Last updated: 2021-04-13

Checks: 7 0

Knit directory: emlr_obs_v_XXX/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200707) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 1df2496. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_zonal_sections.Rmd) and HTML (docs/analysis_zonal_sections.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html eff1ad7 jens-daniel-mueller 2021-04-12 Build site.
Rmd bc7ce8d jens-daniel-mueller 2021-04-12 included model data
html 145d676 jens-daniel-mueller 2021-04-12 Build site.
Rmd 4765300 jens-daniel-mueller 2021-04-12 included model data
html 062160b jens-daniel-mueller 2021-04-12 Build site.
Rmd 24e49cd jens-daniel-mueller 2021-04-12 included model data
html 338dd3c jens-daniel-mueller 2021-04-09 Build site.
html a79ca2c jens-daniel-mueller 2021-04-09 included model data
html 7831fd3 jens-daniel-mueller 2021-04-09 Build site.
html 20b26d4 jens-daniel-mueller 2021-04-08 Build site.
html c0895f8 jens-daniel-mueller 2021-04-07 Build site.
Rmd ccd3951 jens-daniel-mueller 2021-04-07 included model data
html 156d5b7 jens-daniel-mueller 2021-04-07 Build site.
Rmd c2d8604 jens-daniel-mueller 2021-04-07 included model data

1 Data sources

Cant estimates from this sensitivity case:

  • Mean and SD per grid cell (lat, lon, depth)
  • Zonal mean and SD (basin, lat, depth)
  • Inventories (lat, lon)
cant_3d <-
  read_csv(paste(path_version_data,
                 "cant_3d.csv",
                 sep = ""))

cant_3d_model_truth <-
  read_csv(paste(path_version_data,
                 "cant_3d_model_truth.csv",
                 sep = ""))

cant_3d <- bind_rows(cant_3d,
                     cant_3d_model_truth %>% mutate(data_source = "model_truth",
                                                    gamma_slab = NA))

cant_zonal <-
  read_csv(paste(path_version_data,
                 "cant_zonal.csv",
                 sep = ""))

cant_zonal_model_truth <-
  read_csv(paste(path_version_data,
                 "cant_zonal_model_truth.csv",
                 sep = ""))

cant_zonal <- bind_rows(
  cant_zonal,
  cant_zonal_model_truth %>% mutate(data_source = "model_truth",
                                    gamma_slab = NA)
)

2 Cant - positive

In a first series of plots we explore the distribution of Cant, taking only positive estimates into account (positive here refers to the mean cant estimate across MLR model predictions available for each grid cell). Negative values were set to zero before calculating mean sections and inventories.

cant_zonal_bias <- cant_zonal %>%
  filter(data_source %in% c("mod", "model_truth")) %>%
  select(lat, depth, basin_AIP, data_source, cant_pos_mean) %>%
  pivot_wider(names_from = data_source,
              values_from = cant_pos_mean) %>%
  mutate(cant_pos_bias = mod - model_truth)

# cant_zonal %>%
#   group_split(data_source, basin_AIP) %>%
#   map(
#     i_basin_AIP = unique(.x$basin_AIP),
#     ~ p_section_zonal(
#     df = .x,
#     var = "cant_pos_mean",
#     subtitle_text = paste("data_source:", unique(.x$data_source),
#                           "basin:", unique(.x$basin_AIP))
#   ))


# i_basin_AIP <- unique(cant_zonal$basin_AIP)[2]
# i_data_source <- unique(cant_zonal$data_source)[1]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_data_source in unique(cant_zonal$data_source)) {
   
     print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 data_source == i_data_source),
        var = "cant_pos_mean",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| data_source:", i_data_source))
    )
    
  }
    print(
    p_section_zonal(
      df = cant_zonal_bias %>%
        filter(basin_AIP == i_basin_AIP),
      var = "cant_pos_bias",
      col="divergent",
      breaks = params_global$breaks_cant_offset,
      plot_slabs = "n",
      subtitle_text =
        paste("Basin:", i_basin_AIP, "| data_source: mod - model_truth")
    )
  )
}

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12

Version Author Date
eff1ad7 jens-daniel-mueller 2021-04-12
rm(cant_zonal_bias)

2.1 Global sections

for (i_data_source in unique(cant_3d$data_source)) {
  print(
    p_section_global(
      df = cant_3d %>% filter(data_source == i_data_source),
      var = "cant_pos",
      subtitle_text = paste("data_source:", i_data_source)
    )
  )
  
}

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
062160b jens-daniel-mueller 2021-04-12

3 Cant - all

In a second series of plots we explore the distribution of all Cant, taking positive and negative estimates into account.

cant_zonal_bias <- cant_zonal %>%
  filter(data_source %in% c("mod", "model_truth")) %>%
  select(lat, depth, basin_AIP, data_source, cant_mean) %>%
  pivot_wider(names_from = data_source,
              values_from = cant_mean) %>%
  mutate(cant_bias = mod - model_truth)

# i_data_source <- unique(cant_zonal$data_source)[1]
# i_basin_AIP <- unique(cant_zonal$basin_AIP)[1]

for (i_basin_AIP in unique(cant_zonal$basin_AIP)) {
  for (i_data_source in unique(cant_zonal$data_source)) {
    print(
      p_section_zonal(
        df = cant_zonal %>%
          filter(basin_AIP == i_basin_AIP,
                 data_source == i_data_source),
        var = "cant_mean",
        gamma = "gamma_mean",
        breaks = params_global$breaks_cant,
        col = "divergent",
        subtitle_text =
          paste("Basin:", i_basin_AIP, "| data_source:", i_data_source))
    )
    
  }
  
    print(
    p_section_zonal(
      df = cant_zonal_bias %>%
        filter(basin_AIP == i_basin_AIP),
      var = "cant_bias",
      col="divergent",
      breaks = params_global$breaks_cant_offset,
      plot_slabs = "n",
      subtitle_text =
        paste("Basin:", i_basin_AIP, "| data_source: mod - model_truth")
    )
  )
  
}

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12
338dd3c jens-daniel-mueller 2021-04-09
a79ca2c jens-daniel-mueller 2021-04-09
20b26d4 jens-daniel-mueller 2021-04-08
156d5b7 jens-daniel-mueller 2021-04-07

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
145d676 jens-daniel-mueller 2021-04-12
062160b jens-daniel-mueller 2021-04-12

Version Author Date
145d676 jens-daniel-mueller 2021-04-12

Version Author Date
145d676 jens-daniel-mueller 2021-04-12

Version Author Date
145d676 jens-daniel-mueller 2021-04-12

sessionInfo()
R version 4.0.3 (2020-10-10)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.2

Matrix products: default
BLAS:   /usr/local/R-4.0.3/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.0.3/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] gt_0.2.2         kableExtra_1.3.1 marelac_2.1.10   shape_1.4.5     
 [5] scales_1.1.1     metR_0.9.0       scico_1.2.0      patchwork_1.1.1 
 [9] collapse_1.5.0   forcats_0.5.0    stringr_1.4.0    dplyr_1.0.5     
[13] purrr_0.3.4      readr_1.4.0      tidyr_1.1.2      tibble_3.0.4    
[17] ggplot2_3.3.3    tidyverse_1.3.0  workflowr_1.6.2 

loaded via a namespace (and not attached):
 [1] fs_1.5.0                 lubridate_1.7.9          gsw_1.0-5               
 [4] webshot_0.5.2            httr_1.4.2               rprojroot_2.0.2         
 [7] tools_4.0.3              backports_1.1.10         R6_2.5.0                
[10] DBI_1.1.0                colorspace_1.4-1         withr_2.3.0             
[13] tidyselect_1.1.0         compiler_4.0.3           git2r_0.27.1            
[16] cli_2.1.0                rvest_0.3.6              xml2_1.3.2              
[19] isoband_0.2.2            labeling_0.4.2           checkmate_2.0.0         
[22] digest_0.6.27            rmarkdown_2.5            oce_1.2-0               
[25] pkgconfig_2.0.3          htmltools_0.5.0          dbplyr_1.4.4            
[28] rlang_0.4.10             readxl_1.3.1             rstudioapi_0.13         
[31] farver_2.0.3             generics_0.0.2           jsonlite_1.7.1          
[34] magrittr_1.5             Matrix_1.2-18            Rcpp_1.0.5              
[37] munsell_0.5.0            fansi_0.4.1              lifecycle_1.0.0         
[40] stringi_1.5.3            whisker_0.4              yaml_2.2.1              
[43] plyr_1.8.6               grid_4.0.3               blob_1.2.1              
[46] parallel_4.0.3           promises_1.1.1           crayon_1.3.4            
[49] lattice_0.20-41          haven_2.3.1              hms_0.5.3               
[52] seacarb_3.2.14           knitr_1.30               pillar_1.4.7            
[55] reprex_0.3.0             glue_1.4.2               evaluate_0.14           
[58] RcppArmadillo_0.10.1.2.0 data.table_1.13.2        modelr_0.1.8            
[61] vctrs_0.3.5              httpuv_1.5.4             testthat_2.3.2          
[64] cellranger_1.1.0         gtable_0.3.0             assertthat_0.2.1        
[67] xfun_0.18                broom_0.7.5              RcppEigen_0.3.3.7.0     
[70] later_1.1.0.1            viridisLite_0.3.0        memoise_1.1.0           
[73] ellipsis_0.3.1           here_0.1