removed for further analysis.

predictors <- inner_join(predictors, basinmask)
predictors_surface <- inner_join(predictors_surface, basinmask)

2.3 Control plots

Plots below are generated to control successful merging of data sets.

2.3.1 Maps interior

p_map_climatology(
  df = predictors, 
  var = "phosphate")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_map_climatology(
  df = predictors, 
  var = "temp")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12

2.3.2 Maps surface

p_map_climatology(
  df = predictors_surface, 
  var = "TAlk")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_map_climatology(
  df = predictors_surface, 
  var = "TCO2")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_map_climatology(
  df = predictors_surface, 
  var = "sal")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
p_map_climatology(
  df = predictors_surface, 
  var = "temp")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12

2.3.3 Predictor profiles

Likewise, predictor profiles for the North Atlantic (40.5 / 335.5) are plotted to control successful merging of the data sets.

# subset data
N_Atl <- predictors %>% 
  filter(lat == params_global$lat_Atl_profile,
         lon == params_global$lon_Atl_section)

# pivot table to long format
N_Atl <- N_Atl %>% 
  select(-c(basin, basin_AIP)) %>% 
  pivot_longer(c(any_of(params_local$MLR_predictors), gamma),
               names_to = "parameter", values_to = "value")

# plot profiles
N_Atl %>% 
  ggplot(aes(value, depth)) +
  geom_path() +
  geom_point() +
  scale_y_reverse() +
  facet_wrap(~parameter,
             scales = "free_x",
             ncol = 2)

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
rm(N_Atl)

3 Prepare predictor fields

Additional predictor fields need to calculated from available climatologies

3.1 PO4* calculation

The predictor PO4* was be calculated according to Clement and Gruber (2018), ie based on oxygen. Please note that an erroneous equations for PO4* calculation is given in the supplement of Gruber et al (2019), based on nitrate.

predictors <- predictors %>%
  mutate(phosphate_star = b_phosphate_star(phosphate, oxygen))

3.1.1 Maps

p_map_climatology(
  df = predictors,
  var = "phosphate_star",
  col = "divergent")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.1.2 Global section

p_section_global(
  df = predictors,
  var = "phosphate_star",
  col = "divergent")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.2 AOU

3.2.1 Calculation

AOU was calculated as the difference between saturation concentration and observed concentration. CAVEAT: Algorithms used to calculate oxygen saturation concentration are not yet identical in GLODAP data set (fitting) and predictor climatologies (mapping).

predictors <- predictors %>% 
  mutate(aou = b_aou(
    sal = sal,
    tem = temp,
    depth = depth,
    oxygen = oxygen))

3.2.2 Maps

p_map_climatology(
  df = predictors,
  var = "aou",
  col = "divergent")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.2.3 Global section

p_section_global(
  df = predictors,
  var = "aou",
  col = "divergent")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
3ebff89 jens-daniel-mueller 2020-12-12
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

3.3 Isoneutral slabs

The following boundaries for isoneutral slabs were defined:

  • Atlantic: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1, 28.15, 28.2,
  • Indo-Pacific: -, 26, 26.5, 26.75, 27, 27.25, 27.5, 27.75, 27.85, 27.95, 28.05, 28.1,

Continuous neutral density (gamma) values based on WOA18 are grouped into isoneutral slabs.

predictors <- m_cut_gamma(predictors, "gamma")

4 Plot al predictor sections

4.1 Deep waters

Predictor sections along with lines are shown below for each (potential) predictor variable.

map +
  geom_bin2d(data = predictors,
             aes(lon, lat),
             binwidth = c(1,1)) +
  geom_vline(xintercept = params_global$longitude_sections_regular,
             col = "white") +
  scale_fill_viridis_c(direction = -1)

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
for (i_var in params_local$MLR_predictors) {
  print(
    p_section_climatology_regular(
      df = predictors,
      var = i_var)
    )
}

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

4.2 Surface waters

Predictor sections along with lines are shown below for each (potential) predictor variable.

map +
  geom_bin2d(data = predictors_surface,
             aes(lon, lat),
             binwidth = c(1,1)) +
  geom_vline(xintercept = params_global$longitude_sections_regular,
             col = "white") +
  scale_fill_viridis_c(direction = -1) +
  theme(legend.position = "bottom")

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30
vars <-
  c(
    "gamma",
    "sal",
    "temp",
    "TCO2",
    "TAlk"
  )

# i_var <- vars[1]

for (i_var in vars) {
  print(
    p_section_climatology_regular(
      df = predictors_surface,
      var = i_var,
      surface = "y")
    )
}

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

Version Author Date
e5c81bf jens-daniel-mueller 2021-01-07
318609d jens-daniel-mueller 2020-12-23
ae8463c jens-daniel-mueller 2020-12-23
0aa2b50 jens-daniel-mueller 2020-12-23
2886da0 jens-daniel-mueller 2020-12-19
02f0ee9 jens-daniel-mueller 2020-12-18
5d452fe jens-daniel-mueller 2020-12-18
e4ca289 jens-daniel-mueller 2020-12-16
3ebff89 jens-daniel-mueller 2020-12-12
f8358f8 jens-daniel-mueller 2020-12-02
196be51 jens-daniel-mueller 2020-11-30
bc61ce3 Jens Müller 2020-11-30

5 Write csv

predictors %>%
  write_csv(paste(path_version_data,
                  "W18_st_G16_opsn.csv",
                  sep = ""))

predictors_surface %>%
  write_csv(paste(path_version_data,
                  "W18_st_G16_opsn_surface.csv",
                  sep = ""))

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gsw_1.0-5       testthat_2.3.2  marelac_2.1.10  shape_1.4.5    
 [5] metR_0.9.0      scico_1.2.0     patchwork_1.1.1 collapse_1.5.0 
 [9] forcats_0.5.0   stringr_1.4.0   dplyr_1.0.2     purrr_0.3.4    
[13] readr_1.4.0     tidyr_1.1.2     tibble_3.0.4    ggplot2_3.3.2  
[17] tidyverse_1.3.0 workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] httr_1.4.2               viridisLite_0.3.0        jsonlite_1.7.1          
 [4] here_0.1                 modelr_0.1.8             assertthat_0.2.1        
 [7] blob_1.2.1               cellranger_1.1.0         yaml_2.2.1              
[10] pillar_1.4.7             backports_1.1.10         lattice_0.20-41         
[13] glue_1.4.2               RcppEigen_0.3.3.7.0      digest_0.6.27           
[16] promises_1.1.1           checkmate_2.0.0          rvest_0.3.6             
[19] colorspace_1.4-1         htmltools_0.5.0          httpuv_1.5.4            
[22] Matrix_1.2-18            pkgconfig_2.0.3          broom_0.7.2             
[25] seacarb_3.2.14           haven_2.3.1              scales_1.1.1            
[28] whisker_0.4              later_1.1.0.1            git2r_0.27.1            
[31] farver_2.0.3             generics_0.0.2           ellipsis_0.3.1          
[34] withr_2.3.0              cli_2.1.0                magrittr_1.5            
[37] crayon_1.3.4             readxl_1.3.1             evaluate_0.14           
[40] fs_1.5.0                 fansi_0.4.1              xml2_1.3.2              
[43] RcppArmadillo_0.10.1.2.0 oce_1.2-0                tools_4.0.3             
[46] data.table_1.13.2        hms_0.5.3                lifecycle_0.2.0         
[49] munsell_0.5.0            reprex_0.3.0             isoband_0.2.2           
[52] compiler_4.0.3           rlang_0.4.9              grid_4.0.3              
[55] rstudioapi_0.13          labeling_0.4.2           rmarkdown_2.5           
[58] gtable_0.3.0             DBI_1.1.0                R6_2.5.0                
[61] lubridate_1.7.9          knitr_1.30               rprojroot_2.0.2         
[64] stringi_1.5.3            parallel_4.0.3           Rcpp_1.0.5              
[67] vctrs_0.3.5              dbplyr_1.4.4             tidyselect_1.1.0        
[70] xfun_0.18