Last updated: 2024-06-11

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2b34bf8. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SOM_FFN.Rmd) and HTML (docs/SOM_FFN.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 2b34bf8 jens-daniel-mueller 2024-06-11 manual commit
html 5e77ff9 jens-daniel-mueller 2024-06-11 Build site.
html f02da4d jens-daniel-mueller 2024-06-11 Build site.
html 97c6e98 jens-daniel-mueller 2024-06-11 Build site.
html 26805fd jens-daniel-mueller 2024-06-11 Build site.
html da0b483 jens-daniel-mueller 2024-06-11 Build site.
html 6954c65 jens-daniel-mueller 2024-06-06 Build site.
html e1e0ccb jens-daniel-mueller 2024-05-27 Build site.
html a3743ec jens-daniel-mueller 2024-05-25 Build site.
html a8fa6b2 jens-daniel-mueller 2024-05-24 Build site.
html c46133d jens-daniel-mueller 2024-05-23 Build site.
Rmd 305b932 jens-daniel-mueller 2024-05-23 testrun with read 3D ocean interior fields
html be285dc jens-daniel-mueller 2024-05-21 Build site.
html 51df30d jens-daniel-mueller 2024-05-15 Build site.
html 909f6c8 jens-daniel-mueller 2024-05-14 Build site.
Rmd 7239946 jens-daniel-mueller 2024-05-14 updated seasonality plots
html 009791f jens-daniel-mueller 2024-05-14 Build site.
html 3b5d16b jens-daniel-mueller 2024-05-13 Build site.
Rmd 1e1dee5 jens-daniel-mueller 2024-05-13 pco2 to fco2 conversions, changed output files
html 8c96de4 jens-daniel-mueller 2024-05-08 Build site.
html 79ef4f3 jens-daniel-mueller 2024-05-08 Build site.
html b0129aa jens-daniel-mueller 2024-04-23 Build site.
Rmd 39cbcef jens-daniel-mueller 2024-04-23 final atm CO2 MBL used
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html 741ee62 jens-daniel-mueller 2024-04-17 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 2321242 jens-daniel-mueller 2024-04-11 Build site.
Rmd d98842b jens-daniel-mueller 2024-04-10 fixed anomaly year output
html 2793f67 jens-daniel-mueller 2024-04-05 Build site.
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
Rmd 46f044d jens-daniel-mueller 2024-04-04 rebuild entire website with individual anomaly years
Rmd 9d258b5 jens-daniel-mueller 2024-04-03 manual commit
html 3a9a60f jens-daniel-mueller 2024-03-29 Build site.
html 3946ecd jens-daniel-mueller 2024-03-27 Build site.
html 6343e59 jens-daniel-mueller 2024-03-27 Build site.
Rmd aba8ff0 jens-daniel-mueller 2024-03-27 input variables modified
html 1546f6d jens-daniel-mueller 2024-03-27 Build site.
Rmd 04839cc jens-daniel-mueller 2024-03-27 input variables added
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html f9d2b99 jens-daniel-mueller 2024-03-25 total cummulative intensity added
html 3114859 jens-daniel-mueller 2024-03-25 Build site.
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
html 1a5167d jens-daniel-mueller 2024-03-24 Build site.
html 934da22 jens-daniel-mueller 2024-03-22 Build site.
html ae4041c jens-daniel-mueller 2024-03-22 Build site.
html dc2068e jens-daniel-mueller 2024-03-22 Build site.
html 98cf341 jens-daniel-mueller 2024-03-21 Build site.
html e3e1491 jens-daniel-mueller 2024-03-21 Build site.
html 47238da jens-daniel-mueller 2024-03-21 Build site.
html 83fcd67 jens-daniel-mueller 2024-03-21 Build site.
html 342018b jens-daniel-mueller 2024-03-20 Build site.
html 8698b51 jens-daniel-mueller 2024-03-20 Build site.
Rmd 39d9769 jens-daniel-mueller 2024-03-20 write summary output files
html 03321bd jens-daniel-mueller 2024-03-19 Build site.
Rmd e80f0d8 jens-daniel-mueller 2024-03-19 units fixed
html b41fa51 jens-daniel-mueller 2024-03-19 Build site.
html bd3c1fe jens-daniel-mueller 2024-03-19 Build site.
Rmd fbfd936 jens-daniel-mueller 2024-03-19 run pco2 products with child document

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"

path_OceanSODA <-
  "/nfs/kryo/work/gregorl/projects/OceanSODA-ETHZ/releases/v2023-full_carbonate_system/OceanSODA_ETHZ_HRLR-v2023.01-co2fluxvars-netCDF/"
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
  ))

print(nc)
print("VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc")
[1] "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
pco2_product <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_predict.nc"
    ),
    var = c("dco2", "atm_co2", "sol", "kw", "spco2_smoothed", "fgco2_smoothed"),
    ignore_bounds = TRUE,
    make_units = FALSE
  )

pco2_product_input <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_inputs.nc"
    ),
    var = c("sst", "sss", "chl", "wind"),
    ignore_bounds = TRUE,
    make_units = FALSE
  )

pco2_product <- c(pco2_product, pco2_product_input)
rm(pco2_product_input)
  
pco2_product <- pco2_product %>%
  as_tibble()

pco2_product <-
  pco2_product %>%
  rename(spco2 = spco2_smoothed,
         fgco2 = fgco2_smoothed,
         salinity = sss,
         temperature = sst)

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lon, lat, time), ~ replace(., . >= 1e+19, NA)))

pco2_product <-
  pco2_product %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

pco2_product <-
  pco2_product %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon),
         wind = sqrt(wind))

pco2_product <-
  pco2_product %>%
  mutate(
    sfco2 = p2fCO2(T = temperature,
                   pCO2 = spco2),
    atm_fco2 = p2fCO2(T = temperature,
                      pCO2 = atm_co2),
    dfco2 = sfco2 - atm_fco2
  )

pco2_product <-
  pco2_product %>% 
  mutate(kw_sol = kw * sol)

# pco2_product %>% 
#   ggplot(aes(dco2-(spco2-atm_co2))) +
#   geom_histogram()
# 
# pco2_product %>% 
#   ggplot(aes(dfco2-(sfco2-atm_fco2))) +
#   geom_histogram()

pco2_product <-
  pco2_product %>%
  select(-c(dco2, atm_co2, spco2))
pCO2_product_preprocessing <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_preprocessing.Rmd"),
    product_name = "SOM_FFN"
  )

Preprocessing

# model <- TRUE
model <- str_detect('SOM_FFN', "FESOM-REcoM|ETHZ_CESM")

Load masks

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

region_mask <-
  read_rds(here::here("data/region_mask.rds"))

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

super_biomes <-
  read_rds(here::here("data/super_biomes.rds"))

super_biome_mask <-
  read_rds(here::here("data/super_biome_mask.rds"))

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub><br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub><br>(m yr<sup>-1</sup>)"
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub><br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub><br>(mol s<sup>-1</sup> m<sup>-2</sup>)"
  }

  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub><br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "dissic") {
    i_legend_title <- "DIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "sdissic") {
    i_legend_title <- "sDIC<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "cstar") {
    i_legend_title <- "C*<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "talk") {
    i_legend_title <- "TA<br>(μmol kg<sup>-1</sup>)"
  }

  if (i_name == "stalk") {
    i_legend_title <- "sTA<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>(°C)"
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS"
  }
  
  if (i_name == "so") {
    i_legend_title <- "salinity"
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD<br>(m)"
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub><br>(Pa)"
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH <br>(m)"
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice <br>(%)"
  }
  
    
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
  }
    
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub>"
  }
    
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> X ΔfCO<sub>2</sub>"
  }
    
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
  }
    
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
  }
  
  all_labels_breaks <- lst(i_legend_title)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

Analysis settings

name_quadratic_fit <- c("atm_co2", "atm_fco2", "spco2", "sfco2")

start_year <- 1990

name_divergent <- c("dco2", "dfco2", "fgco2", "fgco2_hov", "fgco2_int")

Data preprocessing

pco2_product <-
  pco2_product %>%
  filter(year >= start_year)
pco2_product_interior <-
  pco2_product_interior %>%
  filter(time >= ymd(paste0(start_year, "-01-01")))
biome_mask <- biome_mask %>% 
  mutate(area = earth_surf(lat, lon))

pco2_product <-
  full_join(pco2_product,
            biome_mask)

# set all values outside biome mask to NA

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lat, lon, time, area, year, month, biome), 
                ~ if_else(is.na(biome), NA, .)))

Compuations

# apply coarse grid

pco2_product_coarse <-
  pco2_product %>%
  mutate(lon_grid = lon,
         lat_grid = lat)

# pco2_product_coarse <-
#   m_grid_horizontal_coarse(pco2_product)

# pco2_product_coarse <-
#   pco2_product_coarse %>%
#   select(-c(lon, lat, time, biome)) %>%
#   group_by(year, month, lon_grid, lat_grid) %>%
#   summarise(across(-area,
#                    ~ weighted.mean(., area))) %>%
#   ungroup() %>%
#   rename(lon = lon_grid, lat = lat_grid)

pco2_product_coarse <-
  pco2_product_coarse %>%
  select(-c(lon, lat, time, biome)) %>%
  fgroup_by(year, month, lon_grid, lat_grid) %>%
  fmean(w = area,
        keep.w = FALSE,
        na.rm = FALSE) %>%
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_coarse <-
  pco2_product_coarse %>%
  pivot_longer(-c(year, month, lon, lat)) %>% 
  drop_na() %>%
  pivot_wider()

gc()
            used (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells   3014204  161    5636098   301.1    5636098   301.1
Vcells 677374823 5168 3191650029 24350.4 3962783839 30233.7
# compute annual means

pco2_product_coarse_annual <-
  pco2_product_coarse %>%
  select(-month) %>% 
  fgroup_by(year, lon, lat) %>%
  fmean(na.rm = FALSE)

pco2_product_coarse_annual <-
  pco2_product_coarse_annual %>% 
  pivot_longer(-c(year, lon, lat))

## compute monthly means

pco2_product_coarse_monthly <-
  pco2_product_coarse %>%
  fgroup_by(year, month, lon, lat) %>%
  fmean()

pco2_product_coarse_monthly <-
  pco2_product_coarse_monthly %>% 
  pivot_longer(-c(year, month, lon, lat))

gc()
             used    (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells    3014391   161.0    5636098   301.1    5636098   301.1
Vcells 1597586371 12188.7 3191650029 24350.4 3962783839 30233.7
pco2_product_monthly_global <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>%
  mutate(fgco2_int = fgco2) %>%
  mutate(biome = case_when(str_detect(biome, "SO-") ~ "Southern Ocean",
                           TRUE ~ "other")) %>%
  filter(biome == "other") %>%
  select(-c(lon, lat, year, month, biome)) %>%
  group_by(time) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_monthly_biome <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, lat, year, month)) %>% 
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()


pco2_product_monthly_biome_super <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  mutate(fgco2_int = fgco2) %>% 
  mutate(
    biome = case_when(
      str_detect(biome, "NA-") ~ "North Atlantic",
      str_detect(biome, "NP-") ~ "North Pacific",
      str_detect(biome, "SO-") ~ "Southern Ocean",
      TRUE ~ "other"
    )
  ) %>%
  filter(biome != "other") %>%
  select(-c(lon, lat, year, month)) %>%
  group_by(time, biome) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_monthly <-
  bind_rows(pco2_product_monthly_global %>%
              mutate(biome = "Global"),
            pco2_product_monthly_biome,
            pco2_product_monthly_biome_super)

rm(
  pco2_product_monthly_global,
  pco2_product_monthly_biome,
  pco2_product_monthly_biome_super
)


pco2_product_monthly <-
  pco2_product_monthly %>% 
  filter(!is.na(biome))

pco2_product_monthly <-
  pco2_product_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

pco2_product_monthly <-
  pco2_product_monthly %>%
  pivot_longer(-c(time, year, month, biome))
pco2_product_interior <- 
  left_join(
    biome_mask,
    pco2_product_interior
  )

pco2_product_profiles <- pco2_product_interior %>%
  fselect(-c(lat, lon)) %>%
  fgroup_by(biome, depth, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   w = area,
                   keep.w = FALSE,
                   keep.group_vars = FALSE))
  }

pco2_product_profiles <-
  pco2_product_profiles %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()
pco2_product_interior <- 
  left_join(
    region_mask,
    pco2_product_interior %>% select(-c(biome, area))
  )

pco2_product_zonal_mean <- pco2_product_interior %>%
  fselect(-c(lon)) %>%
  fgroup_by(region, depth, lat, time) %>% {
    add_vars(fgroup_vars(., "unique"),
             fmean(.,
                   keep.group_vars = FALSE))
  }

pco2_product_zonal_mean <-
  pco2_product_zonal_mean %>%
  mutate(
    year = year(time),
    month = month(time)
  )

gc()

# pco2_product_zonal_mean %>% 
#   filter(region == "atlantic",
#          year == 2023,
#          month == 1) %>% 
#   ggplot(aes(lat, depth, z = no3)) +
#   geom_contour_filled() +
#   scale_y_reverse() +
#   scale_fill_viridis_d()

rm(pco2_product_interior)
gc()

Absolute values

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product. Hovmoeller plots are first presented as annual means, and than as monthly means.

Annual means

pco2_product_hovmoeller_monthly_annual <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, month, biome)) %>%
  group_by(year, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)

pco2_product_hovmoeller_monthly_annual <-
  pco2_product_hovmoeller_monthly_annual %>%
  pivot_longer(-c(year, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly_annual %>%
  filter(!(name %in% name_divergent)) %>% 
  group_split(name) %>%
  # tail(5) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[2]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[3]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[4]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[5]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[6]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[7]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3946ecd jens-daniel-mueller 2024-03-27
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[8]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[9]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
pco2_product_hovmoeller_monthly_annual %>%
  filter(name %in% name_divergent) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[2]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[3]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15

Monthly means

pco2_product_hovmoeller_monthly <-
  pco2_product %>%
  mutate(fgco2_int = fgco2) %>% 
  select(-c(lon, time, biome)) %>%
  group_by(year, month, lat) %>%
  summarise(across(-c(fgco2_int, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2_int,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2_int) %>% 
  filter(fgco2_hov != 0)


pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

pco2_product_hovmoeller_monthly %>%
  filter(!(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[2]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[3]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[4]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[5]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[6]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
934da22 jens-daniel-mueller 2024-03-22
ae4041c jens-daniel-mueller 2024-03-22
b41fa51 jens-daniel-mueller 2024-03-19

[[7]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3946ecd jens-daniel-mueller 2024-03-27
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[8]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[9]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
3b5d16b jens-daniel-mueller 2024-05-13
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27
pco2_product_hovmoeller_monthly %>%
  filter(name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = cmocean("curl")(100),
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name)),
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      )+
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
909f6c8 jens-daniel-mueller 2024-05-14
009791f jens-daniel-mueller 2024-05-14
b0129aa jens-daniel-mueller 2024-04-23
dfcf790 jens-daniel-mueller 2024-04-11
d5075c5 jens-daniel-mueller 2024-04-11
3a9a60f jens-daniel-mueller 2024-03-29
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[2]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
909f6c8 jens-daniel-mueller 2024-05-14
6343e59 jens-daniel-mueller 2024-03-27
1546f6d jens-daniel-mueller 2024-03-27

[[3]]

Version Author Date
a3743ec jens-daniel-mueller 2024-05-25
51df30d jens-daniel-mueller 2024-05-15
pCO2productanalysis_2023 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "SOM_FFN",
    year_anom = 2023
  )

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] scales_1.2.1        cmocean_0.3-1       ggtext_0.1.2       
 [4] broom_1.0.5         khroma_1.9.0        ggnewscale_0.4.8   
 [7] seacarb_3.3.1       SolveSAPHE_2.1.0    oce_1.7-10         
[10] gsw_1.1-1           lubridate_1.9.0     timechange_0.1.1   
[13] stars_0.6-0         abind_1.4-5         terra_1.7-65       
[16] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[19] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[22] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[25] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[28] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[31] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[34] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
 [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
 [4] rprojroot_2.0.3         markdown_1.4            fs_1.5.2               
 [7] gridtext_0.1.5          rstudioapi_0.15.0       proxy_0.4-27           
[10] farver_2.1.1            bit64_4.0.5             fansi_1.0.3            
[13] xml2_1.3.3              codetools_0.2-18        cachem_1.0.6           
[16] knitr_1.41              polyclip_1.10-4         jsonlite_1.8.3         
[19] dbplyr_2.2.1            compiler_4.2.2          httr_1.4.4             
[22] backports_1.4.1         assertthat_0.2.1        fastmap_1.1.0          
[25] gargle_1.2.1            cli_3.6.1               later_1.3.0            
[28] tweenr_2.0.2            htmltools_0.5.3         tools_4.2.2            
[31] rnaturalearthdata_0.1.0 gtable_0.3.1            glue_1.6.2             
[34] Rcpp_1.0.11             RNetCDF_2.6-1           cellranger_1.1.0       
[37] jquerylib_0.1.4         vctrs_0.6.4             lwgeom_0.2-10          
[40] xfun_0.35               ps_1.7.2                rvest_1.0.3            
[43] ncmeta_0.3.5            lifecycle_1.0.3         googlesheets4_1.0.1    
[46] getPass_0.2-2           MASS_7.3-58.1           vroom_1.6.0            
[49] hms_1.1.2               promises_1.2.0.1        parallel_4.2.2         
[52] yaml_2.3.6              memoise_2.0.1           sass_0.4.4             
[55] stringi_1.7.8           highr_0.9               e1071_1.7-12           
[58] checkmate_2.1.0         commonmark_1.8.1        rlang_1.1.1            
[61] pkgconfig_2.0.3         systemfonts_1.0.4       evaluate_0.18          
[64] lattice_0.20-45         labeling_0.4.2          bit_4.0.5              
[67] processx_3.8.0          tidyselect_1.2.0        here_1.0.1             
[70] magrittr_2.0.3          R6_2.5.1                generics_0.1.3         
[73] DBI_1.1.3               pillar_1.9.0            haven_2.5.1            
[76] whisker_0.4             withr_2.5.0             units_0.8-0            
[79] sp_1.5-1                modelr_0.1.10           crayon_1.5.2           
[82] KernSmooth_2.23-20      utf8_1.2.2              tzdb_0.3.0             
[85] rmarkdown_2.18          grid_4.2.2              readxl_1.4.1           
[88] data.table_1.14.6       callr_3.7.3             git2r_0.30.1           
[91] reprex_2.0.2            digest_0.6.30           classInt_0.4-8         
[94] httpuv_1.6.6            textshaping_0.3.6       munsell_0.5.0          
[97] viridisLite_0.4.1       bslib_0.4.1