Last updated: 2021-12-06
Checks: 7 0
Knit directory: emlr_obs_v_XXX/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200707)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 099ac3f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Untracked files:
Untracked: code/extract_offset_values.R
Untracked: data/IO_1990s-2000s_AT_DIC_PO4_mean_cruise_offsets.csv
Untracked: data/unadjusted_09AR20041223_316N19941201_ALK.pdf
Untracked: data/xover_sum_316N19941201_ALK.pdf
Unstaged changes:
Modified: code/Workflowr_project_managment.R
Modified: data/auxillary/params_local.rds
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tracers_GLODAPv2_2021.Rmd
) and HTML (docs/tracers_GLODAPv2_2021.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 3c60929 | jens-daniel-mueller | 2021-12-06 | Build site. |
html | 3f76ee3 | jens-daniel-mueller | 2021-12-06 | Build site. |
html | 2ca1313 | jens-daniel-mueller | 2021-12-05 | Build site. |
html | d258523 | jens-daniel-mueller | 2021-12-02 | Build site. |
Rmd | 6ece1d2 | jens-daniel-mueller | 2021-12-02 | plot only defined density slabs |
html | 605b380 | jens-daniel-mueller | 2021-12-02 | Build site. |
Rmd | 77a9fe6 | jens-daniel-mueller | 2021-12-02 | test with 2010s after implementing specifc IO 1990s tasks |
html | a83a09b | jens-daniel-mueller | 2021-11-29 | Build site. |
html | 72c1041 | jens-daniel-mueller | 2021-11-23 | Build site. |
html | 3eba8ac | jens-daniel-mueller | 2021-11-23 | Build site. |
html | ec18ee5 | jens-daniel-mueller | 2021-11-23 | Build site. |
html | 59cdf58 | jens-daniel-mueller | 2021-11-22 | Build site. |
html | 3ae2dd1 | jens-daniel-mueller | 2021-11-21 | Build site. |
html | 5b46219 | jens-daniel-mueller | 2021-11-21 | Build site. |
html | 99fd72e | jens-daniel-mueller | 2021-11-21 | Build site. |
html | 5016fc9 | jens-daniel-mueller | 2021-11-19 | Build site. |
html | 6562075 | jens-daniel-mueller | 2021-11-19 | Build site. |
html | 6b80483 | jens-daniel-mueller | 2021-11-19 | Build site. |
html | b7d656b | jens-daniel-mueller | 2021-11-16 | Build site. |
Rmd | 0ab7dc3 | jens-daniel-mueller | 2021-11-16 | added plots per gamma level |
html | 8a3e867 | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | 4527904 | jens-daniel-mueller | 2021-11-12 | add zonal mean section of gridded dcant per CFC |
html | e5a0a8f | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | 52e894d | jens-daniel-mueller | 2021-11-12 | add zonal mean section of gridded dcant per CFC |
html | 1b58f8e | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | f8016ab | jens-daniel-mueller | 2021-11-12 | add zonal mean section of gridded dcant per CFC |
html | 029c50a | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | 13a030c | jens-daniel-mueller | 2021-11-12 | add zonal mean section of gridded dcant per CFC |
html | 20e7603 | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | 6b9a242 | jens-daniel-mueller | 2021-11-12 | add zonal mean section of gridded dcant and CFC |
html | 654ab1b | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | b0cf2af | jens-daniel-mueller | 2021-11-12 | add pseudo-log transformation and zonal mean mapping function |
html | 950d8e7 | jens-daniel-mueller | 2021-11-12 | Build site. |
Rmd | 2127c9d | jens-daniel-mueller | 2021-11-12 | add pseudo-log transformation and zonal mean mapping function |
html | 98d9e33 | jens-daniel-mueller | 2021-11-11 | Build site. |
html | 38cad1d | jens-daniel-mueller | 2021-11-11 | Build site. |
Rmd | 2b7d6d5 | jens-daniel-mueller | 2021-11-11 | update plot correlation of dCant to cfc12 data |
html | 4e4c0b7 | jens-daniel-mueller | 2021-11-11 | Build site. |
Rmd | e12c27c | jens-daniel-mueller | 2021-11-11 | plot correlation of dCant to cfc12 data |
html | 07ccee8 | jens-daniel-mueller | 2021-11-11 | Build site. |
Rmd | 4e79444 | jens-daniel-mueller | 2021-11-11 | read gridded cfc12 data |
html | d3cb92d | jens-daniel-mueller | 2021-11-08 | Build site. |
html | 3879a6d | jens-daniel-mueller | 2021-11-08 | Build site. |
html | dfdb778 | jens-daniel-mueller | 2021-11-04 | Build site. |
Rmd | f88f11c | jens-daniel-mueller | 2021-11-04 | zonal mean section plots modified |
html | e3faf2f | jens-daniel-mueller | 2021-11-04 | Build site. |
Rmd | f8331c3 | jens-daniel-mueller | 2021-11-04 | zonal mean section plots modified |
html | 1d4c657 | jens-daniel-mueller | 2021-11-04 | Build site. |
Rmd | e3b9785 | jens-daniel-mueller | 2021-11-04 | zonal mean section plots modified |
html | 0e032dc | jens-daniel-mueller | 2021-11-04 | Build site. |
Rmd | 5ca91b7 | jens-daniel-mueller | 2021-11-04 | rerun standard |
html | abcd28f | jens-daniel-mueller | 2021-11-02 | Build site. |
html | 290c8fc | jens-daniel-mueller | 2021-11-02 | Build site. |
html | e02acc9 | jens-daniel-mueller | 2021-11-01 | Build site. |
html | ceea35b | jens-daniel-mueller | 2021-11-01 | Build site. |
Rmd | a4179fc | jens-daniel-mueller | 2021-11-01 | zonal mean section plots |
html | 58da811 | jens-daniel-mueller | 2021-11-01 | Build site. |
html | 2781a97 | jens-daniel-mueller | 2021-10-29 | Build site. |
html | 973192c | jens-daniel-mueller | 2021-10-28 | Build site. |
Rmd | 0b14406 | jens-daniel-mueller | 2021-10-28 | added tracer plots and test without O2 data |
The results displayed on this site correspond to the Version_ID:
params$Version_ID
[1] "v_XXX"
Main data source for this project is the preprocessed version of GLODAPv2:
params_local$GLODAPv2_version
[1] "2021"
GLODAP <-
read_csv(
paste0(
path_preprocessing,
"GLODAPv2.",
params_local$GLODAPv2_version,
"_preprocessed_tracer.csv"),
guess_max = 1e5
)
pCFC_12_3d <-
read_csv(paste(path_preprocessing,
"K04_pCFC_12_3d.csv", sep = ""))
dcant_3d <-
read_csv(paste(path_version_data,
"dcant_3d.csv",
sep = ""))
tref <-
read_csv(paste(path_version_data,
"tref.csv",
sep = ""))
# create labels for era
era_labels <- bind_cols(
start = params_local$era_start,
end = params_local$era_end)
era_labels <- era_labels %>%
mutate(start = if_else(start == -Inf, max(GLODAP$year), start),
end = if_else(end == Inf, max(GLODAP$year), end),
era = as.factor(paste(start, end, sep = "-")))
# filter GLODAP data within eras
GLODAP <- expand_grid(
GLODAP,
era_labels
)
# select data within each era
GLODAP <- GLODAP %>%
filter(year >= start & year <= end)
GLODAP <- GLODAP %>%
select(-c(start, end))
The basin mask from the World Ocean Atlas was used. For details consult the data base subsection for WOA18 data.
Please note that some GLODAP observations were made outside the WOA18 basin mask (i.e. in marginal seas) and will be removed for further analysis.
# use only data inside basinmask
GLODAP <- inner_join(GLODAP, basinmask)
Only rows (samples) for which all relevant parameters are available were selected, ie NA’s were removed.
According to Olsen et al (2020), flags within the merged master file identify:
f:
qc:
Following flagging criteria were taken into account:
The cleaning process was performed successively and the maps below represent the data coverage at various cleaning levels.
Summary statistics were calculated during cleaning process.
GLODAP_NA <- GLODAP %>%
select(lon, lat, era, pcfc11, pcfc12, pcfc113, pccl4, psf6) %>%
pivot_longer(pcfc11:psf6,
names_to = "parameter",
values_to = "value") %>%
mutate(NA_flag = if_else(is.na(value), "NA", "available"),
parameter = fct_inorder(as.factor(parameter)))
GLODAP_NA_stats <- GLODAP_NA %>%
count(era, parameter, NA_flag)
GLODAP_NA <- GLODAP_NA %>%
count(lat, lon, era, parameter, NA_flag)
GLODAP_NA %>%
group_split(NA_flag) %>%
# head(1) %>%
map(
~ map +
geom_raster(data = .x,
aes(lon, lat, fill = n)) +
scale_fill_viridis_c(
option = "magma",
direction = -1,
trans = "log10"
) +
theme(legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title = paste("Flag:", unique(.x$NA_flag))) +
facet_grid(parameter ~ era)
)
[[1]]
[[2]]
rm(GLODAP_NA)
GLODAP_NA_stats %>%
ggplot(aes(parameter, n, fill = NA_flag)) +
coord_flip() +
scale_x_discrete(limits = rev) +
geom_col() +
facet_grid(era~.) +
scale_fill_brewer(palette = "Dark2")
rm(GLODAP_NA_stats)
GLODAP_f_flags <- GLODAP %>%
select(lon, lat, era, ends_with("f")) %>%
pivot_longer(cfc11f:sf6f,
names_to = "parameter",
values_to = "value") %>%
mutate(parameter = fct_inorder(as.factor(parameter)))
GLODAP_f_flags_stats <- GLODAP_f_flags %>%
count(era, parameter, value)
GLODAP_f_flags <- GLODAP_f_flags %>%
count(lat, lon, era, parameter, value)
GLODAP_f_flags %>%
group_split(value) %>%
# head(1) %>%
map(
~ map +
geom_raster(data = .x,
aes(lon, lat, fill = n)) +
scale_fill_viridis_c(
option = "magma",
direction = -1,
trans = "log10"
) +
theme(legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title = paste("f flag:", unique(.x$value))) +
facet_grid(parameter ~ era)
)
[[1]]
[[2]]
rm(GLODAP_f_flags)
GLODAP_f_flags_stats %>%
mutate(value = as.factor(value)) %>%
ggplot(aes(parameter, n, fill = value)) +
coord_flip() +
scale_x_discrete(limits = rev) +
geom_col() +
facet_grid(era~.) +
scale_fill_brewer(palette = "Dark2")
rm(GLODAP_f_flags_stats)
GLODAP_qc_flags <- GLODAP %>%
select(lon, lat, era, ends_with("qc")) %>%
pivot_longer(cfc11qc:ccl4qc,
names_to = "parameter",
values_to = "value") %>%
mutate(parameter = fct_inorder(as.factor(parameter))) %>%
count(lat, lon, era, parameter, value)
GLODAP_qc_flags_stats <- GLODAP_qc_flags %>%
count(era, parameter, value)
GLODAP_qc_flags <- GLODAP_qc_flags %>%
count(lat, lon, era, parameter, value)
GLODAP_qc_flags %>%
group_split(value) %>%
# head(1) %>%
map(
~ map +
geom_raster(data = .x,
aes(lon, lat, fill = n)) +
scale_fill_viridis_c(
option = "magma",
direction = -1,
trans = "log10"
) +
theme(legend.position = "bottom",
axis.text = element_blank(),
axis.ticks = element_blank()) +
labs(title = paste("qc flag:", unique(.x$value))) +
facet_grid(parameter ~ era)
)
[[1]]
[[2]]
rm(GLODAP_qc_flags)
GLODAP_qc_flags_stats %>%
mutate(value = as.factor(value)) %>%
ggplot(aes(parameter, n, fill = value)) +
coord_flip() +
scale_x_discrete(limits = rev) +
geom_col() +
facet_grid(era~.) +
scale_fill_brewer(palette = "Dark2")
rm(GLODAP_qc_flags_stats)
GLODAP <- GLODAP %>%
filter(
if_all(
c(tco2, talk, params_local$MLR_predictors, depth, gamma),
~ !is.na(.)
),
if_all(ends_with("f"), ~ . %in% params_local$flag_f),
if_all(ends_with("qc"), ~ . %in% params_local$flag_qc)
)
exist_IO_1990 <- GLODAP %>%
filter(between(year, 1989, 1999) &
basin_AIP == "Indian") %>%
nrow() > 0
GLODAP_grid_Indian <- GLODAP %>%
filter(basin_AIP == "Indian",
lon > 70,
lon < 100,
cruise %in% c(249, 250, 352, 353)) %>%
mutate(cruise = as.factor(cruise)) %>%
distinct(era, lon, lat, cruise, year = as.factor(year(date)))
map +
geom_tile(data = GLODAP_grid_Indian,
aes(lon, lat, fill = year)) +
facet_grid(era ~ .)
IO_NS <- GLODAP %>%
filter(cruise %in% c(249, 250, 352, 353),
!is.na(pcfc12))
IO_NS %>%
ggplot(aes(pcfc12)) +
geom_histogram() +
facet_grid(era ~ .)
IO_NS %>%
filter(pcfc12 < 2) %>%
ggplot(aes(pcfc12)) +
geom_histogram() +
facet_grid(era ~ .)
IO_NS %>%
ggplot(aes(lat , depth, col = pcfc12)) +
geom_point() +
scale_color_viridis_c(trans = "pseudo_log",
breaks = c(0,10,100)) +
scale_y_reverse() +
facet_grid(era ~ .)
IO_NS_grid <- IO_NS %>%
select(lat, lon, depth, era, basin_AIP, pcfc12) %>%
group_by(era) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd_bottle(.x))) %>%
select(-data) %>%
unnest(zonal)
IO_NS_grid %>%
ggplot(aes(lat , depth, fill = pcfc12_mean)) +
geom_raster() +
scale_fill_viridis_c(trans = "pseudo_log",
breaks = c(0,10,100)) +
scale_y_reverse() +
coord_cartesian(expand = 0) +
facet_grid(era ~ .)
IO_NS_grid_offset <- IO_NS_grid %>%
select(-pcfc12_sd) %>%
pivot_wider(names_from = era,
values_from = pcfc12_mean) %>%
mutate(delta_pcfc12_mean := !!sym(tref$era[2]) - !!sym(tref$era[1]))
IO_NS_grid_offset %>%
ggplot(aes(lat , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_divergent(
mid = "grey80",
na.value = "black",
trans = "pseudo_log",
breaks = c(-100, -10, 0, 10, 100)
) +
scale_y_reverse() +
coord_cartesian(expand = 0)
IO_NS_grid_offset %>%
mutate(delta_pcfc12_mean = cut(delta_pcfc12_mean, c(-Inf, 2, 5, 20, Inf))) %>%
ggplot(aes(lat , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_viridis_d(na.value = "grey") +
scale_y_reverse() +
coord_cartesian(expand = 0)
rm(IO_NS, IO_NS_grid, IO_NS_grid_offset)
GLODAP_grid_Indian <- GLODAP %>%
filter(basin_AIP == "Indian",
lat > -25,
lat < -15,
cruise %in% c(252, 488)
) %>%
mutate(cruise = as.factor(cruise)) %>%
distinct(era, lon, lat, cruise, year = as.factor(year(date)))
map +
geom_tile(data = GLODAP_grid_Indian,
aes(lon, lat, fill = year)) +
facet_grid(era ~ .)
IO_EW <- GLODAP %>%
filter(cruise %in% c(252, 488),
!is.na(pcfc12))
IO_EW %>%
ggplot(aes(pcfc12)) +
geom_histogram() +
facet_grid(era ~ .)
IO_EW %>%
filter(pcfc12 < 2) %>%
ggplot(aes(pcfc12)) +
geom_histogram() +
facet_grid(era ~ .)
IO_EW %>%
ggplot(aes(lon , depth, col = pcfc12)) +
geom_point() +
scale_fill_viridis_c(trans = "pseudo_log",
breaks = c(0,10,100)) +
scale_y_reverse() +
facet_grid(era ~ .)
IO_EW_grid <- IO_EW %>%
mutate(depth = cut(depth,
seq(0,1e4,200),
seq(100,1e4,200)),
depth = as.numeric(as.character(depth)),
lon_grid = cut(lon,
seq(-100,200,2),
seq(-99,200,2)),
lon_grid = as.numeric(as.character(lon_grid))) %>%
group_by(lon_grid, depth, era) %>%
summarise(pcfc12 = mean(pcfc12, na.rm = TRUE)) %>%
ungroup()
IO_EW_grid %>%
ggplot(aes(lon_grid , depth, fill = pcfc12)) +
geom_tile() +
scale_fill_viridis_c(trans = "pseudo_log",
breaks = c(0,10,100)) +
scale_y_reverse() +
coord_cartesian(expand = 0) +
facet_grid(era ~ .)
IO_EW_grid_offset <- IO_EW_grid %>%
pivot_wider(names_from = era,
values_from = pcfc12) %>%
mutate(delta_pcfc12_mean := !!sym(tref$era[2]) - !!sym(tref$era[1]))
IO_EW_grid_offset %>%
ggplot(aes(lon_grid , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_divergent(
mid = "grey80",
na.value = "black",
trans = "pseudo_log",
breaks = c(-100, -10, 0, 10, 100)
) +
scale_y_reverse() +
coord_cartesian(expand = 0)
IO_EW_grid_offset %>%
mutate(delta_pcfc12_mean = cut(delta_pcfc12_mean, c(-Inf, 2, 5, 20, Inf))) %>%
ggplot(aes(lon_grid , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_viridis_d(na.value = "grey") +
scale_y_reverse() +
coord_cartesian(expand = 0)
rm(IO_EW, IO_EW_grid, IO_EW_grid_offset, GLODAP_grid_Indian)
zonal_sections <- GLODAP %>%
select(lat, lon, depth, era, basin_AIP, pcfc12) %>%
group_by(era) %>%
nest() %>%
mutate(zonal = map(.x = data, ~m_zonal_mean_sd_bottle(.x))) %>%
select(-data) %>%
unnest(zonal)
zonal_sections %>%
ggplot(aes(lat , depth, fill = pcfc12_mean)) +
geom_tile() +
scale_fill_viridis_c(trans = "pseudo_log",
breaks = c(0,10,100)) +
scale_y_reverse() +
labs(x = "Latitude (°N)", y = "Depth (m)") +
coord_fixed(ratio = 1e-2, expand = 0) +
facet_grid(basin_AIP ~ era) +
theme(legend.position = "left")
zonal_sections_offset <- zonal_sections %>%
select(-pcfc12_sd) %>%
pivot_wider(names_from = era,
values_from = pcfc12_mean) %>%
mutate(delta_pcfc12_mean := !!sym(tref$era[2]) - !!sym(tref$era[1]))
zonal_sections_offset %>%
ggplot(aes(delta_pcfc12_mean)) +
geom_histogram() +
scale_y_log10() +
coord_cartesian(expand = 0) +
facet_grid(basin_AIP ~ .)
zonal_sections_offset %>%
ggplot(aes(delta_pcfc12_mean)) +
geom_histogram() +
coord_cartesian(expand = 0) +
scale_x_continuous(trans = "pseudo_log",
breaks = c(-100, -10, 0, 10, 100)) +
scale_y_log10() +
facet_grid(basin_AIP ~ .)
zonal_sections_offset %>%
ggplot(aes(lat , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_divergent(
mid = "grey80",
na.value = "black",
trans = "pseudo_log",
breaks = c(-100, -10, 0, 10, 100)
) +
labs(x = "Latitude (°N)", y = "Depth (m)") +
scale_y_reverse() +
coord_fixed(ratio = 1e-2, expand = 0) +
facet_grid(basin_AIP ~ .) +
theme(axis.text.y = element_blank(),
axis.title.y = element_blank())
zonal_sections_offset %>%
mutate(delta_pcfc12_mean = cut(
delta_pcfc12_mean,
c(-Inf, 0.2, 1, 2, 5, 20, Inf))) %>%
ggplot(aes(lat , depth, fill = delta_pcfc12_mean)) +
geom_raster() +
scale_fill_viridis_d(na.value = "grey") +
scale_y_reverse() +
facet_grid(basin_AIP ~ .) +
coord_fixed(ratio = 1e-2, expand = 0)
CFC_dcant <- inner_join(
dcant_3d %>%
filter(data_source == "obs") %>%
select(lon, lat, depth, basin_AIP, dcant, gamma, gamma_slab),
pCFC_12_3d
)
CFC_dcant <- CFC_dcant %>%
mutate(depth_grid = cut(depth, seq(0, 1e4, 1000), right = FALSE))
CFC_dcant %>%
ggplot(aes(pCFC_12, dcant)) +
geom_hline(yintercept = 0) +
geom_bin2d() +
geom_smooth(col = "red", se = FALSE) +
scale_fill_viridis_c(trans = "log10") +
facet_grid(gamma_slab ~ basin_AIP,
scales = "free_y") +
coord_cartesian(ylim = c(-5,15))
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
98d9e33 | jens-daniel-mueller | 2021-11-11 |
38cad1d | jens-daniel-mueller | 2021-11-11 |
4e4c0b7 | jens-daniel-mueller | 2021-11-11 |
CFC_dcant %>%
filter(pCFC_12 < 5) %>%
ggplot(aes(dcant, col = basin_AIP, fill = basin_AIP)) +
geom_vline(xintercept = 0) +
geom_density(alpha = 0.3) +
facet_grid(gamma_slab ~ .) +
labs(title = "pCFC-12 < 5")
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
98d9e33 | jens-daniel-mueller | 2021-11-11 |
38cad1d | jens-daniel-mueller | 2021-11-11 |
CFC_dcant %>%
filter(gamma_slab %in% params_local$plot_slabs) %>%
group_split(gamma_slab) %>%
map(
~ ggplot(data = .x,
aes(pCFC_12, dcant)) +
geom_hline(yintercept = 0) +
geom_bin2d() +
geom_smooth(col = "red", se=FALSE) +
scale_fill_viridis_c(trans = "log10") +
labs(title = paste("gamma_slab", unique(.x$gamma_slab))) +
facet_grid(. ~ basin_AIP)
)
[[1]]
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
d258523 | jens-daniel-mueller | 2021-12-02 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
b7d656b | jens-daniel-mueller | 2021-11-16 |
[[2]]
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
b7d656b | jens-daniel-mueller | 2021-11-16 |
CFC_dcant %>%
filter(pCFC_12 < 5) %>%
group_split(gamma_slab) %>%
# head(1) %>%
map(~ ggplot(data = .x,
aes(dcant, col = basin_AIP, fill = basin_AIP)) +
geom_vline(xintercept = 0) +
geom_density(alpha = 0.3) +
labs(title = paste("pCFC-12 < 5 | gamma_slab", unique(.x$gamma_slab))) +
coord_cartesian(xlim = c(-4,11.5))
)
CFC_dcant_zonal <- m_zonal_mean_sd(
CFC_dcant %>%
select(lat, lon, depth, basin_AIP, gamma, dcant, pCFC_12)
)
CFC_dcant_zonal <- CFC_dcant_zonal %>%
mutate(
dcant_mean_pos = if_else(dcant_mean < 0, 0, dcant_mean),
dcant_per_CFC = dcant_mean_pos / pCFC_12_mean,
dcant_per_CFC_log = log10(dcant_per_CFC)
)
# dcant_per_CFC_log_min <- CFC_dcant_zonal %>%
# filter(dcant_per_CFC_log != -Inf) %>%
# slice_min(dcant_per_CFC_log) %>%
# pull(dcant_per_CFC_log)
#
# dcant_per_CFC_log_max <- CFC_dcant_zonal %>%
# filter(dcant_per_CFC_log != Inf) %>%
# slice_max(dcant_per_CFC_log) %>%
# pull(dcant_per_CFC_log)
#
#
# CFC_dcant_zonal <- CFC_dcant_zonal %>%
# mutate(
# dcant_per_CFC_log = if_else(dcant_mean_pos == 0,
# dcant_per_CFC_log_min,
# dcant_per_CFC_log),
# dcant_per_CFC_log = if_else(
# pCFC_12_mean == 0,
# dcant_per_CFC_log_max,
# dcant_per_CFC_log
# )
# )
CFC_dcant_zonal %>%
p_section_zonal_continous_depth(
var = "dcant_mean_pos",
title_text = NULL) +
facet_grid(basin_AIP ~ .)
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
029c50a | jens-daniel-mueller | 2021-11-12 |
20e7603 | jens-daniel-mueller | 2021-11-12 |
CFC_dcant_zonal %>%
p_section_zonal_continous_depth(
var = "pCFC_12_mean",
breaks = NULL,
legend_title = "pCFC_12",
title_text = NULL
) +
facet_grid(basin_AIP ~ .)
CFC_dcant_zonal %>%
mutate(lg_pCFC_12_mean = log10(pCFC_12_mean)) %>%
p_section_zonal_continous_depth(
var = "lg_pCFC_12_mean",
breaks = NULL,
legend_title = "pCFC_12",
title_text = NULL
) +
facet_grid(basin_AIP ~ .)
CFC_dcant_zonal %>%
# filter(dcant_per_CFC_log > -4) %>%
p_section_zonal_continous_depth(
var = "dcant_per_CFC_log",
breaks = NULL,
legend_title = "log10\ndcant /\npCFC_12",
title_text = NULL
) +
facet_grid(basin_AIP ~ .)
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
b7d656b | jens-daniel-mueller | 2021-11-16 |
8a3e867 | jens-daniel-mueller | 2021-11-12 |
e5a0a8f | jens-daniel-mueller | 2021-11-12 |
1b58f8e | jens-daniel-mueller | 2021-11-12 |
029c50a | jens-daniel-mueller | 2021-11-12 |
20e7603 | jens-daniel-mueller | 2021-11-12 |
CFC_dcant_zonal %>%
# filter(dcant_per_CFC_log > -4) %>%
p_section_zonal_continous_depth(
var = "dcant_per_CFC_log",
breaks = NULL,
legend_title = "log10\ndcant /\npCFC_12",
title_text = NULL
) +
scale_y_reverse(
limits = c(1000, 0),
breaks = seq(0, 900, 200),
name = "Depth (m)"
) +
facet_grid(basin_AIP ~ .)
Version | Author | Date |
---|---|---|
3c60929 | jens-daniel-mueller | 2021-12-06 |
3f76ee3 | jens-daniel-mueller | 2021-12-06 |
2ca1313 | jens-daniel-mueller | 2021-12-05 |
605b380 | jens-daniel-mueller | 2021-12-02 |
a83a09b | jens-daniel-mueller | 2021-11-29 |
72c1041 | jens-daniel-mueller | 2021-11-23 |
3eba8ac | jens-daniel-mueller | 2021-11-23 |
ec18ee5 | jens-daniel-mueller | 2021-11-23 |
59cdf58 | jens-daniel-mueller | 2021-11-22 |
3ae2dd1 | jens-daniel-mueller | 2021-11-21 |
5b46219 | jens-daniel-mueller | 2021-11-21 |
5016fc9 | jens-daniel-mueller | 2021-11-19 |
6562075 | jens-daniel-mueller | 2021-11-19 |
6b80483 | jens-daniel-mueller | 2021-11-19 |
b7d656b | jens-daniel-mueller | 2021-11-16 |
8a3e867 | jens-daniel-mueller | 2021-11-12 |
e5a0a8f | jens-daniel-mueller | 2021-11-12 |
1b58f8e | jens-daniel-mueller | 2021-11-12 |
029c50a | jens-daniel-mueller | 2021-11-12 |
20e7603 | jens-daniel-mueller | 2021-11-12 |
GLODAP %>%
filter(!is.na(pcfc12)) %>%
group_by(era, basin_AIP) %>%
count() %>%
ggplot(aes(basin_AIP, n, fill = era)) +
geom_col() +
scale_fill_brewer(palette = "Dark2")
The following plots show the remaining data density in each grid cell after all cleaning steps, separately for each era.
map +
geom_bin2d(data = GLODAP %>% filter(!is.na(pcfc12)),
aes(lon, lat),
binwidth = c(1,1)) +
scale_fill_viridis_c(option = "magma", direction = -1, trans = "log10") +
facet_wrap(~era, ncol = 1) +
labs(title = "GLODAP observations",
subtitle = paste("Version:", params_local$Version_ID)) +
theme(axis.title = element_blank())
sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2
Matrix products: default
BLAS: /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] lubridate_1.7.9 ggforce_0.3.3 metR_0.9.0 scico_1.2.0
[5] patchwork_1.1.1 collapse_1.5.0 forcats_0.5.0 stringr_1.4.0
[9] dplyr_1.0.5 purrr_0.3.4 readr_1.4.0 tidyr_1.1.3
[13] tibble_3.1.3 ggplot2_3.3.5 tidyverse_1.3.0 workflowr_1.6.2
loaded via a namespace (and not attached):
[1] nlme_3.1-149 fs_1.5.0 RColorBrewer_1.1-2
[4] httr_1.4.2 rprojroot_2.0.2 tools_4.0.3
[7] backports_1.1.10 bslib_0.2.5.1 utf8_1.1.4
[10] R6_2.5.0 mgcv_1.8-33 DBI_1.1.0
[13] colorspace_2.0-2 withr_2.3.0 tidyselect_1.1.0
[16] compiler_4.0.3 git2r_0.27.1 cli_3.0.1
[19] rvest_0.3.6 xml2_1.3.2 isoband_0.2.2
[22] labeling_0.4.2 sass_0.4.0 scales_1.1.1
[25] checkmate_2.0.0 digest_0.6.27 rmarkdown_2.10
[28] pkgconfig_2.0.3 htmltools_0.5.1.1 dbplyr_1.4.4
[31] highr_0.8 rlang_0.4.11 readxl_1.3.1
[34] rstudioapi_0.13 jquerylib_0.1.4 generics_0.1.0
[37] farver_2.0.3 jsonlite_1.7.1 magrittr_1.5
[40] Matrix_1.2-18 Rcpp_1.0.5 munsell_0.5.0
[43] fansi_0.4.1 lifecycle_1.0.0 stringi_1.5.3
[46] whisker_0.4 yaml_2.2.1 MASS_7.3-53
[49] plyr_1.8.6 grid_4.0.3 blob_1.2.1
[52] parallel_4.0.3 promises_1.1.1 crayon_1.3.4
[55] lattice_0.20-41 splines_4.0.3 haven_2.3.1
[58] hms_0.5.3 knitr_1.33 pillar_1.6.2
[61] reprex_0.3.0 glue_1.4.2 evaluate_0.14
[64] RcppArmadillo_0.10.1.2.0 data.table_1.14.0 modelr_0.1.8
[67] vctrs_0.3.8 tweenr_1.0.2 httpuv_1.5.4
[70] cellranger_1.1.0 gtable_0.3.0 polyclip_1.10-0
[73] assertthat_0.2.1 xfun_0.25 broom_0.7.9
[76] RcppEigen_0.3.3.7.0 later_1.2.0 viridisLite_0.3.0
[79] memoise_1.1.0 ellipsis_0.3.2 here_0.1