Last updated: 2021-08-09
Checks: 7 0
Knit directory: emlr_obs_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version dd6419c. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mapping_dcant_eMLR.Rmd
) and HTML (docs/mapping_dcant_eMLR.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | cd8e0d5 | jens-daniel-mueller | 2021-08-06 | Build site. |
html | 15773a0 | jens-daniel-mueller | 2021-08-06 | included calculation of revelle factor |
Rmd | d694e17 | jens-daniel-mueller | 2021-08-06 | included calculation of revelle factor |
html | da61d1a | jens-daniel-mueller | 2021-08-06 | Build site. |
Rmd | 39bfacc | jens-daniel-mueller | 2021-08-06 | test with one global basin separation |
html | 1010198 | jens-daniel-mueller | 2021-08-06 | Build site. |
Rmd | 3a35523 | jens-daniel-mueller | 2021-08-06 | compare surface obs and equi dcant estimates |
html | 8933b37 | jens-daniel-mueller | 2021-08-06 | Build site. |
Rmd | a9e032a | jens-daniel-mueller | 2021-08-06 | plot decadel changes of surface obs |
html | 340d731 | jens-daniel-mueller | 2021-08-06 | Build site. |
html | 71546e4 | jens-daniel-mueller | 2021-08-06 | test with stricter CANYON-B filtering |
Rmd | 9486592 | jens-daniel-mueller | 2021-08-06 | test with stricter CANYON-B filtering |
Rmd | b3c194b | jens-daniel-mueller | 2021-08-05 | test with cruise and sample bases CANYON-B filtering |
html | 29444a1 | jens-daniel-mueller | 2021-08-05 | Build site. |
html | 42e80c0 | jens-daniel-mueller | 2021-08-04 | Build site. |
html | 48f6eed | jens-daniel-mueller | 2021-08-04 | Build site. |
Rmd | 7499718 | jens-daniel-mueller | 2021-08-04 | test with eMLR to surface |
html | e92e157 | jens-daniel-mueller | 2021-08-04 | Build site. |
Rmd | de8536c | jens-daniel-mueller | 2021-08-04 | test surface dcant calculation from surface ocean data |
html | 9736844 | jens-daniel-mueller | 2021-08-04 | Build site. |
Rmd | e63af81 | jens-daniel-mueller | 2021-08-04 | test surface dcant calculation from surface ocean data |
html | 1c597ab | jens-daniel-mueller | 2021-08-04 | Build site. |
html | 81a46a4 | jens-daniel-mueller | 2021-08-03 | Build site. |
html | b88c61b | jens-daniel-mueller | 2021-08-03 | Build site. |
Rmd | 02fbeae | jens-daniel-mueller | 2021-08-03 | test with strict CANYON-B offset threshold |
html | 0f0d5e5 | jens-daniel-mueller | 2021-08-03 | Build site. |
html | a53656d | jens-daniel-mueller | 2021-08-03 | Build site. |
html | 88f7356 | jens-daniel-mueller | 2021-08-02 | Build site. |
html | d759279 | jens-daniel-mueller | 2021-08-02 | Build site. |
html | 127b801 | jens-daniel-mueller | 2021-07-24 | Build site. |
html | 1f65ef1 | jens-daniel-mueller | 2021-07-23 | Build site. |
html | 912d90e | jens-daniel-mueller | 2021-07-23 | Build site. |
html | 2477316 | jens-daniel-mueller | 2021-07-23 | rebuild: surface dcant mapping seperate |
html | c9ccc00 | jens-daniel-mueller | 2021-07-22 | Build site. |
Rmd | 6a7f226 | jens-daniel-mueller | 2021-07-22 | surface dcant mapping seperate |
html | f3c0d7a | jens-daniel-mueller | 2021-07-22 | Build site. |
Rmd | 203223f | jens-daniel-mueller | 2021-07-22 | surface dcant mapping seperate |
html | c75b2a0 | jens-daniel-mueller | 2021-07-22 | Build site. |
Rmd | 7d6951d | jens-daniel-mueller | 2021-07-22 | surface dcant mapping seperate |
html | 768ae83 | jens-daniel-mueller | 2021-07-22 | Build site. |
Rmd | 17db872 | jens-daniel-mueller | 2021-07-22 | surface dcant mapping with surface data only |
html | 426b2df | jens-daniel-mueller | 2021-07-21 | Build site. |
html | 78fe930 | jens-daniel-mueller | 2021-07-21 | Build site. |
Rmd | ee0e941 | jens-daniel-mueller | 2021-07-21 | surface dcant mapping with preformed DIC |
html | 971ce87 | jens-daniel-mueller | 2021-07-13 | Build site. |
Rmd | 89d9fcb | jens-daniel-mueller | 2021-07-13 | complete revision |
html | bef1b71 | jens-daniel-mueller | 2021-07-09 | Build site. |
Rmd | f682536 | jens-daniel-mueller | 2021-07-09 | complete revision |
The results displayed on this site correspond to the Version_ID: v_XXX
Currently, we use following combined predictor fields:
predictors <-
read_csv(paste(path_version_data,
"W18_st_G16_opsn.csv",
sep = ""))
predictors_surface <-
read_csv(paste(path_version_data,
"W18_st_G16_opsn_surface.csv",
sep = ""))
# check if surface data exist
surface_data <- nrow(predictors_surface) > 0
tref <-
read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
variables <-
c("dissicos", "talkos", "po4os", "spco2", "tos")
for (i_variable in variables) {
temp <- read_csv(paste0(
path_root,
"/model/preprocessing/surface_ocean_A/", i_variable, ".csv")
)
if (exists("surface_mod")) {
surface_mod <- full_join(surface_mod, temp)
}
if (!exists("surface_mod")) {
surface_mod <- temp
}
}
rm(temp, i_variable, variables)
surface_obs <- read_csv(paste0(
path_observations,
"preprocessing/OceanSODA.csv")
)
Required only to estimate the change of dcant in surface water and assuming that the ocean pCO2 trend follows the atmospheric forcing.
co2_atm_tref <-
read_csv(paste(path_version_data,
"co2_atm_tref.csv",
sep = ""))
lm_best_dcant <-
read_csv(paste(path_version_data,
"lm_best_dcant.csv",
sep = ""))
tcant_tref_1 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_AD",
"/cant_",
unique(tref$median_year[1]),
".csv",
sep = ""
)
)
tcant_tref_1 <- tcant_tref_1 %>%
rename(tcant_tref_1 = cant_total) %>%
select(-year)
tcant_tref_2 <-
read_csv(
paste(
path_model_preprocessing,
"cant_annual_field_AD",
"/cant_",
unique(tref$median_year[2]),
".csv",
sep = ""
)
)
tcant_tref_2 <- tcant_tref_2 %>%
rename(tcant_tref_2 = cant_total) %>%
select(-year)
dcant_3d <- left_join(tcant_tref_1, tcant_tref_2) %>%
mutate(dcant = tcant_tref_2 - tcant_tref_1)
rm(tcant_tref_1, tcant_tref_2)
dcant_3d <- dcant_3d %>%
mutate(dcant_pos = if_else(dcant <= 0, 0, dcant))
dcant_surface_mod_truth <- dcant_3d %>%
filter(depth == 5)
rm(dcant_3d)
# remove predictor variable from model
lm_best_dcant <- lm_best_dcant %>%
mutate(model = str_remove(model, paste(params_local$MLR_target, "~ ")))
# join predictors and MLR
dcant <- left_join(lm_best_dcant, predictors)
rm(predictors, lm_best_dcant)
dcant <- b_dcant(dcant)
Zonal section plots are produced for every 20° longitude, each era and for all models individually. Plots can be accessed here:
if (params_local$plot_all_figures == "y") {
for (i_eras in unique(cant$eras)) {
# i_eras <- unique(cant$eras)[2]
cant_eras <- cant %>%
filter(eras == i_eras)
for (i_lon in params_global$longitude_sections_regular) {
# i_lon <- params_global$longitude_sections_regular[7]
cant_eras_lon <- cant_eras %>%
filter(lon == i_lon)
limits = max(abs(cant_eras_lon$cant)) * c(-1, 1)
cant_eras_lon %>%
ggplot(aes(lat, depth, z = cant)) +
stat_summary_2d(
fun = "mean",
na.rm = TRUE,
bins = 20,
col = "grey"
) +
scale_fill_scico(name = "Cant",
palette = "vik",
limit = limits) +
scale_y_reverse(limits = c(params_global$plotting_depth, NA)) +
scale_x_continuous(limits = c(-85, 85)) +
labs(title = paste(
"eras:",
i_eras,
"| lon:",
i_lon,
"|",
params_local$Version_ID
)) +
facet_wrap(~ model, ncol = 5)
ggsave(
paste(
path_version_figures,
"Cant_model_sections/",
paste("Cant_model",
i_eras,
"lon",
i_lon,
"section.png",
sep = "_"),
sep = ""
),
width = 17,
height = 9
)
}
}
}
As outlined in Gruber et al. (2019), a transient equilibrium approach was applied to estimate dcant in surface waters, assuming that the CO2 system in these waters has followed the increase in atmospheric CO2 closely.
Using eq 10.2.16 from OBD, the change in anthropogenic CO2 in the upper ocean was computed as:
\(\Delta\)tCant,eq(t2 − t1) = 1∕\(\gamma\) ⋅ DIC/pCO2 ⋅ (pCO2,atm (t2)− pCO2,atm(t1))
, where DIC and pCO2 are the in situ values, where \(\gamma\) is the buffer (Revelle) factor and where we evaluated the right-hand side using seacarb employing the Luecker constants using the climatological values for temperature, salinity, DIC and Alk.
surface_layer <- predictors_surface %>%
group_by(lat, lon, data_source) %>%
summarise(depth_max = max(depth),
n_layer = n()) %>%
ungroup()
map +
geom_raster(data = surface_layer,
aes(lon, lat, fill=depth_max)) +
scale_fill_scico(palette = "nuuk", direction = -1) +
facet_grid(data_source ~ .)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
map +
geom_raster(data = surface_layer,
aes(lon, lat, fill=n_layer)) +
scale_fill_scico(palette = "tokyo") +
facet_grid(data_source ~ .)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
predictors_surface_all_depth <- predictors_surface
predictors_surface <- predictors_surface %>%
filter(depth %in% c(0, 5)) %>%
mutate(
pCO2 = carb(
flag = 15,
var1 = TAlk * 1e-6,
var2 = TCO2 * 1e-6,
S = sal,
T = temp,
P = depth / 10,
Pt = phosphate * 1e-6,
Sit = silicate * 1e-6,
k1k2 = "l"
)$pCO2
)
predictors_surface %>%
mutate(depth = 0) %>%
group_split(data_source) %>%
# head(1) %>%
map( ~
p_map_climatology(
df = .x,
var = "pCO2",
subtitle_text = paste("Data source: ", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
Plots below show the calculated climatological Revelle factor values.
predictors_surface <- predictors_surface %>%
mutate(
rev_fac = buffer(
flag = 15,
var1 = TAlk * 1e-6,
var2 = TCO2 * 1e-6,
S = sal,
T = temp,
P = depth / 10,
Pt = phosphate * 1e-6,
Sit = silicate * 1e-6,
k1k2 = "l"
)$BetaD
)
predictors_surface %>%
group_split(data_source) %>%
# head(1) %>%
map( ~
p_map_climatology(
df = .x,
var = "rev_fac",
subtitle_text = paste("Data source: ", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
predictors_surface %>%
group_split(data_source) %>%
head(1) %>%
map( ~
p_section_climatology_regular(
df = .x,
var = "rev_fac",
surface = "y",
subtitle_text = paste("Data source: ", unique(.x$data_source))
))
# calculate increase in atm pCO2 between eras
co2_atm_tref <- co2_atm_tref %>%
arrange(pCO2_tref) %>%
mutate(d_pCO2_tref = pCO2_tref - lag(pCO2_tref)) %>%
drop_na() %>%
select(d_pCO2_tref)
dcant_surface <- full_join(predictors_surface, co2_atm_tref,
by = character())
# calculate cant
dcant_surface <- dcant_surface %>%
mutate(dcant = (1 / rev_fac) *
(TCO2 / pCO2) * d_pCO2_tref)
# calculate positive cant
dcant_surface <- dcant_surface %>%
mutate(dcant_pos = if_else(dcant < 0, 0, dcant)) %>%
select(lon, lat, data_source, dcant, dcant_pos)
dcant_surface <- full_join(
dcant_surface,
predictors_surface_all_depth
)
surface_mod <- surface_mod %>%
rename(tco2 = dissicos,
talk = talkos,
phosphate = po4os,
pco2 = spco2,
temp = tos) %>%
mutate(tco2 = tco2 * 1e3,
phosphate = phosphate * 1e3) %>%
mutate(cstar = b_cstar_phosphate(tco2 = tco2,
phosphate = phosphate,
talk = talk))
surface_obs <- surface_obs %>%
select(lon, lat, year, temp, tco2, talk, pco2 = pCO2)
surface <- bind_rows(
surface_mod %>% mutate(data_source = "mod"),
surface_obs %>% mutate(data_source = "obs")
)
surface <- expand_grid(surface, tref)
surface <- surface %>%
filter(year >= start & year <= end) %>%
select(-c(start, end, year, era))
surface <- surface %>%
group_by(lon, lat, median_year, data_source) %>%
summarise(across(where(is.numeric), ~ mean(.x, na.rm = TRUE))) %>%
ungroup()
surface_wide <- surface %>%
pivot_longer(tco2:cstar,
names_to = "parameter",
values_to = "value") %>%
pivot_wider(names_from = median_year,
values_from = value)
surface_wide <- surface_wide %>%
mutate(d = !!sym(as.character(sort(tref$median_year)[2])) -
!!sym(as.character(sort(tref$median_year)[1])))
surface_trend <- surface_wide %>%
select(lon, lat, parameter, data_source, d)
surface_trend %>%
group_by(parameter) %>%
group_split() %>%
# head(1) %>%
map(
~ map +
geom_raster(data = .x,
aes(lon, lat, fill = d)) +
scale_fill_divergent(name = unique(.x$parameter)) +
facet_grid(data_source~.) +
labs(title = paste("Decadel change:", tref$era[1], "to", tref$era[2]))
)
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
8933b37 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
[[3]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
8933b37 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
[[4]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
8933b37 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
[[5]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
8933b37 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
[[6]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
8933b37 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
e92e157 | jens-daniel-mueller | 2021-08-04 |
9736844 | jens-daniel-mueller | 2021-08-04 |
dcant_surface %>%
group_split(data_source) %>%
# head(1) %>%
map( ~
p_map_climatology(
df = .x,
var = "dcant",
subtitle_text = paste("Data source: ", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
dcant_surface %>%
group_split(data_source) %>%
# head(1) %>%
map( ~
p_section_climatology_regular(
df = .x,
var = "dcant",
surface = "y",
subtitle_text = paste("Data source: ", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
surface_dcant_comparison <- bind_rows(
surface_trend %>%
filter(data_source == "mod",
parameter == "cstar") %>%
select(lon, lat, dcant = d) %>%
mutate(data_source = "surface_obs"),
dcant_surface %>%
filter(data_source == "mod",
depth == 5) %>%
select(lon, lat, dcant) %>%
mutate(data_source = "surface_equi"),
dcant_surface_mod_truth %>%
select(lon, lat, dcant) %>%
mutate(data_source = "mod_truth")
)
p_map_dcant_slab(df = surface_dcant_comparison,
var = "dcant",
title_text = "Sea surface maps") +
facet_grid(data_source ~ .)
surface_dcant_comparison_bias <- surface_dcant_comparison %>%
pivot_wider(names_from = data_source,
values_from = dcant) %>%
mutate(surface_obs_bias = surface_obs - mod_truth,
surface_equi_bias = surface_equi - mod_truth) %>%
select(lon, lat, surface_obs_bias, surface_equi_bias) %>%
pivot_longer(surface_obs_bias:surface_equi_bias,
names_to = "data_source",
values_to = "dcant_bias")
p_map_dcant_slab(df = surface_dcant_comparison_bias,
var = "dcant_bias",
col = "bias",
title_text = "Sea surface maps") +
facet_grid(data_source ~ .)
Mean and sd are calculated across 10 models for Cant in each grid cell (XYZ), basin and era combination. Calculations are performed for all cant values vs positive values only.
dcant_average <- m_dcant_3d_average(dcant)
dcant_average <- m_cut_gamma(dcant_average, "gamma")
# split data set for individual predictor contributions and total cant
dcant_predictor_3d <- dcant_average %>%
select(-c("dcant", "dcant_pos", ends_with("_sd")))
dcant_average <- dcant_average %>%
select(
lon,
lat,
depth,
basin_AIP,
data_source,
dcant,
dcant_pos,
dcant_sd,
dcant_pos_sd,
gamma,
gamma_sd,
gamma_slab
)
dcant_average %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_map_climatology(
df = .x,
var = "dcant_pos",
subtitle_text = paste("data_source:", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
dcant_average %>%
group_split(data_source) %>%
# head(1) %>%
map(~ p_section_climatology_regular(
df = .x,
surface = "n",
var = "dcant_pos",
subtitle_text = paste("data_source:", unique(.x$data_source))
))
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
The averaging function is also applied to the surface data, although only one value per grid cell was mapped, to ensure consistency with the deep water values.
dcant_surface_average <-
m_dcant_3d_average(dcant_surface)
dcant_surface_average <- m_cut_gamma(dcant_surface_average, "gamma")
rm(dcant_surface)
if (surface_data) {
dcant_3d <-
full_join(
dcant_average %>% mutate(method = "eMLR"),
dcant_surface_average %>% mutate(method = "surface")
)
} else {
dcant_3d <- dcant_average %>% mutate(method = "eMLR")
}
rm(dcant_surface_average, dcant_average)
For each basin and era combination, the zonal mean dcant is calculated, again for all vs positive only values. Likewise, sd is calculated for the averaging of the mean basin fields.
dcant_zonal <- dcant_3d %>%
group_by(data_source) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal <- m_cut_gamma(dcant_zonal,
"gamma_mean")
dcant_zonal_method <- dcant_3d %>%
group_by(data_source, method) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_zonal_method <- m_cut_gamma(dcant_zonal_method,
"gamma_mean")
dcant_zonal <- dcant_zonal %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean) %>%
select(-c(dcant_sd_sd, dcant_pos_sd_sd,
gamma_sd_mean, gamma_sd_sd))
dcant_zonal_method <- dcant_zonal_method %>%
rename(dcant = dcant_mean,
dcant_pos = dcant_pos_mean) %>%
select(-c(dcant_sd_sd, dcant_pos_sd_sd,
gamma_sd_mean, gamma_sd_sd))
For each basin and era combination, the zonal mean is calculated for the term of each predictor.
dcant_predictor_zonal <- dcant_predictor_3d %>%
group_by(data_source) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd(.x))) %>%
select(-data) %>%
unnest(zonal)
dcant_predictor_zonal <-
m_cut_gamma(dcant_predictor_zonal, "gamma_mean")
To calculate dcant column inventories, we:
Step 2 is performed separately for all dcant and positive dcant values only.
dcant_inv <- dcant_3d %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(df = dcant_inv,
var = "dcant_pos",
subtitle_text = "for predefined integration depths") +
facet_grid(inv_depth ~ data_source)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
971ce87 | jens-daniel-mueller | 2021-07-13 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
if (surface_data == FALSE){
dcant_inv <- dcant_inv %>%
mutate(method = "total")
}
dcant_inv_surface <- dcant_3d %>%
filter(method == "surface") %>%
group_by(data_source) %>%
nest() %>%
mutate(inv = map(.x = data, ~m_dcant_inv(.x))) %>%
select(-data) %>%
unnest(inv)
p_map_cant_inv(df = dcant_inv_surface %>%
filter(inv_depth < 1000),
var = "dcant_pos",
subtitle_text = "for predefined integration depths",
breaks = c(-Inf,seq(0,4,0.5), Inf)) +
facet_grid(inv_depth ~ data_source)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
dcant_inv <- full_join(
dcant_inv %>% rename(dcant_total = dcant,
dcant_pos_total = dcant_pos),
dcant_inv_surface %>% rename(dcant_surface = dcant,
dcant_pos_surface = dcant_pos)
)
dcant_inv <- dcant_inv %>%
mutate(dcant_eMLR = dcant_total -
replace(dcant_surface, is.na(dcant_surface), 0),
dcant_pos_eMLR = dcant_pos_total -
replace(dcant_pos_surface, is.na(dcant_pos_surface), 0))
dcant_inv_all <- dcant_inv %>%
select(-starts_with("dcant_pos")) %>%
pivot_longer(starts_with("dcant_"),
names_to = "method",
names_prefix = "dcant_",
values_to = "dcant")
dcant_inv_pos <- dcant_inv %>%
select(data_source, lon, lat, basin_AIP, inv_depth,
starts_with("dcant_pos_")) %>%
pivot_longer(starts_with("dcant_pos_"),
names_to = "method",
names_prefix = "dcant_pos_",
values_to = "dcant_pos")
dcant_inv <- full_join(
dcant_inv_all,
dcant_inv_pos
)
rm(dcant_inv_all, dcant_inv_pos, dcant_inv_surface)
dcant_inv %>%
group_by(inv_depth) %>%
group_split() %>%
# tail(1) %>%
map(
~ p_map_cant_inv(df = .x,
var = "dcant",
subtitle_text = paste("Integration depth",
unique(.x$inv_depth))) +
facet_grid(method ~ data_source)
)
[[1]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
[[2]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
[[3]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
[[4]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
[[5]]
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
Global dcant budgets were estimated in units of Pg C. Please note that here we added dcant (all vs postitive only) values and do not apply additional corrections for areas not covered.
dcant_budget_global <- m_dcant_budget(dcant_inv)
dcant_budget_global %>%
filter(inv_depth == params_global$inventory_depth_standard,
method == "total") %>%
ggplot(aes(estimate, value)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(~data_source)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
768ae83 | jens-daniel-mueller | 2021-07-22 |
78fe930 | jens-daniel-mueller | 2021-07-21 |
bef1b71 | jens-daniel-mueller | 2021-07-09 |
dcant_budget_global %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(estimate, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(.~data_source)
Version | Author | Date |
---|---|---|
cd8e0d5 | jens-daniel-mueller | 2021-08-06 |
15773a0 | jens-daniel-mueller | 2021-08-06 |
da61d1a | jens-daniel-mueller | 2021-08-06 |
340d731 | jens-daniel-mueller | 2021-08-06 |
71546e4 | jens-daniel-mueller | 2021-08-06 |
29444a1 | jens-daniel-mueller | 2021-08-05 |
42e80c0 | jens-daniel-mueller | 2021-08-04 |
48f6eed | jens-daniel-mueller | 2021-08-04 |
81a46a4 | jens-daniel-mueller | 2021-08-03 |
b88c61b | jens-daniel-mueller | 2021-08-03 |
a53656d | jens-daniel-mueller | 2021-08-03 |
88f7356 | jens-daniel-mueller | 2021-08-02 |
d759279 | jens-daniel-mueller | 2021-08-02 |
127b801 | jens-daniel-mueller | 2021-07-24 |
912d90e | jens-daniel-mueller | 2021-07-23 |
2477316 | jens-daniel-mueller | 2021-07-23 |
c9ccc00 | jens-daniel-mueller | 2021-07-22 |
c75b2a0 | jens-daniel-mueller | 2021-07-22 |
dcant_budget_basin_AIP <- dcant_inv %>%
group_by(basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_AIP %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
ggplot(aes(basin_AIP, value, fill=method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate~data_source)
dcant_budget_basin_MLR <-
full_join(dcant_inv, basinmask) %>%
group_by(basin, MLR_basins) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_basin_MLR %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(MLR_basins) %>%
group_split() %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(basin, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$MLR_basins)))
)
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
dcant_budget_lat_grid <-
dcant_inv %>%
m_grid_horizontal_coarse() %>%
group_by(lat_grid, basin_AIP) %>%
nest() %>%
mutate(budget = map(.x = data, ~ m_dcant_budget(.x))) %>%
select(-data) %>%
unnest(budget)
dcant_budget_lat_grid %>%
filter(inv_depth == params_global$inventory_depth_standard,
method %in% c("surface", "eMLR")) %>%
group_by(basin_AIP) %>%
group_split() %>%
head(1) %>%
map(
~ ggplot(data = .x,
aes(lat_grid, value, fill = method)) +
scale_fill_brewer(palette = "Dark2") +
geom_col() +
coord_flip() +
facet_grid(estimate ~ data_source) +
labs(title = paste("MLR_basins:", unique(.x$basin_AIP)))
)
[[1]]
dcant_3d %>%
write_csv(paste(path_version_data,
"dcant_3d.csv", sep = ""))
dcant_predictor_3d %>%
write_csv(paste(path_version_data,
"dcant_predictor_3d.csv", sep = ""))
dcant_zonal %>%
write_csv(paste(path_version_data,
"dcant_zonal.csv", sep = ""))
dcant_zonal_method %>%
write_csv(paste(path_version_data,
"dcant_zonal_method.csv", sep = ""))
dcant_predictor_zonal %>%
write_csv(paste(path_version_data,
"dcant_predictor_zonal.csv", sep = ""))
dcant_inv %>%
filter(method == "total") %>%
select(-method) %>%
write_csv(paste(path_version_data,
"dcant_inv.csv", sep = ""))
dcant_inv %>%
filter(method != "total") %>%
write_csv(paste(path_version_data,
"dcant_inv_method.csv", sep = ""))
dcant_budget_global %>%
write_csv(paste(path_version_data,
"dcant_budget_global.csv", sep = ""))
dcant_budget_basin_AIP %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_AIP.csv", sep = ""))
dcant_budget_basin_MLR %>%
write_csv(paste(path_version_data,
"dcant_budget_basin_MLR.csv", sep = ""))
dcant_budget_lat_grid %>%
write_csv(paste(path_version_data,
"dcant_budget_lat_grid.csv", sep = ""))
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] marelac_2.1.10 shape_1.4.5 seacarb_3.2.14 oce_1.2-0
[5] gsw_1.0-5 testthat_2.3.2 ggforce_0.3.3 metR_0.9.0
[9] scico_1.2.0 patchwork_1.1.1 collapse_1.5.0 forcats_0.5.0
[13] stringr_1.4.0 dplyr_1.0.5 purrr_0.3.4 readr_1.4.0
[17] tidyr_1.1.2 tibble_3.0.4 ggplot2_3.3.3 tidyverse_1.3.0
[21] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] fs_1.5.0 lubridate_1.7.9 RColorBrewer_1.1-2
[4] httr_1.4.2 rprojroot_2.0.2 tools_4.0.3
[7] backports_1.1.10 R6_2.5.0 DBI_1.1.0
[10] colorspace_1.4-1 withr_2.3.0 tidyselect_1.1.0
[13] compiler_4.0.3 git2r_0.27.1 cli_2.1.0
[16] rvest_0.3.6 xml2_1.3.2 isoband_0.2.2
[19] labeling_0.4.2 scales_1.1.1 checkmate_2.0.0
[22] digest_0.6.27 rmarkdown_2.5 pkgconfig_2.0.3
[25] htmltools_0.5.0 dbplyr_1.4.4 rlang_0.4.10
[28] readxl_1.3.1 rstudioapi_0.11 farver_2.0.3
[31] generics_0.0.2 jsonlite_1.7.1 magrittr_1.5
[34] Matrix_1.2-18 Rcpp_1.0.5 munsell_0.5.0
[37] fansi_0.4.1 lifecycle_1.0.0 stringi_1.5.3
[40] whisker_0.4 yaml_2.2.1 MASS_7.3-53
[43] grid_4.0.3 blob_1.2.1 parallel_4.0.3
[46] promises_1.1.1 crayon_1.3.4 lattice_0.20-41
[49] haven_2.3.1 hms_0.5.3 knitr_1.30
[52] pillar_1.4.7 reprex_0.3.0 glue_1.4.2
[55] evaluate_0.14 RcppArmadillo_0.10.1.2.0 data.table_1.13.2
[58] modelr_0.1.8 vctrs_0.3.5 tweenr_1.0.2
[61] httpuv_1.5.4 cellranger_1.1.0 gtable_0.3.0
[64] polyclip_1.10-0 assertthat_0.2.1 xfun_0.18
[67] broom_0.7.5 RcppEigen_0.3.3.7.0 later_1.1.0.1
[70] viridisLite_0.3.0 ellipsis_0.3.1 here_0.1