Last updated: 2024-03-19

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 60bf95f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  analysis/child/
    Untracked:  code/Workflowr_project_managment.R
    Untracked:  figure/

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/_site.yml
    Deleted:    analysis/about.Rmd
    Deleted:    analysis/license.Rmd
    Deleted:    analysis/pCO2_products.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/OceanSODA.Rmd) and HTML (docs/OceanSODA.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 60bf95f jens-daniel-mueller 2024-03-19 run OceanSODA with child document
html 604281a jens-daniel-mueller 2024-03-19 Build site.
Rmd 949479e jens-daniel-mueller 2024-03-19 run OceanSODA with child document
html 14a6ce5 jens-daniel-mueller 2024-03-19 Build site.
Rmd cdff298 jens-daniel-mueller 2024-03-19 run OceanSODA with child document
html d3f3f52 jens-daniel-mueller 2024-03-18 Build site.
Rmd c3f5bd6 jens-daniel-mueller 2024-03-18 run OceanSODA with child document

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"

path_OceanSODA <-
  "/nfs/kryo/work/gregorl/projects/OceanSODA-ETHZ/releases/v2023-full_carbonate_system/OceanSODA_ETHZ_HRLR-v2023.01-co2fluxvars-netCDF/"
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
  ))

nc <-
  nc_open(paste0(
    path_OceanSODA,
    "fgco2_OceanSODA_ETHZ_HR_LR-v2023.01-1982_2023.nc"
  ))

print(nc)
OceanSODA_files <- list.files(path = path_OceanSODA)

OceanSODA_files <-
  OceanSODA_files[OceanSODA_files %>% str_detect(c("dfco2|fgco2_O|kw|sfco2|temp"))]

for (i_OceanSODA_files in OceanSODA_files) {
  i_SOM_FFN <-
    read_ncdf(paste0(path_OceanSODA,
                     i_OceanSODA_files),
              make_units = FALSE)
  
  if (exists("SOM_FFN")) {
    SOM_FFN <-
      c(SOM_FFN,
                i_SOM_FFN)
  }
  
  if (!exists("SOM_FFN")) {
    SOM_FFN <- i_SOM_FFN
  }
  
}

rm(OceanSODA_files, i_OceanSODA_files, i_SOM_FFN)

SOM_FFN <- SOM_FFN %>%
  as_tibble()

SOM_FFN <-
  SOM_FFN %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

SOM_FFN <-
  SOM_FFN %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon)) %>% 
  rename(dco2 = dfco2)
print("VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc")

SOM_FFN <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
    ),
    var = c("dco2", "atm_co2", "sol", "kw", "spco2_smoothed", "fgco2_smoothed"),
    make_units = FALSE
  )

SOM_FFN <- SOM_FFN %>%
  as_tibble()

SOM_FFN <-
  SOM_FFN %>%
  rename(spco2 = spco2_smoothed, fgco2 = fgco2_smoothed)

SOM_FFN <-
  SOM_FFN %>%
  mutate(across(dco2:fgco2, ~ replace(., . >= 1e+19, NA)))

SOM_FFN <-
  SOM_FFN %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

SOM_FFN <-
  SOM_FFN %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))
pCO2productanalysis <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd")
  )

Read data

path_reccap2 <-
  "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/"
print("RECCAP2_region_masks_all_v20221025.nc")
[1] "RECCAP2_region_masks_all_v20221025.nc"
region_masks_all <-
  read_ncdf(
    paste(
      path_reccap2,
      "supplementary/RECCAP2_region_masks_all_v20221025.nc",
      sep = ""
    )
  ) %>%
  as_tibble()

Analysis settings

key_biomes <- c("global",
                "NA-SPSS",
                "NA-STPS",
                "NP-SPSS",
                "PEQU-E",
                "SO-SPSS")

name_quadratic_fit <- c("atm_co2", "spco2", "sfco2")

start_year <- 1990

name_divergent <- c("dco2", "fgco2", "fgco2_hov", "fgco2_int")

Anomaly detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for `, which are approximated with quadratic fits.

The regression models are fitted to data from the period `, and extrapolated to 2023.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year <= 2022,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_2023 <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_lm_2023
    )
  
  rm(df_lm_2023)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year <= 2022,
           name %in% name_quadratic_fit) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_2023 <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_quadratic_2023
    )
  
  rm(df_quadratic_2023)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}

Biome mask

region_masks_all <-
  region_masks_all %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))

land_mask <- region_masks_all %>%
  filter(seamask == 0) %>% 
  select(lon, lat)

map <- ggplot(land_mask,
              aes(lon, lat)) +
  geom_tile(fill = "grey80") +
  scale_y_continuous(breaks = seq(-60,60,30)) +
  scale_x_continuous(breaks = seq(0,360,60)) +
  coord_quickmap(expand = 0, ylim = c(-80, 80)) +
  theme(axis.title = element_blank(),
        axis.text = element_blank(),
        axis.ticks = element_blank())
  
region_masks_all <- region_masks_all %>%
  filter(seamask == 1) %>% 
  select(lon, lat, atlantic:southern) %>% 
  pivot_longer(atlantic:southern,
               names_to = "region",
               values_to = "biome") %>%
  mutate(biome = as.character(biome))

region_masks_all <- region_masks_all %>%
  filter(biome != "0")

region_masks_all <- region_masks_all %>%
  mutate(biome = paste(region, biome, sep = "_"))

region_masks_all <- region_masks_all  %>% 
  mutate(biome = case_when(
    biome == "atlantic_1" ~ "NA-SPSS",
    biome == "atlantic_2" ~ "NA-STSS",
    biome == "atlantic_3" ~ "NA-STPS",
    biome == "atlantic_4" ~ "AEQU",
    biome == "atlantic_5" ~ "SA-STPS",
    # biome == "atlantic_6" ~ "MED",
    biome == "pacific_1" ~ "NP-SPSS",
    biome == "pacific_2" ~ "NP-STSS",
    biome == "pacific_3" ~ "NP-STPS",
    biome == "pacific_4" ~ "PEQU-W",
    biome == "pacific_5" ~ "PEQU-E",
    biome == "pacific_6" ~ "SP-STSS",
    biome == "indian_1" ~ "Arabian Sea",
    biome == "indian_2" ~ "Bay of Bengal",
    biome == "indian_3" ~ "Equatorial Indian",
    biome == "indian_4" ~ "Southern Indian",
    # biome == "arctic_1" ~ "ARCTIC-ICE",
    # biome == "arctic_2" ~ "NP-ICE",
    # biome == "arctic_3" ~ "NA-ICE",
    # biome == "arctic_4" ~ "Barents",
    # str_detect(biome, "arctic") ~ "Arctic",
    biome == "southern_1" ~ "SO-STSS",
    biome == "southern_2" ~ "SO-SPSS",
    # biome == "southern_3" ~ "SO-ICE",
    TRUE ~ "other"
  ))

region_masks_all <-
  region_masks_all %>%
  filter(biome != "other")


map +
  geom_tile(data = region_masks_all,
            aes(lon, lat, fill = region)) +
  labs(title = "Considered ocean regions") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

region_masks_all %>%
  group_split(region) %>%
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = biome)) +
         labs(title = paste("Region:", .x$region)) +
         scale_fill_okabeito())
[[1]]


[[2]]


[[3]]


[[4]]

map +
  geom_tile(data = region_masks_all %>% filter(biome %in% key_biomes),
            aes(lon, lat, fill = biome)) +
  labs(title = "Selected biomes to highlight") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

region_masks_all <-
  region_masks_all %>%
  select(-region)

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "sol") {
    i_legend_title <- "CO<sub>2</sub> solubility<br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "kw") {
    i_legend_title <- "K<sub>w</sub><br>(m yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  all_labels_breaks <- lst(i_legend_title,
                           # i_breaks,
                           # i_contour_level,
                           # i_contour_level_abs
                           )
  
  return(all_labels_breaks)
  
}


# labels_breaks("fgco2")

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title
  )

Preprocessing

SOM_FFN <-
  SOM_FFN %>%
  filter(year >= start_year)
SOM_FFN <-
  full_join(SOM_FFN,
            region_masks_all)

# set all values outside biome mask to NA

SOM_FFN <-
  SOM_FFN %>%
  mutate(across(-c(lat, lon, time, area, year, month, biome), 
                ~ if_else(is.na(biome), NA, .)))

# map +
#   geom_tile(data = SOM_FFN %>% filter(time == max(time),
#                                       !is.na(fgco2)),
#             aes(lon, lat))

Maps

The following maps show the absolute state of each variable in 2023 as provided through the pCO2 product, the change in that variable from 1990 to 2023, as well es the anomalies in 2023. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

SOM_FFN_coarse <-
  m_grid_horizontal_coarse(SOM_FFN)

SOM_FFN_coarse <-
  SOM_FFN_coarse %>%
  select(-c(lon, lat, time, biome)) %>% 
  group_by(year, month, lon_grid, lat_grid) %>%
  summarise(across(-area,
                   ~ weighted.mean(., area))) %>%
  ungroup() %>%
  rename(lon = lon_grid, lat = lat_grid) %>%
  drop_na()

Annual means

2023 absolute

SOM_FFN_coarse_annual <-
  SOM_FFN_coarse %>%
  select(-month) %>% 
  group_by(year, lon, lat) %>%
  summarise(across(where(is.numeric),
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_coarse_annual <-
  SOM_FFN_coarse_annual %>% 
  pivot_longer(-c(year, lon, lat))


# plan(multisession, workers = 4)
# SOM_FFN_coarse_annual_regression <-
#   SOM_FFN_coarse_annual %>%
#   nest(.by = c(lon, lat)) %>%
#   mutate(anomalies = future_map(.x = data, 
#                                 ~ anomaly_determination(.x),
#                                 .options = furrr_options(packages = "broom"))) %>%
#   select(-data) %>%
#   unnest(anomalies)

# SOM_FFN_coarse_annual_regression <-
#   SOM_FFN_coarse_annual %>%
#   nest(.by = c(lon, lat)) %>%
#   mutate(anomalies = map(.x = data, 
#                                 ~ anomaly_determination(.x))) %>%
#   select(-data) %>%
#   unnest(anomalies)

SOM_FFN_coarse_annual_regression <-
  SOM_FFN_coarse_annual %>%
  anomaly_determination(lon, lat)


# plan(multisession, workers = 4)
# SOM_FFN_coarse_annual_regression <-
#   SOM_FFN_coarse_annual %>%
#   anomaly_determination_parallel(lon, lat)


SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(3) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = "Annual mean 2023") +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown())
  )
[[1]]


[[2]]


[[3]]

SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = "Annual mean 2023") +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]


[[2]]

Change 1990 - 2023

SOM_FFN_coarse_annual_regression %>%
  filter(year %in% c(min(year), max(year))) %>%
  select(-c(value, resid)) %>% 
  pivot_wider(names_from = year,
              values_from = fit) %>% 
  mutate(change = `2023` - `1990`) %>% 
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = change)) +
         labs(title =  "Change 1990-2023") +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

2023 anomaly

SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  "2023 anomaly") +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Monthly means

2023 absolute

SOM_FFN_coarse_monthly <-
  SOM_FFN_coarse %>%
  group_by(year, month, lon, lat) %>%
  summarise(across(where(is.numeric),
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_coarse_monthly <-
  SOM_FFN_coarse_monthly %>% 
  pivot_longer(-c(year, month, lon, lat))

# SOM_FFN_coarse_monthly_regression <-
#   SOM_FFN_coarse_monthly %>%
#   group_by(lon, lat, month) %>%
#   nest() %>%
#   mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
#   select(-data) %>%
#   unnest(anomalies) %>%
#   ungroup()
  
SOM_FFN_coarse_monthly_regression <-
  SOM_FFN_coarse_monthly %>%
  anomaly_determination(lon, lat, month)

# plan(multisession, workers = 4)
# SOM_FFN_coarse_monthly_regression <-
#   SOM_FFN_coarse_monthly %>%
#   anomaly_determination_parallel(lon, lat, month)


SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = "Monthly means 2023") +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]


[[2]]


[[3]]

SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = "Monthly means 2023") +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]


[[2]]

Change 1990 - 2023

SOM_FFN_coarse_monthly_regression %>%
  filter(year %in% c(min(year), max(year))) %>%
  select(-c(value, resid)) %>%
  pivot_wider(names_from = year,
              values_from = fit) %>%
  mutate(change = `2023` - `1990`) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = change)) +
      labs(title = "Change 1990-2023") +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

2023 anomaly

SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = "2023 anomaly") +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Annual means

Absolute

SOM_FFN_hovmoeller_monthly_annual <-
  SOM_FFN %>%
  select(-c(lon, time, month, biome)) %>%
  group_by(year, lat) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2) %>%
  drop_na()

SOM_FFN_hovmoeller_monthly_annual <-
  SOM_FFN_hovmoeller_monthly_annual %>%
  pivot_longer(-c(year, lat))


SOM_FFN_hovmoeller_monthly_annual %>%
  filter(!(name %in% name_divergent)) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]


[[3]]

SOM_FFN_hovmoeller_monthly_annual %>%
  filter(name %in% name_divergent) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]

Anomalies

SOM_FFN_hovmoeller_monthly_annual_regression <-
  SOM_FFN_hovmoeller_monthly_annual %>%
  anomaly_determination(lat)
  # group_by(lat) %>%
  # nest() %>%
  # mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  # select(-data) %>%
  # unnest(anomalies) %>%
  # ungroup()

  
SOM_FFN_hovmoeller_monthly_annual_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Monthly means

Absolute

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN %>%
  select(-c(lon, time, biome)) %>%
  group_by(year, month, lat) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2) %>%
  drop_na()

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat))

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

SOM_FFN_hovmoeller_monthly %>%
  filter(!(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]


[[3]]

SOM_FFN_hovmoeller_monthly %>%
  filter(name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]

Anomalies

SOM_FFN_hovmoeller_monthly_regression <-
  SOM_FFN_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month)
  # group_by(lat, month) %>%
  # nest() %>%
  # mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  # select(-data) %>%
  # unnest(anomalies) %>%
  # ungroup()

  
SOM_FFN_hovmoeller_monthly_regression <-
  SOM_FFN_hovmoeller_monthly_regression %>%
  mutate(decimal = year + (month - 1) / 12)
  
SOM_FFN_hovmoeller_monthly_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Anomalies since 2021

SOM_FFN_hovmoeller_monthly_regression %>%
  filter(year >= 2021) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Regional means and integrals

The following plots show biome- or global- averaged/integrated values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

SOM_FFN_monthly_global <-
  SOM_FFN %>%
  select(-c(lon, lat, year, month, biome)) %>% 
  drop_na() %>%
  group_by(time) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

SOM_FFN_monthly_biome <-
  SOM_FFN %>%
  select(-c(lon, lat, year, month)) %>% 
  drop_na() %>%
  group_by(time, biome) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

SOM_FFN_monthly <-
  bind_rows(SOM_FFN_monthly_global %>%
              mutate(biome = "Global"),
            SOM_FFN_monthly_biome)

rm(SOM_FFN_monthly_global,
   SOM_FFN_monthly_biome)


SOM_FFN_monthly <-
  SOM_FFN_monthly %>%
  rename(fgco2_int = fgco2)

SOM_FFN_monthly <-
  SOM_FFN_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

SOM_FFN_monthly <-
  SOM_FFN_monthly %>%
  pivot_longer(-c(time, year, month, biome))

Absolute values

Overview

SOM_FFN_monthly %>%
  filter(biome %in% "Global") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(year < 2022),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(year >= 2022),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

SOM_FFN_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(year < 2022),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(year >= 2022),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Selected biomes

SOM_FFN_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(year < 2022),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(year >= 2022),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2022.

Monthly anomalies

Absolute

SOM_FFN_monthly_detrended_anomaly <-
  SOM_FFN_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


SOM_FFN_monthly_detrended_anomaly %>%
  filter(biome == "Global") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year <= 2022),
             aes(fill = year),
             shape = 21) +
  scale_fill_grayC(name = "") +
  new_scale_fill() +
  geom_point(data = . %>% filter(year > 2022),
             aes(fill = as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = "Month\nof 2023") +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

SOM_FFN_monthly_detrended_anomaly %>%
  filter(biome != "Global") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year <= 2022),
        aes(fill = year),
        shape = 21
      ) +
      scale_fill_grayC(name = "") +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(year > 2022),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = "Month\nof 2023"
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free_x") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]


[[2]]


[[3]]


[[4]]

Relative to spread

SOM_FFN_monthly_detrended_anomaly_spread <-
  SOM_FFN_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year < 2023) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value)) %>%
  ungroup()



SOM_FFN_monthly_detrended_anomaly_relative <-
  full_join(
    SOM_FFN_monthly_detrended_anomaly_spread,
    SOM_FFN_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

SOM_FFN_monthly_detrended_anomaly_relative <- 
SOM_FFN_monthly_detrended_anomaly_relative %>% 
  mutate(value = value / spread) %>% 
  select(-spread) %>% 
  pivot_wider() %>% 
  pivot_longer(-c(month, biome, year, fgco2_int))



SOM_FFN_monthly_detrended_anomaly_relative %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year <= 2022),
        aes(fill = year),
        shape = 21
      ) +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(year > 2022),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = "Month\nof 2023"
      ) +
      facet_wrap(~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]


[[2]]


[[3]]


[[4]]


sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggtext_0.1.2        broom_1.0.5         khroma_1.9.0       
 [4] ggnewscale_0.4.8    lubridate_1.9.0     timechange_0.1.1   
 [7] stars_0.6-0         abind_1.4-5         terra_1.7-65       
[10] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[13] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[16] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[19] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[22] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[25] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[28] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
  [4] rprojroot_2.0.3         markdown_1.4            fs_1.5.2               
  [7] gridtext_0.1.5          rstudioapi_0.15.0       proxy_0.4-27           
 [10] farver_2.1.1            bit64_4.0.5             fansi_1.0.3            
 [13] xml2_1.3.3              splines_4.2.2           codetools_0.2-18       
 [16] cachem_1.0.6            knitr_1.41              polyclip_1.10-4        
 [19] jsonlite_1.8.3          gsw_1.1-1               dbplyr_2.2.1           
 [22] compiler_4.2.2          httr_1.4.4              backports_1.4.1        
 [25] Matrix_1.5-3            assertthat_0.2.1        fastmap_1.1.0          
 [28] gargle_1.2.1            cli_3.6.1               later_1.3.0            
 [31] tweenr_2.0.2            htmltools_0.5.3         tools_4.2.2            
 [34] rnaturalearthdata_0.1.0 gtable_0.3.1            glue_1.6.2             
 [37] Rcpp_1.0.11             RNetCDF_2.6-1           cellranger_1.1.0       
 [40] jquerylib_0.1.4         vctrs_0.6.4             nlme_3.1-160           
 [43] lwgeom_0.2-10           xfun_0.35               ps_1.7.2               
 [46] rvest_1.0.3             ncmeta_0.3.5            lifecycle_1.0.3        
 [49] googlesheets4_1.0.1     oce_1.7-10              getPass_0.2-2          
 [52] MASS_7.3-58.1           scales_1.2.1            vroom_1.6.0            
 [55] hms_1.1.2               promises_1.2.0.1        parallel_4.2.2         
 [58] RColorBrewer_1.1-3      yaml_2.3.6              memoise_2.0.1          
 [61] sass_0.4.4              stringi_1.7.8           highr_0.9              
 [64] e1071_1.7-12            checkmate_2.1.0         commonmark_1.8.1       
 [67] rlang_1.1.1             pkgconfig_2.0.3         systemfonts_1.0.4      
 [70] evaluate_0.18           lattice_0.20-45         SolveSAPHE_2.1.0       
 [73] labeling_0.4.2          bit_4.0.5               processx_3.8.0         
 [76] tidyselect_1.2.0        here_1.0.1              seacarb_3.3.1          
 [79] magrittr_2.0.3          R6_2.5.1                generics_0.1.3         
 [82] DBI_1.1.3               mgcv_1.8-41             pillar_1.9.0           
 [85] haven_2.5.1             whisker_0.4             withr_2.5.0            
 [88] units_0.8-0             sp_1.5-1                modelr_0.1.10          
 [91] crayon_1.5.2            KernSmooth_2.23-20      utf8_1.2.2             
 [94] tzdb_0.3.0              rmarkdown_2.18          grid_4.2.2             
 [97] readxl_1.4.1            data.table_1.14.6       callr_3.7.3            
[100] git2r_0.30.1            reprex_2.0.2            digest_0.6.30          
[103] classInt_0.4-8          httpuv_1.6.6            textshaping_0.3.6      
[106] munsell_0.5.0           viridisLite_0.4.1       bslib_0.4.1