Last updated: 2024-06-11
Checks: 7 0
Knit directory:
heatwave_co2_flux_2023/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20240307)
was run prior to running
the code in the R Markdown file. Setting a seed ensures that any results
that rely on randomness, e.g. subsampling or permutations, are
reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 2b34bf8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for
the analysis have been committed to Git prior to generating the results
(you can use wflow_publish
or
wflow_git_commit
). workflowr only checks the R Markdown
file, but you know if there are other scripts or data files that it
depends on. Below is the status of the Git repository when the results
were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/figure/
Ignored: data/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were
made to the R Markdown (analysis/SOM_FFN.Rmd
) and HTML
(docs/SOM_FFN.html
) files. If you’ve configured a remote
Git repository (see ?wflow_git_remote
), click on the
hyperlinks in the table below to view the files as they were in that
past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 2b34bf8 | jens-daniel-mueller | 2024-06-11 | manual commit |
html | 5e77ff9 | jens-daniel-mueller | 2024-06-11 | Build site. |
html | f02da4d | jens-daniel-mueller | 2024-06-11 | Build site. |
html | 97c6e98 | jens-daniel-mueller | 2024-06-11 | Build site. |
html | 26805fd | jens-daniel-mueller | 2024-06-11 | Build site. |
html | da0b483 | jens-daniel-mueller | 2024-06-11 | Build site. |
html | 6954c65 | jens-daniel-mueller | 2024-06-06 | Build site. |
html | e1e0ccb | jens-daniel-mueller | 2024-05-27 | Build site. |
html | a3743ec | jens-daniel-mueller | 2024-05-25 | Build site. |
html | a8fa6b2 | jens-daniel-mueller | 2024-05-24 | Build site. |
html | c46133d | jens-daniel-mueller | 2024-05-23 | Build site. |
Rmd | 305b932 | jens-daniel-mueller | 2024-05-23 | testrun with read 3D ocean interior fields |
html | be285dc | jens-daniel-mueller | 2024-05-21 | Build site. |
html | 51df30d | jens-daniel-mueller | 2024-05-15 | Build site. |
html | 909f6c8 | jens-daniel-mueller | 2024-05-14 | Build site. |
Rmd | 7239946 | jens-daniel-mueller | 2024-05-14 | updated seasonality plots |
html | 009791f | jens-daniel-mueller | 2024-05-14 | Build site. |
html | 3b5d16b | jens-daniel-mueller | 2024-05-13 | Build site. |
Rmd | 1e1dee5 | jens-daniel-mueller | 2024-05-13 | pco2 to fco2 conversions, changed output files |
html | 8c96de4 | jens-daniel-mueller | 2024-05-08 | Build site. |
html | 79ef4f3 | jens-daniel-mueller | 2024-05-08 | Build site. |
html | b0129aa | jens-daniel-mueller | 2024-04-23 | Build site. |
Rmd | 39cbcef | jens-daniel-mueller | 2024-04-23 | final atm CO2 MBL used |
html | 7f9c687 | jens-daniel-mueller | 2024-04-23 | Build site. |
html | ce4e2a6 | jens-daniel-mueller | 2024-04-17 | Build site. |
html | 741ee62 | jens-daniel-mueller | 2024-04-17 | Build site. |
html | 58e3680 | jens-daniel-mueller | 2024-04-11 | Build site. |
html | dfcf790 | jens-daniel-mueller | 2024-04-11 | Build site. |
html | 139bc97 | jens-daniel-mueller | 2024-04-11 | manual deletion of files |
html | 2321242 | jens-daniel-mueller | 2024-04-11 | Build site. |
Rmd | d98842b | jens-daniel-mueller | 2024-04-10 | fixed anomaly year output |
html | 2793f67 | jens-daniel-mueller | 2024-04-05 | Build site. |
html | 69dc18c | jens-daniel-mueller | 2024-04-04 | Build site. |
html | c9d994c | jens-daniel-mueller | 2024-04-04 | Build site. |
Rmd | 46f044d | jens-daniel-mueller | 2024-04-04 | rebuild entire website with individual anomaly years |
Rmd | 9d258b5 | jens-daniel-mueller | 2024-04-03 | manual commit |
html | 3a9a60f | jens-daniel-mueller | 2024-03-29 | Build site. |
html | 3946ecd | jens-daniel-mueller | 2024-03-27 | Build site. |
html | 6343e59 | jens-daniel-mueller | 2024-03-27 | Build site. |
Rmd | aba8ff0 | jens-daniel-mueller | 2024-03-27 | input variables modified |
html | 1546f6d | jens-daniel-mueller | 2024-03-27 | Build site. |
Rmd | 04839cc | jens-daniel-mueller | 2024-03-27 | input variables added |
html | 6bb7ce2 | jens-daniel-mueller | 2024-03-25 | Build site. |
html | f9d2b99 | jens-daniel-mueller | 2024-03-25 | total cummulative intensity added |
html | 3114859 | jens-daniel-mueller | 2024-03-25 | Build site. |
html | 4589270 | jens-daniel-mueller | 2024-03-24 | Build site. |
html | 62ea4dd | jens-daniel-mueller | 2024-03-24 | Build site. |
html | 1a5167d | jens-daniel-mueller | 2024-03-24 | Build site. |
html | 934da22 | jens-daniel-mueller | 2024-03-22 | Build site. |
html | ae4041c | jens-daniel-mueller | 2024-03-22 | Build site. |
html | dc2068e | jens-daniel-mueller | 2024-03-22 | Build site. |
html | 98cf341 | jens-daniel-mueller | 2024-03-21 | Build site. |
html | e3e1491 | jens-daniel-mueller | 2024-03-21 | Build site. |
html | 47238da | jens-daniel-mueller | 2024-03-21 | Build site. |
html | 83fcd67 | jens-daniel-mueller | 2024-03-21 | Build site. |
html | 342018b | jens-daniel-mueller | 2024-03-20 | Build site. |
html | 8698b51 | jens-daniel-mueller | 2024-03-20 | Build site. |
Rmd | 39d9769 | jens-daniel-mueller | 2024-03-20 | write summary output files |
html | 03321bd | jens-daniel-mueller | 2024-03-19 | Build site. |
Rmd | e80f0d8 | jens-daniel-mueller | 2024-03-19 | units fixed |
html | b41fa51 | jens-daniel-mueller | 2024-03-19 | Build site. |
html | bd3c1fe | jens-daniel-mueller | 2024-03-19 | Build site. |
Rmd | fbfd936 | jens-daniel-mueller | 2024-03-19 | run pco2 products with child document |
center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)
worldmap <- ne_countries(scale = 'small',
type = 'map_units',
returnclass = 'sf')
worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)
# ggplot() +
# geom_sf(data = worldmap_trans)
coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)
# ggplot() +
# geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
# geom_sf(data = coastline_trans)
bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)
bbox_graticules <- st_graticule(
x = bbox_trans,
crs = st_crs(bbox_trans),
datum = st_crs(bbox_trans),
lon = c(20, 20.001),
lat = c(-78,65),
ndiscr = 1e3,
margin = 0.001
)
bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)
# ggplot() +
# geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
# geom_sf(data = coastline_trans) +
# geom_sf(data = bbox_graticules_trans)
lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005
# ggplot() +
# geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
# geom_sf(data = coastline_trans) +
# geom_sf(data = bbox_graticules_trans, linewidth = 1) +
# coord_sf(crs = target_crs,
# ylim = lat_lim,
# xlim = lon_lim,
# expand = FALSE) +
# theme(
# panel.border = element_blank(),
# axis.text = element_blank(),
# axis.ticks = element_blank()
# )
latitude_graticules <- st_graticule(
x = bbox_graticules,
crs = st_crs(bbox_graticules),
datum = st_crs(bbox_graticules),
lon = c(20, 20.001),
lat = c(-60,-30,0,30,60),
ndiscr = 1e3,
margin = 0.001
)
latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)
latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))
latitude_labels <- st_as_sf(x = latitude_labels,
coords = c("lon", "lat"),
crs = "+proj=longlat")
latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)
# ggplot() +
# geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
# geom_sf(data = coastline_trans) +
# geom_sf(data = bbox_graticules_trans) +
# geom_sf(data = latitude_graticules_trans,
# col = "grey60",
# linewidth = 0.2) +
# geom_sf_text(data = latitude_labels_trans,
# aes(label = lat_label),
# size = 3,
# col = "grey60")
path_pCO2_products <-
"/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"
path_OceanSODA <-
"/nfs/kryo/work/gregorl/projects/OceanSODA-ETHZ/releases/v2023-full_carbonate_system/OceanSODA_ETHZ_HRLR-v2023.01-co2fluxvars-netCDF/"
library(ncdf4)
nc <-
nc_open(paste0(
path_pCO2_products,
"VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
))
print(nc)
print("VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc")
[1] "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
pco2_product <-
read_ncdf(
paste0(
path_pCO2_products,
"VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
),
var = c("dco2", "atm_co2", "sol", "kw", "spco2_smoothed", "fgco2_smoothed"),
ignore_bounds = TRUE,
make_units = FALSE
)
pco2_product_input <-
read_ncdf(
paste0(
path_pCO2_products,
"VLIZ-SOM_FFN/VLIZ-SOM_FFN_inputs.nc"
),
var = c("sst", "sss", "chl", "wind"),
ignore_bounds = TRUE,
make_units = FALSE
)
pco2_product <- c(pco2_product, pco2_product_input)
rm(pco2_product_input)
pco2_product <- pco2_product %>%
as_tibble()
pco2_product <-
pco2_product %>%
rename(spco2 = spco2_smoothed,
fgco2 = fgco2_smoothed,
salinity = sss,
temperature = sst)
pco2_product <-
pco2_product %>%
mutate(across(-c(lon, lat, time), ~ replace(., . >= 1e+19, NA)))
pco2_product <-
pco2_product %>%
mutate(area = earth_surf(lat, lon),
year = year(time),
month = month(time))
pco2_product <-
pco2_product %>%
mutate(lon = if_else(lon < 20, lon + 360, lon),
wind = sqrt(wind))
pco2_product <-
pco2_product %>%
mutate(
sfco2 = p2fCO2(T = temperature,
pCO2 = spco2),
atm_fco2 = p2fCO2(T = temperature,
pCO2 = atm_co2),
dfco2 = sfco2 - atm_fco2
)
pco2_product <-
pco2_product %>%
mutate(kw_sol = kw * sol)
# pco2_product %>%
# ggplot(aes(dco2-(spco2-atm_co2))) +
# geom_histogram()
#
# pco2_product %>%
# ggplot(aes(dfco2-(sfco2-atm_fco2))) +
# geom_histogram()
pco2_product <-
pco2_product %>%
select(-c(dco2, atm_co2, spco2))
pCO2_product_preprocessing <-
knitr::knit_expand(
file = here::here("analysis/child/pCO2_product_preprocessing.Rmd"),
product_name = "SOM_FFN"
)
# model <- TRUE
model <- str_detect('SOM_FFN', "FESOM-REcoM|ETHZ_CESM")
biome_mask <-
read_rds(here::here("data/biome_mask.rds"))
region_mask <-
read_rds(here::here("data/region_mask.rds"))
map <-
read_rds(here::here("data/map.rds"))
key_biomes <-
read_rds(here::here("data/key_biomes.rds"))
super_biomes <-
read_rds(here::here("data/super_biomes.rds"))
super_biome_mask <-
read_rds(here::here("data/super_biome_mask.rds"))
labels_breaks <- function(i_name) {
if (i_name == "dco2") {
i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
}
if (i_name == "dfco2") {
i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
}
if (i_name == "atm_co2") {
i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
}
if (i_name == "atm_fco2") {
i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
}
if (i_name == "sol") {
i_legend_title <- "K<sub>0</sub><br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
}
if (i_name == "kw") {
i_legend_title <- "k<sub>w</sub><br>(m yr<sup>-1</sup>)"
}
if (i_name == "kw_sol") {
i_legend_title <- "k<sub>w</sub> K<sub>0</sub><br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
}
if (i_name == "spco2") {
i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
}
if (i_name == "sfco2") {
i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
}
if (i_name == "intpp") {
i_legend_title <- "NPP<sub>int</sub><br>(mol s<sup>-1</sup> m<sup>-2</sup>)"
}
if (i_name == "no3") {
i_legend_title <- "NO<sub>3</sub><br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "o2") {
i_legend_title <- "O<sub>2</sub><br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "dissic") {
i_legend_title <- "DIC<br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "sdissic") {
i_legend_title <- "sDIC<br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "cstar") {
i_legend_title <- "C*<br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "talk") {
i_legend_title <- "TA<br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "stalk") {
i_legend_title <- "sTA<br>(μmol kg<sup>-1</sup>)"
}
if (i_name == "sfco2_total") {
i_legend_title <- "total"
}
if (i_name == "sfco2_therm") {
i_legend_title <- "thermal"
}
if (i_name == "sfco2_nontherm") {
i_legend_title <- "non-thermal"
}
if (i_name == "fgco2") {
i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
}
if (i_name == "fgco2_hov") {
i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
}
if (i_name == "fgco2_int") {
i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
}
if (i_name == "thetao") {
i_legend_title <- "Temp.<br>(°C)"
}
if (i_name == "temperature") {
i_legend_title <- "SST<br>(°C)"
}
if (i_name == "salinity") {
i_legend_title <- "SSS"
}
if (i_name == "so") {
i_legend_title <- "salinity"
}
if (i_name == "chl") {
i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
}
if (i_name == "mld") {
i_legend_title <- "MLD<br>(m)"
}
if (i_name == "press") {
i_legend_title <- "pressure<sub>atm</sub><br>(Pa)"
}
if (i_name == "wind") {
i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
}
if (i_name == "SSH") {
i_legend_title <- "SSH <br>(m)"
}
if (i_name == "fice") {
i_legend_title <- "Sea ice <br>(%)"
}
if (i_name == "resid_fgco2") {
i_legend_title <-
"Observed"
}
if (i_name == "resid_fgco2_dfco2") {
i_legend_title <-
"ΔfCO<sub>2</sub>"
}
if (i_name == "resid_fgco2_kw_sol") {
i_legend_title <-
"k<sub>w</sub> K<sub>0</sub>"
}
if (i_name == "resid_fgco2_dfco2_kw_sol") {
i_legend_title <-
"k<sub>w</sub> K<sub>0</sub> X ΔfCO<sub>2</sub>"
}
if (i_name == "resid_fgco2_sum") {
i_legend_title <-
"∑"
}
if (i_name == "resid_fgco2_offset") {
i_legend_title <-
"Obs. - ∑"
}
all_labels_breaks <- lst(i_legend_title)
return(all_labels_breaks)
}
x_axis_labels <-
c(
"dco2" = labels_breaks("dco2")$i_legend_title,
"dfco2" = labels_breaks("dfco2")$i_legend_title,
"atm_co2" = labels_breaks("atm_co2")$i_legend_title,
"atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
"sol" = labels_breaks("sol")$i_legend_title,
"kw" = labels_breaks("kw")$i_legend_title,
"kw_sol" = labels_breaks("kw_sol")$i_legend_title,
"intpp" = labels_breaks("intpp")$i_legend_title,
"no3" = labels_breaks("no3")$i_legend_title,
"o2" = labels_breaks("o2")$i_legend_title,
"dissic" = labels_breaks("dissic")$i_legend_title,
"sdissic" = labels_breaks("sdissic")$i_legend_title,
"cstar" = labels_breaks("cstar")$i_legend_title,
"talk" = labels_breaks("talk")$i_legend_title,
"stalk" = labels_breaks("stalk")$i_legend_title,
"spco2" = labels_breaks("spco2")$i_legend_title,
"sfco2" = labels_breaks("sfco2")$i_legend_title,
"sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
"sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
"sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
"fgco2" = labels_breaks("fgco2")$i_legend_title,
"fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
"fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
"thetao" = labels_breaks("thetao")$i_legend_title,
"temperature" = labels_breaks("temperature")$i_legend_title,
"salinity" = labels_breaks("salinity")$i_legend_title,
"so" = labels_breaks("so")$i_legend_title,
"chl" = labels_breaks("chl")$i_legend_title,
"mld" = labels_breaks("mld")$i_legend_title,
"press" = labels_breaks("press")$i_legend_title,
"wind" = labels_breaks("wind")$i_legend_title,
"SSH" = labels_breaks("SSH")$i_legend_title,
"fice" = labels_breaks("fice")$i_legend_title,
"resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
"resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
"resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
"resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
"resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
"resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
)
name_quadratic_fit <- c("atm_co2", "atm_fco2", "spco2", "sfco2")
start_year <- 1990
name_divergent <- c("dco2", "dfco2", "fgco2", "fgco2_hov", "fgco2_int")
pco2_product <-
pco2_product %>%
filter(year >= start_year)
pco2_product_interior <-
pco2_product_interior %>%
filter(time >= ymd(paste0(start_year, "-01-01")))
biome_mask <- biome_mask %>%
mutate(area = earth_surf(lat, lon))
pco2_product <-
full_join(pco2_product,
biome_mask)
# set all values outside biome mask to NA
pco2_product <-
pco2_product %>%
mutate(across(-c(lat, lon, time, area, year, month, biome),
~ if_else(is.na(biome), NA, .)))
# apply coarse grid
pco2_product_coarse <-
pco2_product %>%
mutate(lon_grid = lon,
lat_grid = lat)
# pco2_product_coarse <-
# m_grid_horizontal_coarse(pco2_product)
# pco2_product_coarse <-
# pco2_product_coarse %>%
# select(-c(lon, lat, time, biome)) %>%
# group_by(year, month, lon_grid, lat_grid) %>%
# summarise(across(-area,
# ~ weighted.mean(., area))) %>%
# ungroup() %>%
# rename(lon = lon_grid, lat = lat_grid)
pco2_product_coarse <-
pco2_product_coarse %>%
select(-c(lon, lat, time, biome)) %>%
fgroup_by(year, month, lon_grid, lat_grid) %>%
fmean(w = area,
keep.w = FALSE,
na.rm = FALSE) %>%
rename(lon = lon_grid, lat = lat_grid)
pco2_product_coarse <-
pco2_product_coarse %>%
pivot_longer(-c(year, month, lon, lat)) %>%
drop_na() %>%
pivot_wider()
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3014204 161 5636098 301.1 5636098 301.1
Vcells 677374823 5168 3191650029 24350.4 3962783839 30233.7
# compute annual means
pco2_product_coarse_annual <-
pco2_product_coarse %>%
select(-month) %>%
fgroup_by(year, lon, lat) %>%
fmean(na.rm = FALSE)
pco2_product_coarse_annual <-
pco2_product_coarse_annual %>%
pivot_longer(-c(year, lon, lat))
## compute monthly means
pco2_product_coarse_monthly <-
pco2_product_coarse %>%
fgroup_by(year, month, lon, lat) %>%
fmean()
pco2_product_coarse_monthly <-
pco2_product_coarse_monthly %>%
pivot_longer(-c(year, month, lon, lat))
gc()
used (Mb) gc trigger (Mb) max used (Mb)
Ncells 3014391 161.0 5636098 301.1 5636098 301.1
Vcells 1597586371 12188.7 3191650029 24350.4 3962783839 30233.7
pco2_product_monthly_global <-
pco2_product %>%
filter(!is.na(fgco2)) %>%
mutate(fgco2_int = fgco2) %>%
mutate(biome = case_when(str_detect(biome, "SO-") ~ "Southern Ocean",
TRUE ~ "other")) %>%
filter(biome == "other") %>%
select(-c(lon, lat, year, month, biome)) %>%
group_by(time) %>%
summarise(across(-c(fgco2_int, area),
~ weighted.mean(., area, na.rm = TRUE)),
across(fgco2_int,
~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
ungroup()
pco2_product_monthly_biome <-
pco2_product %>%
filter(!is.na(fgco2)) %>%
mutate(fgco2_int = fgco2) %>%
select(-c(lon, lat, year, month)) %>%
group_by(time, biome) %>%
summarise(across(-c(fgco2_int, area),
~ weighted.mean(., area, na.rm = TRUE)),
across(fgco2_int,
~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
ungroup()
pco2_product_monthly_biome_super <-
pco2_product %>%
filter(!is.na(fgco2)) %>%
mutate(fgco2_int = fgco2) %>%
mutate(
biome = case_when(
str_detect(biome, "NA-") ~ "North Atlantic",
str_detect(biome, "NP-") ~ "North Pacific",
str_detect(biome, "SO-") ~ "Southern Ocean",
TRUE ~ "other"
)
) %>%
filter(biome != "other") %>%
select(-c(lon, lat, year, month)) %>%
group_by(time, biome) %>%
summarise(across(-c(fgco2_int, area),
~ weighted.mean(., area, na.rm = TRUE)),
across(fgco2_int,
~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
ungroup()
pco2_product_monthly <-
bind_rows(pco2_product_monthly_global %>%
mutate(biome = "Global"),
pco2_product_monthly_biome,
pco2_product_monthly_biome_super)
rm(
pco2_product_monthly_global,
pco2_product_monthly_biome,
pco2_product_monthly_biome_super
)
pco2_product_monthly <-
pco2_product_monthly %>%
filter(!is.na(biome))
pco2_product_monthly <-
pco2_product_monthly %>%
mutate(year = year(time),
month = month(time),
.after = time)
pco2_product_monthly <-
pco2_product_monthly %>%
pivot_longer(-c(time, year, month, biome))
pco2_product_interior <-
left_join(
biome_mask,
pco2_product_interior
)
pco2_product_profiles <- pco2_product_interior %>%
fselect(-c(lat, lon)) %>%
fgroup_by(biome, depth, time) %>% {
add_vars(fgroup_vars(., "unique"),
fmean(.,
w = area,
keep.w = FALSE,
keep.group_vars = FALSE))
}
pco2_product_profiles <-
pco2_product_profiles %>%
mutate(
year = year(time),
month = month(time)
)
gc()
pco2_product_interior <-
left_join(
region_mask,
pco2_product_interior %>% select(-c(biome, area))
)
pco2_product_zonal_mean <- pco2_product_interior %>%
fselect(-c(lon)) %>%
fgroup_by(region, depth, lat, time) %>% {
add_vars(fgroup_vars(., "unique"),
fmean(.,
keep.group_vars = FALSE))
}
pco2_product_zonal_mean <-
pco2_product_zonal_mean %>%
mutate(
year = year(time),
month = month(time)
)
gc()
# pco2_product_zonal_mean %>%
# filter(region == "atlantic",
# year == 2023,
# month == 1) %>%
# ggplot(aes(lat, depth, z = no3)) +
# geom_contour_filled() +
# scale_y_reverse() +
# scale_fill_viridis_d()
rm(pco2_product_interior)
gc()
The following Hovmoeller plots show the value of each variable as provided through the pCO2 product. Hovmoeller plots are first presented as annual means, and than as monthly means.
pco2_product_hovmoeller_monthly_annual <-
pco2_product %>%
mutate(fgco2_int = fgco2) %>%
select(-c(lon, time, month, biome)) %>%
group_by(year, lat) %>%
summarise(across(-c(fgco2_int, area),
~ weighted.mean(., area, na.rm = TRUE)),
across(fgco2_int,
~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
ungroup() %>%
rename(fgco2_hov = fgco2_int) %>%
filter(fgco2_hov != 0)
pco2_product_hovmoeller_monthly_annual <-
pco2_product_hovmoeller_monthly_annual %>%
pivot_longer(-c(year, lat)) %>%
drop_na()
pco2_product_hovmoeller_monthly_annual %>%
filter(!(name %in% name_divergent)) %>%
group_split(name) %>%
# tail(5) %>%
map(
~ ggplot(data = .x,
aes(year, lat, fill = value)) +
geom_raster() +
scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
theme(legend.title = element_markdown()) +
coord_cartesian(expand = 0) +
labs(title = "Annual means",
y = "Latitude") +
theme(axis.title.x = element_blank())
)
[[1]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[2]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[3]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[4]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[5]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[6]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[7]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3946ecd | jens-daniel-mueller | 2024-03-27 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
[[8]]
[[9]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
pco2_product_hovmoeller_monthly_annual %>%
filter(name %in% name_divergent) %>%
group_split(name) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(year, lat, fill = value)) +
geom_raster() +
scale_fill_gradientn(
colours = cmocean("curl")(100),
rescaler = ~ scales::rescale_mid(.x, mid = 0),
name = labels_breaks(.x %>% distinct(name)),
limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
oob = squish
) +
theme(legend.title = element_markdown()) +
coord_cartesian(expand = 0) +
labs(title = "Annual means",
y = "Latitude") +
theme(axis.title.x = element_blank())
)
[[1]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
[[2]]
[[3]]
pco2_product_hovmoeller_monthly <-
pco2_product %>%
mutate(fgco2_int = fgco2) %>%
select(-c(lon, time, biome)) %>%
group_by(year, month, lat) %>%
summarise(across(-c(fgco2_int, area),
~ weighted.mean(., area, na.rm = TRUE)),
across(fgco2_int,
~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
ungroup() %>%
rename(fgco2_hov = fgco2_int) %>%
filter(fgco2_hov != 0)
pco2_product_hovmoeller_monthly <-
pco2_product_hovmoeller_monthly %>%
pivot_longer(-c(year, month, lat)) %>%
drop_na()
pco2_product_hovmoeller_monthly <-
pco2_product_hovmoeller_monthly %>%
mutate(decimal = year + (month-1) / 12)
pco2_product_hovmoeller_monthly %>%
filter(!(name %in% name_divergent)) %>%
group_split(name) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(decimal, lat, fill = value)) +
geom_raster() +
scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
theme(legend.title = element_markdown()) +
labs(title = "Monthly means",
y = "Latitude") +
coord_cartesian(expand = 0) +
theme(axis.title.x = element_blank())
)
[[1]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[2]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[3]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[4]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[5]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[6]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
934da22 | jens-daniel-mueller | 2024-03-22 |
ae4041c | jens-daniel-mueller | 2024-03-22 |
b41fa51 | jens-daniel-mueller | 2024-03-19 |
[[7]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3946ecd | jens-daniel-mueller | 2024-03-27 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
[[8]]
[[9]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
3b5d16b | jens-daniel-mueller | 2024-05-13 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
pco2_product_hovmoeller_monthly %>%
filter(name %in% name_divergent) %>%
group_split(name) %>%
# head(1) %>%
map(
~ ggplot(data = .x,
aes(decimal, lat, fill = value)) +
geom_raster() +
scale_fill_gradientn(
colours = cmocean("curl")(100),
rescaler = ~ scales::rescale_mid(.x, mid = 0),
name = labels_breaks(.x %>% distinct(name)),
limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
oob = squish
)+
theme(legend.title = element_markdown()) +
labs(title = "Monthly means",
y = "Latitude") +
coord_cartesian(expand = 0) +
theme(axis.title.x = element_blank())
)
[[1]]
Version | Author | Date |
---|---|---|
a3743ec | jens-daniel-mueller | 2024-05-25 |
909f6c8 | jens-daniel-mueller | 2024-05-14 |
009791f | jens-daniel-mueller | 2024-05-14 |
b0129aa | jens-daniel-mueller | 2024-04-23 |
dfcf790 | jens-daniel-mueller | 2024-04-11 |
d5075c5 | jens-daniel-mueller | 2024-04-11 |
3a9a60f | jens-daniel-mueller | 2024-03-29 |
6343e59 | jens-daniel-mueller | 2024-03-27 |
1546f6d | jens-daniel-mueller | 2024-03-27 |
[[2]]
[[3]]
pCO2productanalysis_2023 <-
knitr::knit_expand(
file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
product_name = "SOM_FFN",
year_anom = 2023
)
sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5
Matrix products: default
BLAS: /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] scales_1.2.1 cmocean_0.3-1 ggtext_0.1.2
[4] broom_1.0.5 khroma_1.9.0 ggnewscale_0.4.8
[7] seacarb_3.3.1 SolveSAPHE_2.1.0 oce_1.7-10
[10] gsw_1.1-1 lubridate_1.9.0 timechange_0.1.1
[13] stars_0.6-0 abind_1.4-5 terra_1.7-65
[16] sf_1.0-9 rnaturalearth_0.1.0 geomtextpath_0.1.1
[19] colorspace_2.0-3 marelac_2.1.10 shape_1.4.6
[22] ggforce_0.4.1 metR_0.13.0 scico_1.3.1
[25] patchwork_1.1.2 collapse_1.8.9 forcats_0.5.2
[28] stringr_1.5.0 dplyr_1.1.3 purrr_1.0.2
[31] readr_2.1.3 tidyr_1.3.0 tibble_3.2.1
[34] ggplot2_3.4.4 tidyverse_1.3.2 workflowr_1.7.0
loaded via a namespace (and not attached):
[1] googledrive_2.0.0 ellipsis_0.3.2 class_7.3-20
[4] rprojroot_2.0.3 markdown_1.4 fs_1.5.2
[7] gridtext_0.1.5 rstudioapi_0.15.0 proxy_0.4-27
[10] farver_2.1.1 bit64_4.0.5 fansi_1.0.3
[13] xml2_1.3.3 codetools_0.2-18 cachem_1.0.6
[16] knitr_1.41 polyclip_1.10-4 jsonlite_1.8.3
[19] dbplyr_2.2.1 compiler_4.2.2 httr_1.4.4
[22] backports_1.4.1 assertthat_0.2.1 fastmap_1.1.0
[25] gargle_1.2.1 cli_3.6.1 later_1.3.0
[28] tweenr_2.0.2 htmltools_0.5.3 tools_4.2.2
[31] rnaturalearthdata_0.1.0 gtable_0.3.1 glue_1.6.2
[34] Rcpp_1.0.11 RNetCDF_2.6-1 cellranger_1.1.0
[37] jquerylib_0.1.4 vctrs_0.6.4 lwgeom_0.2-10
[40] xfun_0.35 ps_1.7.2 rvest_1.0.3
[43] ncmeta_0.3.5 lifecycle_1.0.3 googlesheets4_1.0.1
[46] getPass_0.2-2 MASS_7.3-58.1 vroom_1.6.0
[49] hms_1.1.2 promises_1.2.0.1 parallel_4.2.2
[52] yaml_2.3.6 memoise_2.0.1 sass_0.4.4
[55] stringi_1.7.8 highr_0.9 e1071_1.7-12
[58] checkmate_2.1.0 commonmark_1.8.1 rlang_1.1.1
[61] pkgconfig_2.0.3 systemfonts_1.0.4 evaluate_0.18
[64] lattice_0.20-45 labeling_0.4.2 bit_4.0.5
[67] processx_3.8.0 tidyselect_1.2.0 here_1.0.1
[70] magrittr_2.0.3 R6_2.5.1 generics_0.1.3
[73] DBI_1.1.3 pillar_1.9.0 haven_2.5.1
[76] whisker_0.4 withr_2.5.0 units_0.8-0
[79] sp_1.5-1 modelr_0.1.10 crayon_1.5.2
[82] KernSmooth_2.23-20 utf8_1.2.2 tzdb_0.3.0
[85] rmarkdown_2.18 grid_4.2.2 readxl_1.4.1
[88] data.table_1.14.6 callr_3.7.3 git2r_0.30.1
[91] reprex_2.0.2 digest_0.6.30 classInt_0.4-8
[94] httpuv_1.6.6 textshaping_0.3.6 munsell_0.5.0
[97] viridisLite_0.4.1 bslib_0.4.1