Last updated: 2024-05-07

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 14c0b11. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/

Unstaged changes:
    Modified:   analysis/OceanSODA.Rmd
    Modified:   analysis/child/pCO2_product_preprocessing.Rmd
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/CMEMS.Rmd) and HTML (docs/CMEMS.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 14c0b11 jens-daniel-mueller 2024-05-07 new input files
html 7f9c687 jens-daniel-mueller 2024-04-23 Build site.
html ce4e2a6 jens-daniel-mueller 2024-04-17 Build site.
html 58e3680 jens-daniel-mueller 2024-04-11 Build site.
html dfcf790 jens-daniel-mueller 2024-04-11 Build site.
html 139bc97 jens-daniel-mueller 2024-04-11 manual deletion of files
html 2321242 jens-daniel-mueller 2024-04-11 Build site.
Rmd d98842b jens-daniel-mueller 2024-04-10 fixed anomaly year output
html 07ccdb0 jens-daniel-mueller 2024-04-05 Build site.
Rmd ad6839e jens-daniel-mueller 2024-04-05 fixed anomaly maps
html 69dc18c jens-daniel-mueller 2024-04-04 Build site.
html c9d994c jens-daniel-mueller 2024-04-04 Build site.
Rmd 46f044d jens-daniel-mueller 2024-04-04 rebuild entire website with individual anomaly years
Rmd 9d258b5 jens-daniel-mueller 2024-04-03 manual commit
html 6bb7ce2 jens-daniel-mueller 2024-03-25 Build site.
html f9d2b99 jens-daniel-mueller 2024-03-25 total cummulative intensity added
html 3114859 jens-daniel-mueller 2024-03-25 Build site.
html 4589270 jens-daniel-mueller 2024-03-24 Build site.
Rmd 78b2c56 jens-daniel-mueller 2024-03-24 new figure aspect ratios
html 5c1676b jens-daniel-mueller 2024-03-24 Build site.
Rmd 31ffcb9 jens-daniel-mueller 2024-03-24 CMEMS unit error fixed
html a1c2e14 jens-daniel-mueller 2024-03-24 Build site.
Rmd c32eb8f jens-daniel-mueller 2024-03-24 CMEMS analysis
html 62ea4dd jens-daniel-mueller 2024-03-24 Build site.
html 1a5167d jens-daniel-mueller 2024-03-24 Build site.
Rmd cf4f62f jens-daniel-mueller 2024-03-23 MHW stats and CMEMS added

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"

path_CMEMS <- paste0(path_pCO2_products, "cmems_ffnn/v2023/r100_regridded/")
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
  ))

nc <-
  nc_open(paste0(
    path_CMEMS,
    "kw_OceanSODA_ETHZ_HR_LR-v2023.01-1982_2023.nc"
  ))

nc <-
  nc_open(paste0(
    path_CMEMS,
    "CO2_fluxes/fluxCO2_model_v2022_r100_202402.nc"
  ))

nc <-
  nc_open(paste0(
    path_CMEMS,
    "SSH_r100_199205.nc"
  ))

nc <-
  nc_open("/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/cmems_ffnn/v2020/v2020.nc")

print(nc)

ncatt_get(nc, varid = "time")
ncvar_get(nc, varid = "time")
CMEMS_files <- list.files(path = path_CMEMS)
CMEMS_files <- CMEMS_files[!(CMEMS_files %>% str_detect("fuCO2_clim"))]
CMEMS_files <- CMEMS_files[!(CMEMS_files %>% str_detect("UV"))]
CMEMS_files <- CMEMS_files[!(CMEMS_files %>% str_detect("Ps"))]
print(CMEMS_files, max = 5000)
   [1] "CHL_r100_198501.nc"                 "CHL_r100_198502.nc"                
   [3] "CHL_r100_198503.nc"                 "CHL_r100_198504.nc"                
   [5] "CHL_r100_198505.nc"                 "CHL_r100_198506.nc"                
   [7] "CHL_r100_198507.nc"                 "CHL_r100_198508.nc"                
   [9] "CHL_r100_198509.nc"                 "CHL_r100_198510.nc"                
  [11] "CHL_r100_198511.nc"                 "CHL_r100_198512.nc"                
  [13] "CHL_r100_198601.nc"                 "CHL_r100_198602.nc"                
  [15] "CHL_r100_198603.nc"                 "CHL_r100_198604.nc"                
  [17] "CHL_r100_198605.nc"                 "CHL_r100_198606.nc"                
  [19] "CHL_r100_198607.nc"                 "CHL_r100_198608.nc"                
  [21] "CHL_r100_198609.nc"                 "CHL_r100_198610.nc"                
  [23] "CHL_r100_198611.nc"                 "CHL_r100_198612.nc"                
  [25] "CHL_r100_198701.nc"                 "CHL_r100_198702.nc"                
  [27] "CHL_r100_198703.nc"                 "CHL_r100_198704.nc"                
  [29] "CHL_r100_198705.nc"                 "CHL_r100_198706.nc"                
  [31] "CHL_r100_198707.nc"                 "CHL_r100_198708.nc"                
  [33] "CHL_r100_198709.nc"                 "CHL_r100_198710.nc"                
  [35] "CHL_r100_198711.nc"                 "CHL_r100_198712.nc"                
  [37] "CHL_r100_198801.nc"                 "CHL_r100_198802.nc"                
  [39] "CHL_r100_198803.nc"                 "CHL_r100_198804.nc"                
  [41] "CHL_r100_198805.nc"                 "CHL_r100_198806.nc"                
  [43] "CHL_r100_198807.nc"                 "CHL_r100_198808.nc"                
  [45] "CHL_r100_198809.nc"                 "CHL_r100_198810.nc"                
  [47] "CHL_r100_198811.nc"                 "CHL_r100_198812.nc"                
  [49] "CHL_r100_198901.nc"                 "CHL_r100_198902.nc"                
  [51] "CHL_r100_198903.nc"                 "CHL_r100_198904.nc"                
  [53] "CHL_r100_198905.nc"                 "CHL_r100_198906.nc"                
  [55] "CHL_r100_198907.nc"                 "CHL_r100_198908.nc"                
  [57] "CHL_r100_198909.nc"                 "CHL_r100_198910.nc"                
  [59] "CHL_r100_198911.nc"                 "CHL_r100_198912.nc"                
  [61] "CHL_r100_199001.nc"                 "CHL_r100_199002.nc"                
  [63] "CHL_r100_199003.nc"                 "CHL_r100_199004.nc"                
  [65] "CHL_r100_199005.nc"                 "CHL_r100_199006.nc"                
  [67] "CHL_r100_199007.nc"                 "CHL_r100_199008.nc"                
  [69] "CHL_r100_199009.nc"                 "CHL_r100_199010.nc"                
  [71] "CHL_r100_199011.nc"                 "CHL_r100_199012.nc"                
  [73] "CHL_r100_199101.nc"                 "CHL_r100_199102.nc"                
  [75] "CHL_r100_199103.nc"                 "CHL_r100_199104.nc"                
  [77] "CHL_r100_199105.nc"                 "CHL_r100_199106.nc"                
  [79] "CHL_r100_199107.nc"                 "CHL_r100_199108.nc"                
  [81] "CHL_r100_199109.nc"                 "CHL_r100_199110.nc"                
  [83] "CHL_r100_199111.nc"                 "CHL_r100_199112.nc"                
  [85] "CHL_r100_199201.nc"                 "CHL_r100_199202.nc"                
  [87] "CHL_r100_199203.nc"                 "CHL_r100_199204.nc"                
  [89] "CHL_r100_199205.nc"                 "CHL_r100_199206.nc"                
  [91] "CHL_r100_199207.nc"                 "CHL_r100_199208.nc"                
  [93] "CHL_r100_199209.nc"                 "CHL_r100_199210.nc"                
  [95] "CHL_r100_199211.nc"                 "CHL_r100_199212.nc"                
  [97] "CHL_r100_199301.nc"                 "CHL_r100_199302.nc"                
  [99] "CHL_r100_199303.nc"                 "CHL_r100_199304.nc"                
 [101] "CHL_r100_199305.nc"                 "CHL_r100_199306.nc"                
 [103] "CHL_r100_199307.nc"                 "CHL_r100_199308.nc"                
 [105] "CHL_r100_199309.nc"                 "CHL_r100_199310.nc"                
 [107] "CHL_r100_199311.nc"                 "CHL_r100_199312.nc"                
 [109] "CHL_r100_199401.nc"                 "CHL_r100_199402.nc"                
 [111] "CHL_r100_199403.nc"                 "CHL_r100_199404.nc"                
 [113] "CHL_r100_199405.nc"                 "CHL_r100_199406.nc"                
 [115] "CHL_r100_199407.nc"                 "CHL_r100_199408.nc"                
 [117] "CHL_r100_199409.nc"                 "CHL_r100_199410.nc"                
 [119] "CHL_r100_199411.nc"                 "CHL_r100_199412.nc"                
 [121] "CHL_r100_199501.nc"                 "CHL_r100_199502.nc"                
 [123] "CHL_r100_199503.nc"                 "CHL_r100_199504.nc"                
 [125] "CHL_r100_199505.nc"                 "CHL_r100_199506.nc"                
 [127] "CHL_r100_199507.nc"                 "CHL_r100_199508.nc"                
 [129] "CHL_r100_199509.nc"                 "CHL_r100_199510.nc"                
 [131] "CHL_r100_199511.nc"                 "CHL_r100_199512.nc"                
 [133] "CHL_r100_199601.nc"                 "CHL_r100_199602.nc"                
 [135] "CHL_r100_199603.nc"                 "CHL_r100_199604.nc"                
 [137] "CHL_r100_199605.nc"                 "CHL_r100_199606.nc"                
 [139] "CHL_r100_199607.nc"                 "CHL_r100_199608.nc"                
 [141] "CHL_r100_199609.nc"                 "CHL_r100_199610.nc"                
 [143] "CHL_r100_199611.nc"                 "CHL_r100_199612.nc"                
 [145] "CHL_r100_199701.nc"                 "CHL_r100_199702.nc"                
 [147] "CHL_r100_199703.nc"                 "CHL_r100_199704.nc"                
 [149] "CHL_r100_199705.nc"                 "CHL_r100_199706.nc"                
 [151] "CHL_r100_199707.nc"                 "CHL_r100_199708.nc"                
 [153] "CHL_r100_199709.nc"                 "CHL_r100_199710.nc"                
 [155] "CHL_r100_199711.nc"                 "CHL_r100_199712.nc"                
 [157] "CHL_r100_199801.nc"                 "CHL_r100_199802.nc"                
 [159] "CHL_r100_199803.nc"                 "CHL_r100_199804.nc"                
 [161] "CHL_r100_199805.nc"                 "CHL_r100_199806.nc"                
 [163] "CHL_r100_199807.nc"                 "CHL_r100_199808.nc"                
 [165] "CHL_r100_199809.nc"                 "CHL_r100_199810.nc"                
 [167] "CHL_r100_199811.nc"                 "CHL_r100_199812.nc"                
 [169] "CHL_r100_199901.nc"                 "CHL_r100_199902.nc"                
 [171] "CHL_r100_199903.nc"                 "CHL_r100_199904.nc"                
 [173] "CHL_r100_199905.nc"                 "CHL_r100_199906.nc"                
 [175] "CHL_r100_199907.nc"                 "CHL_r100_199908.nc"                
 [177] "CHL_r100_199909.nc"                 "CHL_r100_199910.nc"                
 [179] "CHL_r100_199911.nc"                 "CHL_r100_199912.nc"                
 [181] "CHL_r100_200001.nc"                 "CHL_r100_200002.nc"                
 [183] "CHL_r100_200003.nc"                 "CHL_r100_200004.nc"                
 [185] "CHL_r100_200005.nc"                 "CHL_r100_200006.nc"                
 [187] "CHL_r100_200007.nc"                 "CHL_r100_200008.nc"                
 [189] "CHL_r100_200009.nc"                 "CHL_r100_200010.nc"                
 [191] "CHL_r100_200011.nc"                 "CHL_r100_200012.nc"                
 [193] "CHL_r100_200101.nc"                 "CHL_r100_200102.nc"                
 [195] "CHL_r100_200103.nc"                 "CHL_r100_200104.nc"                
 [197] "CHL_r100_200105.nc"                 "CHL_r100_200106.nc"                
 [199] "CHL_r100_200107.nc"                 "CHL_r100_200108.nc"                
 [201] "CHL_r100_200109.nc"                 "CHL_r100_200110.nc"                
 [203] "CHL_r100_200111.nc"                 "CHL_r100_200112.nc"                
 [205] "CHL_r100_200201.nc"                 "CHL_r100_200202.nc"                
 [207] "CHL_r100_200203.nc"                 "CHL_r100_200204.nc"                
 [209] "CHL_r100_200205.nc"                 "CHL_r100_200206.nc"                
 [211] "CHL_r100_200207.nc"                 "CHL_r100_200208.nc"                
 [213] "CHL_r100_200209.nc"                 "CHL_r100_200210.nc"                
 [215] "CHL_r100_200211.nc"                 "CHL_r100_200212.nc"                
 [217] "CHL_r100_200301.nc"                 "CHL_r100_200302.nc"                
 [219] "CHL_r100_200303.nc"                 "CHL_r100_200304.nc"                
 [221] "CHL_r100_200305.nc"                 "CHL_r100_200306.nc"                
 [223] "CHL_r100_200307.nc"                 "CHL_r100_200308.nc"                
 [225] "CHL_r100_200309.nc"                 "CHL_r100_200310.nc"                
 [227] "CHL_r100_200311.nc"                 "CHL_r100_200312.nc"                
 [229] "CHL_r100_200401.nc"                 "CHL_r100_200402.nc"                
 [231] "CHL_r100_200403.nc"                 "CHL_r100_200404.nc"                
 [233] "CHL_r100_200405.nc"                 "CHL_r100_200406.nc"                
 [235] "CHL_r100_200407.nc"                 "CHL_r100_200408.nc"                
 [237] "CHL_r100_200409.nc"                 "CHL_r100_200410.nc"                
 [239] "CHL_r100_200411.nc"                 "CHL_r100_200412.nc"                
 [241] "CHL_r100_200501.nc"                 "CHL_r100_200502.nc"                
 [243] "CHL_r100_200503.nc"                 "CHL_r100_200504.nc"                
 [245] "CHL_r100_200505.nc"                 "CHL_r100_200506.nc"                
 [247] "CHL_r100_200507.nc"                 "CHL_r100_200508.nc"                
 [249] "CHL_r100_200509.nc"                 "CHL_r100_200510.nc"                
 [251] "CHL_r100_200511.nc"                 "CHL_r100_200512.nc"                
 [253] "CHL_r100_200601.nc"                 "CHL_r100_200602.nc"                
 [255] "CHL_r100_200603.nc"                 "CHL_r100_200604.nc"                
 [257] "CHL_r100_200605.nc"                 "CHL_r100_200606.nc"                
 [259] "CHL_r100_200607.nc"                 "CHL_r100_200608.nc"                
 [261] "CHL_r100_200609.nc"                 "CHL_r100_200610.nc"                
 [263] "CHL_r100_200611.nc"                 "CHL_r100_200612.nc"                
 [265] "CHL_r100_200701.nc"                 "CHL_r100_200702.nc"                
 [267] "CHL_r100_200703.nc"                 "CHL_r100_200704.nc"                
 [269] "CHL_r100_200705.nc"                 "CHL_r100_200706.nc"                
 [271] "CHL_r100_200707.nc"                 "CHL_r100_200708.nc"                
 [273] "CHL_r100_200709.nc"                 "CHL_r100_200710.nc"                
 [275] "CHL_r100_200711.nc"                 "CHL_r100_200712.nc"                
 [277] "CHL_r100_200801.nc"                 "CHL_r100_200802.nc"                
 [279] "CHL_r100_200803.nc"                 "CHL_r100_200804.nc"                
 [281] "CHL_r100_200805.nc"                 "CHL_r100_200806.nc"                
 [283] "CHL_r100_200807.nc"                 "CHL_r100_200808.nc"                
 [285] "CHL_r100_200809.nc"                 "CHL_r100_200810.nc"                
 [287] "CHL_r100_200811.nc"                 "CHL_r100_200812.nc"                
 [289] "CHL_r100_200901.nc"                 "CHL_r100_200902.nc"                
 [291] "CHL_r100_200903.nc"                 "CHL_r100_200904.nc"                
 [293] "CHL_r100_200905.nc"                 "CHL_r100_200906.nc"                
 [295] "CHL_r100_200907.nc"                 "CHL_r100_200908.nc"                
 [297] "CHL_r100_200909.nc"                 "CHL_r100_200910.nc"                
 [299] "CHL_r100_200911.nc"                 "CHL_r100_200912.nc"                
 [301] "CHL_r100_201001.nc"                 "CHL_r100_201002.nc"                
 [303] "CHL_r100_201003.nc"                 "CHL_r100_201004.nc"                
 [305] "CHL_r100_201005.nc"                 "CHL_r100_201006.nc"                
 [307] "CHL_r100_201007.nc"                 "CHL_r100_201008.nc"                
 [309] "CHL_r100_201009.nc"                 "CHL_r100_201010.nc"                
 [311] "CHL_r100_201011.nc"                 "CHL_r100_201012.nc"                
 [313] "CHL_r100_201101.nc"                 "CHL_r100_201102.nc"                
 [315] "CHL_r100_201103.nc"                 "CHL_r100_201104.nc"                
 [317] "CHL_r100_201105.nc"                 "CHL_r100_201106.nc"                
 [319] "CHL_r100_201107.nc"                 "CHL_r100_201108.nc"                
 [321] "CHL_r100_201109.nc"                 "CHL_r100_201110.nc"                
 [323] "CHL_r100_201111.nc"                 "CHL_r100_201112.nc"                
 [325] "CHL_r100_201201.nc"                 "CHL_r100_201202.nc"                
 [327] "CHL_r100_201203.nc"                 "CHL_r100_201204.nc"                
 [329] "CHL_r100_201205.nc"                 "CHL_r100_201206.nc"                
 [331] "CHL_r100_201207.nc"                 "CHL_r100_201208.nc"                
 [333] "CHL_r100_201209.nc"                 "CHL_r100_201210.nc"                
 [335] "CHL_r100_201211.nc"                 "CHL_r100_201212.nc"                
 [337] "CHL_r100_201301.nc"                 "CHL_r100_201302.nc"                
 [339] "CHL_r100_201303.nc"                 "CHL_r100_201304.nc"                
 [341] "CHL_r100_201305.nc"                 "CHL_r100_201306.nc"                
 [343] "CHL_r100_201307.nc"                 "CHL_r100_201308.nc"                
 [345] "CHL_r100_201309.nc"                 "CHL_r100_201310.nc"                
 [347] "CHL_r100_201311.nc"                 "CHL_r100_201312.nc"                
 [349] "CHL_r100_201401.nc"                 "CHL_r100_201402.nc"                
 [351] "CHL_r100_201403.nc"                 "CHL_r100_201404.nc"                
 [353] "CHL_r100_201405.nc"                 "CHL_r100_201406.nc"                
 [355] "CHL_r100_201407.nc"                 "CHL_r100_201408.nc"                
 [357] "CHL_r100_201409.nc"                 "CHL_r100_201410.nc"                
 [359] "CHL_r100_201411.nc"                 "CHL_r100_201412.nc"                
 [361] "CHL_r100_201501.nc"                 "CHL_r100_201502.nc"                
 [363] "CHL_r100_201503.nc"                 "CHL_r100_201504.nc"                
 [365] "CHL_r100_201505.nc"                 "CHL_r100_201506.nc"                
 [367] "CHL_r100_201507.nc"                 "CHL_r100_201508.nc"                
 [369] "CHL_r100_201509.nc"                 "CHL_r100_201510.nc"                
 [371] "CHL_r100_201511.nc"                 "CHL_r100_201512.nc"                
 [373] "CHL_r100_201601.nc"                 "CHL_r100_201602.nc"                
 [375] "CHL_r100_201603.nc"                 "CHL_r100_201604.nc"                
 [377] "CHL_r100_201605.nc"                 "CHL_r100_201606.nc"                
 [379] "CHL_r100_201607.nc"                 "CHL_r100_201608.nc"                
 [381] "CHL_r100_201609.nc"                 "CHL_r100_201610.nc"                
 [383] "CHL_r100_201611.nc"                 "CHL_r100_201612.nc"                
 [385] "CHL_r100_201701.nc"                 "CHL_r100_201702.nc"                
 [387] "CHL_r100_201703.nc"                 "CHL_r100_201704.nc"                
 [389] "CHL_r100_201705.nc"                 "CHL_r100_201706.nc"                
 [391] "CHL_r100_201707.nc"                 "CHL_r100_201708.nc"                
 [393] "CHL_r100_201709.nc"                 "CHL_r100_201710.nc"                
 [395] "CHL_r100_201711.nc"                 "CHL_r100_201712.nc"                
 [397] "CHL_r100_201801.nc"                 "CHL_r100_201802.nc"                
 [399] "CHL_r100_201803.nc"                 "CHL_r100_201804.nc"                
 [401] "CHL_r100_201805.nc"                 "CHL_r100_201806.nc"                
 [403] "CHL_r100_201807.nc"                 "CHL_r100_201808.nc"                
 [405] "CHL_r100_201809.nc"                 "CHL_r100_201810.nc"                
 [407] "CHL_r100_201811.nc"                 "CHL_r100_201812.nc"                
 [409] "CHL_r100_201901.nc"                 "CHL_r100_201902.nc"                
 [411] "CHL_r100_201903.nc"                 "CHL_r100_201904.nc"                
 [413] "CHL_r100_201905.nc"                 "CHL_r100_201906.nc"                
 [415] "CHL_r100_201907.nc"                 "CHL_r100_201908.nc"                
 [417] "CHL_r100_201909.nc"                 "CHL_r100_201910.nc"                
 [419] "CHL_r100_201911.nc"                 "CHL_r100_201912.nc"                
 [421] "CHL_r100_202001.nc"                 "CHL_r100_202002.nc"                
 [423] "CHL_r100_202003.nc"                 "CHL_r100_202004.nc"                
 [425] "CHL_r100_202005.nc"                 "CHL_r100_202006.nc"                
 [427] "CHL_r100_202007.nc"                 "CHL_r100_202008.nc"                
 [429] "CHL_r100_202009.nc"                 "CHL_r100_202010.nc"                
 [431] "CHL_r100_202011.nc"                 "CHL_r100_202012.nc"                
 [433] "CHL_r100_202101.nc"                 "CHL_r100_202102.nc"                
 [435] "CHL_r100_202103.nc"                 "CHL_r100_202104.nc"                
 [437] "CHL_r100_202105.nc"                 "CHL_r100_202106.nc"                
 [439] "CHL_r100_202107.nc"                 "CHL_r100_202108.nc"                
 [441] "CHL_r100_202109.nc"                 "CHL_r100_202110.nc"                
 [443] "CHL_r100_202111.nc"                 "CHL_r100_202112.nc"                
 [445] "CHL_r100_202201.nc"                 "CHL_r100_202202.nc"                
 [447] "CHL_r100_202203.nc"                 "CHL_r100_202204.nc"                
 [449] "CHL_r100_202205.nc"                 "CHL_r100_202206.nc"                
 [451] "CHL_r100_202207.nc"                 "CHL_r100_202208.nc"                
 [453] "CHL_r100_202209.nc"                 "CHL_r100_202210.nc"                
 [455] "CHL_r100_202211.nc"                 "CHL_r100_202212.nc"                
 [457] "CHL_r100_202301.nc"                 "CHL_r100_202302.nc"                
 [459] "CHL_r100_202303.nc"                 "CHL_r100_202304.nc"                
 [461] "CHL_r100_202305.nc"                 "CHL_r100_202306.nc"                
 [463] "CHL_r100_202307.nc"                 "CHL_r100_202308.nc"                
 [465] "CHL_r100_202309.nc"                 "CHL_r100_202310.nc"                
 [467] "CHL_r100_202311.nc"                 "CHL_r100_202312.nc"                
 [469] "CHL_r100_202401.nc"                 "CHL_r100_202402.nc"                
 [471] "fluxCO2_model_v2023_r100_198501.nc" "fluxCO2_model_v2023_r100_198502.nc"
 [473] "fluxCO2_model_v2023_r100_198503.nc" "fluxCO2_model_v2023_r100_198504.nc"
 [475] "fluxCO2_model_v2023_r100_198505.nc" "fluxCO2_model_v2023_r100_198506.nc"
 [477] "fluxCO2_model_v2023_r100_198507.nc" "fluxCO2_model_v2023_r100_198508.nc"
 [479] "fluxCO2_model_v2023_r100_198509.nc" "fluxCO2_model_v2023_r100_198510.nc"
 [481] "fluxCO2_model_v2023_r100_198511.nc" "fluxCO2_model_v2023_r100_198512.nc"
 [483] "fluxCO2_model_v2023_r100_198601.nc" "fluxCO2_model_v2023_r100_198602.nc"
 [485] "fluxCO2_model_v2023_r100_198603.nc" "fluxCO2_model_v2023_r100_198604.nc"
 [487] "fluxCO2_model_v2023_r100_198605.nc" "fluxCO2_model_v2023_r100_198606.nc"
 [489] "fluxCO2_model_v2023_r100_198607.nc" "fluxCO2_model_v2023_r100_198608.nc"
 [491] "fluxCO2_model_v2023_r100_198609.nc" "fluxCO2_model_v2023_r100_198610.nc"
 [493] "fluxCO2_model_v2023_r100_198611.nc" "fluxCO2_model_v2023_r100_198612.nc"
 [495] "fluxCO2_model_v2023_r100_198701.nc" "fluxCO2_model_v2023_r100_198702.nc"
 [497] "fluxCO2_model_v2023_r100_198703.nc" "fluxCO2_model_v2023_r100_198704.nc"
 [499] "fluxCO2_model_v2023_r100_198705.nc" "fluxCO2_model_v2023_r100_198706.nc"
 [501] "fluxCO2_model_v2023_r100_198707.nc" "fluxCO2_model_v2023_r100_198708.nc"
 [503] "fluxCO2_model_v2023_r100_198709.nc" "fluxCO2_model_v2023_r100_198710.nc"
 [505] "fluxCO2_model_v2023_r100_198711.nc" "fluxCO2_model_v2023_r100_198712.nc"
 [507] "fluxCO2_model_v2023_r100_198801.nc" "fluxCO2_model_v2023_r100_198802.nc"
 [509] "fluxCO2_model_v2023_r100_198803.nc" "fluxCO2_model_v2023_r100_198804.nc"
 [511] "fluxCO2_model_v2023_r100_198805.nc" "fluxCO2_model_v2023_r100_198806.nc"
 [513] "fluxCO2_model_v2023_r100_198807.nc" "fluxCO2_model_v2023_r100_198808.nc"
 [515] "fluxCO2_model_v2023_r100_198809.nc" "fluxCO2_model_v2023_r100_198810.nc"
 [517] "fluxCO2_model_v2023_r100_198811.nc" "fluxCO2_model_v2023_r100_198812.nc"
 [519] "fluxCO2_model_v2023_r100_198901.nc" "fluxCO2_model_v2023_r100_198902.nc"
 [521] "fluxCO2_model_v2023_r100_198903.nc" "fluxCO2_model_v2023_r100_198904.nc"
 [523] "fluxCO2_model_v2023_r100_198905.nc" "fluxCO2_model_v2023_r100_198906.nc"
 [525] "fluxCO2_model_v2023_r100_198907.nc" "fluxCO2_model_v2023_r100_198908.nc"
 [527] "fluxCO2_model_v2023_r100_198909.nc" "fluxCO2_model_v2023_r100_198910.nc"
 [529] "fluxCO2_model_v2023_r100_198911.nc" "fluxCO2_model_v2023_r100_198912.nc"
 [531] "fluxCO2_model_v2023_r100_199001.nc" "fluxCO2_model_v2023_r100_199002.nc"
 [533] "fluxCO2_model_v2023_r100_199003.nc" "fluxCO2_model_v2023_r100_199004.nc"
 [535] "fluxCO2_model_v2023_r100_199005.nc" "fluxCO2_model_v2023_r100_199006.nc"
 [537] "fluxCO2_model_v2023_r100_199007.nc" "fluxCO2_model_v2023_r100_199008.nc"
 [539] "fluxCO2_model_v2023_r100_199009.nc" "fluxCO2_model_v2023_r100_199010.nc"
 [541] "fluxCO2_model_v2023_r100_199011.nc" "fluxCO2_model_v2023_r100_199012.nc"
 [543] "fluxCO2_model_v2023_r100_199101.nc" "fluxCO2_model_v2023_r100_199102.nc"
 [545] "fluxCO2_model_v2023_r100_199103.nc" "fluxCO2_model_v2023_r100_199104.nc"
 [547] "fluxCO2_model_v2023_r100_199105.nc" "fluxCO2_model_v2023_r100_199106.nc"
 [549] "fluxCO2_model_v2023_r100_199107.nc" "fluxCO2_model_v2023_r100_199108.nc"
 [551] "fluxCO2_model_v2023_r100_199109.nc" "fluxCO2_model_v2023_r100_199110.nc"
 [553] "fluxCO2_model_v2023_r100_199111.nc" "fluxCO2_model_v2023_r100_199112.nc"
 [555] "fluxCO2_model_v2023_r100_199201.nc" "fluxCO2_model_v2023_r100_199202.nc"
 [557] "fluxCO2_model_v2023_r100_199203.nc" "fluxCO2_model_v2023_r100_199204.nc"
 [559] "fluxCO2_model_v2023_r100_199205.nc" "fluxCO2_model_v2023_r100_199206.nc"
 [561] "fluxCO2_model_v2023_r100_199207.nc" "fluxCO2_model_v2023_r100_199208.nc"
 [563] "fluxCO2_model_v2023_r100_199209.nc" "fluxCO2_model_v2023_r100_199210.nc"
 [565] "fluxCO2_model_v2023_r100_199211.nc" "fluxCO2_model_v2023_r100_199212.nc"
 [567] "fluxCO2_model_v2023_r100_199301.nc" "fluxCO2_model_v2023_r100_199302.nc"
 [569] "fluxCO2_model_v2023_r100_199303.nc" "fluxCO2_model_v2023_r100_199304.nc"
 [571] "fluxCO2_model_v2023_r100_199305.nc" "fluxCO2_model_v2023_r100_199306.nc"
 [573] "fluxCO2_model_v2023_r100_199307.nc" "fluxCO2_model_v2023_r100_199308.nc"
 [575] "fluxCO2_model_v2023_r100_199309.nc" "fluxCO2_model_v2023_r100_199310.nc"
 [577] "fluxCO2_model_v2023_r100_199311.nc" "fluxCO2_model_v2023_r100_199312.nc"
 [579] "fluxCO2_model_v2023_r100_199401.nc" "fluxCO2_model_v2023_r100_199402.nc"
 [581] "fluxCO2_model_v2023_r100_199403.nc" "fluxCO2_model_v2023_r100_199404.nc"
 [583] "fluxCO2_model_v2023_r100_199405.nc" "fluxCO2_model_v2023_r100_199406.nc"
 [585] "fluxCO2_model_v2023_r100_199407.nc" "fluxCO2_model_v2023_r100_199408.nc"
 [587] "fluxCO2_model_v2023_r100_199409.nc" "fluxCO2_model_v2023_r100_199410.nc"
 [589] "fluxCO2_model_v2023_r100_199411.nc" "fluxCO2_model_v2023_r100_199412.nc"
 [591] "fluxCO2_model_v2023_r100_199501.nc" "fluxCO2_model_v2023_r100_199502.nc"
 [593] "fluxCO2_model_v2023_r100_199503.nc" "fluxCO2_model_v2023_r100_199504.nc"
 [595] "fluxCO2_model_v2023_r100_199505.nc" "fluxCO2_model_v2023_r100_199506.nc"
 [597] "fluxCO2_model_v2023_r100_199507.nc" "fluxCO2_model_v2023_r100_199508.nc"
 [599] "fluxCO2_model_v2023_r100_199509.nc" "fluxCO2_model_v2023_r100_199510.nc"
 [601] "fluxCO2_model_v2023_r100_199511.nc" "fluxCO2_model_v2023_r100_199512.nc"
 [603] "fluxCO2_model_v2023_r100_199601.nc" "fluxCO2_model_v2023_r100_199602.nc"
 [605] "fluxCO2_model_v2023_r100_199603.nc" "fluxCO2_model_v2023_r100_199604.nc"
 [607] "fluxCO2_model_v2023_r100_199605.nc" "fluxCO2_model_v2023_r100_199606.nc"
 [609] "fluxCO2_model_v2023_r100_199607.nc" "fluxCO2_model_v2023_r100_199608.nc"
 [611] "fluxCO2_model_v2023_r100_199609.nc" "fluxCO2_model_v2023_r100_199610.nc"
 [613] "fluxCO2_model_v2023_r100_199611.nc" "fluxCO2_model_v2023_r100_199612.nc"
 [615] "fluxCO2_model_v2023_r100_199701.nc" "fluxCO2_model_v2023_r100_199702.nc"
 [617] "fluxCO2_model_v2023_r100_199703.nc" "fluxCO2_model_v2023_r100_199704.nc"
 [619] "fluxCO2_model_v2023_r100_199705.nc" "fluxCO2_model_v2023_r100_199706.nc"
 [621] "fluxCO2_model_v2023_r100_199707.nc" "fluxCO2_model_v2023_r100_199708.nc"
 [623] "fluxCO2_model_v2023_r100_199709.nc" "fluxCO2_model_v2023_r100_199710.nc"
 [625] "fluxCO2_model_v2023_r100_199711.nc" "fluxCO2_model_v2023_r100_199712.nc"
 [627] "fluxCO2_model_v2023_r100_199801.nc" "fluxCO2_model_v2023_r100_199802.nc"
 [629] "fluxCO2_model_v2023_r100_199803.nc" "fluxCO2_model_v2023_r100_199804.nc"
 [631] "fluxCO2_model_v2023_r100_199805.nc" "fluxCO2_model_v2023_r100_199806.nc"
 [633] "fluxCO2_model_v2023_r100_199807.nc" "fluxCO2_model_v2023_r100_199808.nc"
 [635] "fluxCO2_model_v2023_r100_199809.nc" "fluxCO2_model_v2023_r100_199810.nc"
 [637] "fluxCO2_model_v2023_r100_199811.nc" "fluxCO2_model_v2023_r100_199812.nc"
 [639] "fluxCO2_model_v2023_r100_199901.nc" "fluxCO2_model_v2023_r100_199902.nc"
 [641] "fluxCO2_model_v2023_r100_199903.nc" "fluxCO2_model_v2023_r100_199904.nc"
 [643] "fluxCO2_model_v2023_r100_199905.nc" "fluxCO2_model_v2023_r100_199906.nc"
 [645] "fluxCO2_model_v2023_r100_199907.nc" "fluxCO2_model_v2023_r100_199908.nc"
 [647] "fluxCO2_model_v2023_r100_199909.nc" "fluxCO2_model_v2023_r100_199910.nc"
 [649] "fluxCO2_model_v2023_r100_199911.nc" "fluxCO2_model_v2023_r100_199912.nc"
 [651] "fluxCO2_model_v2023_r100_200001.nc" "fluxCO2_model_v2023_r100_200002.nc"
 [653] "fluxCO2_model_v2023_r100_200003.nc" "fluxCO2_model_v2023_r100_200004.nc"
 [655] "fluxCO2_model_v2023_r100_200005.nc" "fluxCO2_model_v2023_r100_200006.nc"
 [657] "fluxCO2_model_v2023_r100_200007.nc" "fluxCO2_model_v2023_r100_200008.nc"
 [659] "fluxCO2_model_v2023_r100_200009.nc" "fluxCO2_model_v2023_r100_200010.nc"
 [661] "fluxCO2_model_v2023_r100_200011.nc" "fluxCO2_model_v2023_r100_200012.nc"
 [663] "fluxCO2_model_v2023_r100_200101.nc" "fluxCO2_model_v2023_r100_200102.nc"
 [665] "fluxCO2_model_v2023_r100_200103.nc" "fluxCO2_model_v2023_r100_200104.nc"
 [667] "fluxCO2_model_v2023_r100_200105.nc" "fluxCO2_model_v2023_r100_200106.nc"
 [669] "fluxCO2_model_v2023_r100_200107.nc" "fluxCO2_model_v2023_r100_200108.nc"
 [671] "fluxCO2_model_v2023_r100_200109.nc" "fluxCO2_model_v2023_r100_200110.nc"
 [673] "fluxCO2_model_v2023_r100_200111.nc" "fluxCO2_model_v2023_r100_200112.nc"
 [675] "fluxCO2_model_v2023_r100_200201.nc" "fluxCO2_model_v2023_r100_200202.nc"
 [677] "fluxCO2_model_v2023_r100_200203.nc" "fluxCO2_model_v2023_r100_200204.nc"
 [679] "fluxCO2_model_v2023_r100_200205.nc" "fluxCO2_model_v2023_r100_200206.nc"
 [681] "fluxCO2_model_v2023_r100_200207.nc" "fluxCO2_model_v2023_r100_200208.nc"
 [683] "fluxCO2_model_v2023_r100_200209.nc" "fluxCO2_model_v2023_r100_200210.nc"
 [685] "fluxCO2_model_v2023_r100_200211.nc" "fluxCO2_model_v2023_r100_200212.nc"
 [687] "fluxCO2_model_v2023_r100_200301.nc" "fluxCO2_model_v2023_r100_200302.nc"
 [689] "fluxCO2_model_v2023_r100_200303.nc" "fluxCO2_model_v2023_r100_200304.nc"
 [691] "fluxCO2_model_v2023_r100_200305.nc" "fluxCO2_model_v2023_r100_200306.nc"
 [693] "fluxCO2_model_v2023_r100_200307.nc" "fluxCO2_model_v2023_r100_200308.nc"
 [695] "fluxCO2_model_v2023_r100_200309.nc" "fluxCO2_model_v2023_r100_200310.nc"
 [697] "fluxCO2_model_v2023_r100_200311.nc" "fluxCO2_model_v2023_r100_200312.nc"
 [699] "fluxCO2_model_v2023_r100_200401.nc" "fluxCO2_model_v2023_r100_200402.nc"
 [701] "fluxCO2_model_v2023_r100_200403.nc" "fluxCO2_model_v2023_r100_200404.nc"
 [703] "fluxCO2_model_v2023_r100_200405.nc" "fluxCO2_model_v2023_r100_200406.nc"
 [705] "fluxCO2_model_v2023_r100_200407.nc" "fluxCO2_model_v2023_r100_200408.nc"
 [707] "fluxCO2_model_v2023_r100_200409.nc" "fluxCO2_model_v2023_r100_200410.nc"
 [709] "fluxCO2_model_v2023_r100_200411.nc" "fluxCO2_model_v2023_r100_200412.nc"
 [711] "fluxCO2_model_v2023_r100_200501.nc" "fluxCO2_model_v2023_r100_200502.nc"
 [713] "fluxCO2_model_v2023_r100_200503.nc" "fluxCO2_model_v2023_r100_200504.nc"
 [715] "fluxCO2_model_v2023_r100_200505.nc" "fluxCO2_model_v2023_r100_200506.nc"
 [717] "fluxCO2_model_v2023_r100_200507.nc" "fluxCO2_model_v2023_r100_200508.nc"
 [719] "fluxCO2_model_v2023_r100_200509.nc" "fluxCO2_model_v2023_r100_200510.nc"
 [721] "fluxCO2_model_v2023_r100_200511.nc" "fluxCO2_model_v2023_r100_200512.nc"
 [723] "fluxCO2_model_v2023_r100_200601.nc" "fluxCO2_model_v2023_r100_200602.nc"
 [725] "fluxCO2_model_v2023_r100_200603.nc" "fluxCO2_model_v2023_r100_200604.nc"
 [727] "fluxCO2_model_v2023_r100_200605.nc" "fluxCO2_model_v2023_r100_200606.nc"
 [729] "fluxCO2_model_v2023_r100_200607.nc" "fluxCO2_model_v2023_r100_200608.nc"
 [731] "fluxCO2_model_v2023_r100_200609.nc" "fluxCO2_model_v2023_r100_200610.nc"
 [733] "fluxCO2_model_v2023_r100_200611.nc" "fluxCO2_model_v2023_r100_200612.nc"
 [735] "fluxCO2_model_v2023_r100_200701.nc" "fluxCO2_model_v2023_r100_200702.nc"
 [737] "fluxCO2_model_v2023_r100_200703.nc" "fluxCO2_model_v2023_r100_200704.nc"
 [739] "fluxCO2_model_v2023_r100_200705.nc" "fluxCO2_model_v2023_r100_200706.nc"
 [741] "fluxCO2_model_v2023_r100_200707.nc" "fluxCO2_model_v2023_r100_200708.nc"
 [743] "fluxCO2_model_v2023_r100_200709.nc" "fluxCO2_model_v2023_r100_200710.nc"
 [745] "fluxCO2_model_v2023_r100_200711.nc" "fluxCO2_model_v2023_r100_200712.nc"
 [747] "fluxCO2_model_v2023_r100_200801.nc" "fluxCO2_model_v2023_r100_200802.nc"
 [749] "fluxCO2_model_v2023_r100_200803.nc" "fluxCO2_model_v2023_r100_200804.nc"
 [751] "fluxCO2_model_v2023_r100_200805.nc" "fluxCO2_model_v2023_r100_200806.nc"
 [753] "fluxCO2_model_v2023_r100_200807.nc" "fluxCO2_model_v2023_r100_200808.nc"
 [755] "fluxCO2_model_v2023_r100_200809.nc" "fluxCO2_model_v2023_r100_200810.nc"
 [757] "fluxCO2_model_v2023_r100_200811.nc" "fluxCO2_model_v2023_r100_200812.nc"
 [759] "fluxCO2_model_v2023_r100_200901.nc" "fluxCO2_model_v2023_r100_200902.nc"
 [761] "fluxCO2_model_v2023_r100_200903.nc" "fluxCO2_model_v2023_r100_200904.nc"
 [763] "fluxCO2_model_v2023_r100_200905.nc" "fluxCO2_model_v2023_r100_200906.nc"
 [765] "fluxCO2_model_v2023_r100_200907.nc" "fluxCO2_model_v2023_r100_200908.nc"
 [767] "fluxCO2_model_v2023_r100_200909.nc" "fluxCO2_model_v2023_r100_200910.nc"
 [769] "fluxCO2_model_v2023_r100_200911.nc" "fluxCO2_model_v2023_r100_200912.nc"
 [771] "fluxCO2_model_v2023_r100_201001.nc" "fluxCO2_model_v2023_r100_201002.nc"
 [773] "fluxCO2_model_v2023_r100_201003.nc" "fluxCO2_model_v2023_r100_201004.nc"
 [775] "fluxCO2_model_v2023_r100_201005.nc" "fluxCO2_model_v2023_r100_201006.nc"
 [777] "fluxCO2_model_v2023_r100_201007.nc" "fluxCO2_model_v2023_r100_201008.nc"
 [779] "fluxCO2_model_v2023_r100_201009.nc" "fluxCO2_model_v2023_r100_201010.nc"
 [781] "fluxCO2_model_v2023_r100_201011.nc" "fluxCO2_model_v2023_r100_201012.nc"
 [783] "fluxCO2_model_v2023_r100_201101.nc" "fluxCO2_model_v2023_r100_201102.nc"
 [785] "fluxCO2_model_v2023_r100_201103.nc" "fluxCO2_model_v2023_r100_201104.nc"
 [787] "fluxCO2_model_v2023_r100_201105.nc" "fluxCO2_model_v2023_r100_201106.nc"
 [789] "fluxCO2_model_v2023_r100_201107.nc" "fluxCO2_model_v2023_r100_201108.nc"
 [791] "fluxCO2_model_v2023_r100_201109.nc" "fluxCO2_model_v2023_r100_201110.nc"
 [793] "fluxCO2_model_v2023_r100_201111.nc" "fluxCO2_model_v2023_r100_201112.nc"
 [795] "fluxCO2_model_v2023_r100_201201.nc" "fluxCO2_model_v2023_r100_201202.nc"
 [797] "fluxCO2_model_v2023_r100_201203.nc" "fluxCO2_model_v2023_r100_201204.nc"
 [799] "fluxCO2_model_v2023_r100_201205.nc" "fluxCO2_model_v2023_r100_201206.nc"
 [801] "fluxCO2_model_v2023_r100_201207.nc" "fluxCO2_model_v2023_r100_201208.nc"
 [803] "fluxCO2_model_v2023_r100_201209.nc" "fluxCO2_model_v2023_r100_201210.nc"
 [805] "fluxCO2_model_v2023_r100_201211.nc" "fluxCO2_model_v2023_r100_201212.nc"
 [807] "fluxCO2_model_v2023_r100_201301.nc" "fluxCO2_model_v2023_r100_201302.nc"
 [809] "fluxCO2_model_v2023_r100_201303.nc" "fluxCO2_model_v2023_r100_201304.nc"
 [811] "fluxCO2_model_v2023_r100_201305.nc" "fluxCO2_model_v2023_r100_201306.nc"
 [813] "fluxCO2_model_v2023_r100_201307.nc" "fluxCO2_model_v2023_r100_201308.nc"
 [815] "fluxCO2_model_v2023_r100_201309.nc" "fluxCO2_model_v2023_r100_201310.nc"
 [817] "fluxCO2_model_v2023_r100_201311.nc" "fluxCO2_model_v2023_r100_201312.nc"
 [819] "fluxCO2_model_v2023_r100_201401.nc" "fluxCO2_model_v2023_r100_201402.nc"
 [821] "fluxCO2_model_v2023_r100_201403.nc" "fluxCO2_model_v2023_r100_201404.nc"
 [823] "fluxCO2_model_v2023_r100_201405.nc" "fluxCO2_model_v2023_r100_201406.nc"
 [825] "fluxCO2_model_v2023_r100_201407.nc" "fluxCO2_model_v2023_r100_201408.nc"
 [827] "fluxCO2_model_v2023_r100_201409.nc" "fluxCO2_model_v2023_r100_201410.nc"
 [829] "fluxCO2_model_v2023_r100_201411.nc" "fluxCO2_model_v2023_r100_201412.nc"
 [831] "fluxCO2_model_v2023_r100_201501.nc" "fluxCO2_model_v2023_r100_201502.nc"
 [833] "fluxCO2_model_v2023_r100_201503.nc" "fluxCO2_model_v2023_r100_201504.nc"
 [835] "fluxCO2_model_v2023_r100_201505.nc" "fluxCO2_model_v2023_r100_201506.nc"
 [837] "fluxCO2_model_v2023_r100_201507.nc" "fluxCO2_model_v2023_r100_201508.nc"
 [839] "fluxCO2_model_v2023_r100_201509.nc" "fluxCO2_model_v2023_r100_201510.nc"
 [841] "fluxCO2_model_v2023_r100_201511.nc" "fluxCO2_model_v2023_r100_201512.nc"
 [843] "fluxCO2_model_v2023_r100_201601.nc" "fluxCO2_model_v2023_r100_201602.nc"
 [845] "fluxCO2_model_v2023_r100_201603.nc" "fluxCO2_model_v2023_r100_201604.nc"
 [847] "fluxCO2_model_v2023_r100_201605.nc" "fluxCO2_model_v2023_r100_201606.nc"
 [849] "fluxCO2_model_v2023_r100_201607.nc" "fluxCO2_model_v2023_r100_201608.nc"
 [851] "fluxCO2_model_v2023_r100_201609.nc" "fluxCO2_model_v2023_r100_201610.nc"
 [853] "fluxCO2_model_v2023_r100_201611.nc" "fluxCO2_model_v2023_r100_201612.nc"
 [855] "fluxCO2_model_v2023_r100_201701.nc" "fluxCO2_model_v2023_r100_201702.nc"
 [857] "fluxCO2_model_v2023_r100_201703.nc" "fluxCO2_model_v2023_r100_201704.nc"
 [859] "fluxCO2_model_v2023_r100_201705.nc" "fluxCO2_model_v2023_r100_201706.nc"
 [861] "fluxCO2_model_v2023_r100_201707.nc" "fluxCO2_model_v2023_r100_201708.nc"
 [863] "fluxCO2_model_v2023_r100_201709.nc" "fluxCO2_model_v2023_r100_201710.nc"
 [865] "fluxCO2_model_v2023_r100_201711.nc" "fluxCO2_model_v2023_r100_201712.nc"
 [867] "fluxCO2_model_v2023_r100_201801.nc" "fluxCO2_model_v2023_r100_201802.nc"
 [869] "fluxCO2_model_v2023_r100_201803.nc" "fluxCO2_model_v2023_r100_201804.nc"
 [871] "fluxCO2_model_v2023_r100_201805.nc" "fluxCO2_model_v2023_r100_201806.nc"
 [873] "fluxCO2_model_v2023_r100_201807.nc" "fluxCO2_model_v2023_r100_201808.nc"
 [875] "fluxCO2_model_v2023_r100_201809.nc" "fluxCO2_model_v2023_r100_201810.nc"
 [877] "fluxCO2_model_v2023_r100_201811.nc" "fluxCO2_model_v2023_r100_201812.nc"
 [879] "fluxCO2_model_v2023_r100_201901.nc" "fluxCO2_model_v2023_r100_201902.nc"
 [881] "fluxCO2_model_v2023_r100_201903.nc" "fluxCO2_model_v2023_r100_201904.nc"
 [883] "fluxCO2_model_v2023_r100_201905.nc" "fluxCO2_model_v2023_r100_201906.nc"
 [885] "fluxCO2_model_v2023_r100_201907.nc" "fluxCO2_model_v2023_r100_201908.nc"
 [887] "fluxCO2_model_v2023_r100_201909.nc" "fluxCO2_model_v2023_r100_201910.nc"
 [889] "fluxCO2_model_v2023_r100_201911.nc" "fluxCO2_model_v2023_r100_201912.nc"
 [891] "fluxCO2_model_v2023_r100_202001.nc" "fluxCO2_model_v2023_r100_202002.nc"
 [893] "fluxCO2_model_v2023_r100_202003.nc" "fluxCO2_model_v2023_r100_202004.nc"
 [895] "fluxCO2_model_v2023_r100_202005.nc" "fluxCO2_model_v2023_r100_202006.nc"
 [897] "fluxCO2_model_v2023_r100_202007.nc" "fluxCO2_model_v2023_r100_202008.nc"
 [899] "fluxCO2_model_v2023_r100_202009.nc" "fluxCO2_model_v2023_r100_202010.nc"
 [901] "fluxCO2_model_v2023_r100_202011.nc" "fluxCO2_model_v2023_r100_202012.nc"
 [903] "fluxCO2_model_v2023_r100_202101.nc" "fluxCO2_model_v2023_r100_202102.nc"
 [905] "fluxCO2_model_v2023_r100_202103.nc" "fluxCO2_model_v2023_r100_202104.nc"
 [907] "fluxCO2_model_v2023_r100_202105.nc" "fluxCO2_model_v2023_r100_202106.nc"
 [909] "fluxCO2_model_v2023_r100_202107.nc" "fluxCO2_model_v2023_r100_202108.nc"
 [911] "fluxCO2_model_v2023_r100_202109.nc" "fluxCO2_model_v2023_r100_202110.nc"
 [913] "fluxCO2_model_v2023_r100_202111.nc" "fluxCO2_model_v2023_r100_202112.nc"
 [915] "fluxCO2_model_v2023_r100_202201.nc" "fluxCO2_model_v2023_r100_202202.nc"
 [917] "fluxCO2_model_v2023_r100_202203.nc" "fluxCO2_model_v2023_r100_202204.nc"
 [919] "fluxCO2_model_v2023_r100_202205.nc" "fluxCO2_model_v2023_r100_202206.nc"
 [921] "fluxCO2_model_v2023_r100_202207.nc" "fluxCO2_model_v2023_r100_202208.nc"
 [923] "fluxCO2_model_v2023_r100_202209.nc" "fluxCO2_model_v2023_r100_202210.nc"
 [925] "fluxCO2_model_v2023_r100_202211.nc" "fluxCO2_model_v2023_r100_202212.nc"
 [927] "fluxCO2_model_v2023_r100_202301.nc" "fluxCO2_model_v2023_r100_202302.nc"
 [929] "fluxCO2_model_v2023_r100_202303.nc" "fluxCO2_model_v2023_r100_202304.nc"
 [931] "fluxCO2_model_v2023_r100_202305.nc" "fluxCO2_model_v2023_r100_202306.nc"
 [933] "fluxCO2_model_v2023_r100_202307.nc" "fluxCO2_model_v2023_r100_202308.nc"
 [935] "fluxCO2_model_v2023_r100_202309.nc" "fluxCO2_model_v2023_r100_202310.nc"
 [937] "fluxCO2_model_v2023_r100_202311.nc" "fluxCO2_model_v2023_r100_202312.nc"
 [939] "fluxCO2_model_v2023_r100_202401.nc" "fluxCO2_model_v2023_r100_202402.nc"
 [941] "MLD_r100_198501.nc"                 "MLD_r100_198502.nc"                
 [943] "MLD_r100_198503.nc"                 "MLD_r100_198504.nc"                
 [945] "MLD_r100_198505.nc"                 "MLD_r100_198506.nc"                
 [947] "MLD_r100_198507.nc"                 "MLD_r100_198508.nc"                
 [949] "MLD_r100_198509.nc"                 "MLD_r100_198510.nc"                
 [951] "MLD_r100_198511.nc"                 "MLD_r100_198512.nc"                
 [953] "MLD_r100_198601.nc"                 "MLD_r100_198602.nc"                
 [955] "MLD_r100_198603.nc"                 "MLD_r100_198604.nc"                
 [957] "MLD_r100_198605.nc"                 "MLD_r100_198606.nc"                
 [959] "MLD_r100_198607.nc"                 "MLD_r100_198608.nc"                
 [961] "MLD_r100_198609.nc"                 "MLD_r100_198610.nc"                
 [963] "MLD_r100_198611.nc"                 "MLD_r100_198612.nc"                
 [965] "MLD_r100_198701.nc"                 "MLD_r100_198702.nc"                
 [967] "MLD_r100_198703.nc"                 "MLD_r100_198704.nc"                
 [969] "MLD_r100_198705.nc"                 "MLD_r100_198706.nc"                
 [971] "MLD_r100_198707.nc"                 "MLD_r100_198708.nc"                
 [973] "MLD_r100_198709.nc"                 "MLD_r100_198710.nc"                
 [975] "MLD_r100_198711.nc"                 "MLD_r100_198712.nc"                
 [977] "MLD_r100_198801.nc"                 "MLD_r100_198802.nc"                
 [979] "MLD_r100_198803.nc"                 "MLD_r100_198804.nc"                
 [981] "MLD_r100_198805.nc"                 "MLD_r100_198806.nc"                
 [983] "MLD_r100_198807.nc"                 "MLD_r100_198808.nc"                
 [985] "MLD_r100_198809.nc"                 "MLD_r100_198810.nc"                
 [987] "MLD_r100_198811.nc"                 "MLD_r100_198812.nc"                
 [989] "MLD_r100_198901.nc"                 "MLD_r100_198902.nc"                
 [991] "MLD_r100_198903.nc"                 "MLD_r100_198904.nc"                
 [993] "MLD_r100_198905.nc"                 "MLD_r100_198906.nc"                
 [995] "MLD_r100_198907.nc"                 "MLD_r100_198908.nc"                
 [997] "MLD_r100_198909.nc"                 "MLD_r100_198910.nc"                
 [999] "MLD_r100_198911.nc"                 "MLD_r100_198912.nc"                
[1001] "MLD_r100_199001.nc"                 "MLD_r100_199002.nc"                
[1003] "MLD_r100_199003.nc"                 "MLD_r100_199004.nc"                
[1005] "MLD_r100_199005.nc"                 "MLD_r100_199006.nc"                
[1007] "MLD_r100_199007.nc"                 "MLD_r100_199008.nc"                
[1009] "MLD_r100_199009.nc"                 "MLD_r100_199010.nc"                
[1011] "MLD_r100_199011.nc"                 "MLD_r100_199012.nc"                
[1013] "MLD_r100_199101.nc"                 "MLD_r100_199102.nc"                
[1015] "MLD_r100_199103.nc"                 "MLD_r100_199104.nc"                
[1017] "MLD_r100_199105.nc"                 "MLD_r100_199106.nc"                
[1019] "MLD_r100_199107.nc"                 "MLD_r100_199108.nc"                
[1021] "MLD_r100_199109.nc"                 "MLD_r100_199110.nc"                
[1023] "MLD_r100_199111.nc"                 "MLD_r100_199112.nc"                
[1025] "MLD_r100_199201.nc"                 "MLD_r100_199202.nc"                
[1027] "MLD_r100_199203.nc"                 "MLD_r100_199204.nc"                
[1029] "MLD_r100_199205.nc"                 "MLD_r100_199206.nc"                
[1031] "MLD_r100_199207.nc"                 "MLD_r100_199208.nc"                
[1033] "MLD_r100_199209.nc"                 "MLD_r100_199210.nc"                
[1035] "MLD_r100_199211.nc"                 "MLD_r100_199212.nc"                
[1037] "MLD_r100_199301.nc"                 "MLD_r100_199302.nc"                
[1039] "MLD_r100_199303.nc"                 "MLD_r100_199304.nc"                
[1041] "MLD_r100_199305.nc"                 "MLD_r100_199306.nc"                
[1043] "MLD_r100_199307.nc"                 "MLD_r100_199308.nc"                
[1045] "MLD_r100_199309.nc"                 "MLD_r100_199310.nc"                
[1047] "MLD_r100_199311.nc"                 "MLD_r100_199312.nc"                
[1049] "MLD_r100_199401.nc"                 "MLD_r100_199402.nc"                
[1051] "MLD_r100_199403.nc"                 "MLD_r100_199404.nc"                
[1053] "MLD_r100_199405.nc"                 "MLD_r100_199406.nc"                
[1055] "MLD_r100_199407.nc"                 "MLD_r100_199408.nc"                
[1057] "MLD_r100_199409.nc"                 "MLD_r100_199410.nc"                
[1059] "MLD_r100_199411.nc"                 "MLD_r100_199412.nc"                
[1061] "MLD_r100_199501.nc"                 "MLD_r100_199502.nc"                
[1063] "MLD_r100_199503.nc"                 "MLD_r100_199504.nc"                
[1065] "MLD_r100_199505.nc"                 "MLD_r100_199506.nc"                
[1067] "MLD_r100_199507.nc"                 "MLD_r100_199508.nc"                
[1069] "MLD_r100_199509.nc"                 "MLD_r100_199510.nc"                
[1071] "MLD_r100_199511.nc"                 "MLD_r100_199512.nc"                
[1073] "MLD_r100_199601.nc"                 "MLD_r100_199602.nc"                
[1075] "MLD_r100_199603.nc"                 "MLD_r100_199604.nc"                
[1077] "MLD_r100_199605.nc"                 "MLD_r100_199606.nc"                
[1079] "MLD_r100_199607.nc"                 "MLD_r100_199608.nc"                
[1081] "MLD_r100_199609.nc"                 "MLD_r100_199610.nc"                
[1083] "MLD_r100_199611.nc"                 "MLD_r100_199612.nc"                
[1085] "MLD_r100_199701.nc"                 "MLD_r100_199702.nc"                
[1087] "MLD_r100_199703.nc"                 "MLD_r100_199704.nc"                
[1089] "MLD_r100_199705.nc"                 "MLD_r100_199706.nc"                
[1091] "MLD_r100_199707.nc"                 "MLD_r100_199708.nc"                
[1093] "MLD_r100_199709.nc"                 "MLD_r100_199710.nc"                
[1095] "MLD_r100_199711.nc"                 "MLD_r100_199712.nc"                
[1097] "MLD_r100_199801.nc"                 "MLD_r100_199802.nc"                
[1099] "MLD_r100_199803.nc"                 "MLD_r100_199804.nc"                
[1101] "MLD_r100_199805.nc"                 "MLD_r100_199806.nc"                
[1103] "MLD_r100_199807.nc"                 "MLD_r100_199808.nc"                
[1105] "MLD_r100_199809.nc"                 "MLD_r100_199810.nc"                
[1107] "MLD_r100_199811.nc"                 "MLD_r100_199812.nc"                
[1109] "MLD_r100_199901.nc"                 "MLD_r100_199902.nc"                
[1111] "MLD_r100_199903.nc"                 "MLD_r100_199904.nc"                
[1113] "MLD_r100_199905.nc"                 "MLD_r100_199906.nc"                
[1115] "MLD_r100_199907.nc"                 "MLD_r100_199908.nc"                
[1117] "MLD_r100_199909.nc"                 "MLD_r100_199910.nc"                
[1119] "MLD_r100_199911.nc"                 "MLD_r100_199912.nc"                
[1121] "MLD_r100_200001.nc"                 "MLD_r100_200002.nc"                
[1123] "MLD_r100_200003.nc"                 "MLD_r100_200004.nc"                
[1125] "MLD_r100_200005.nc"                 "MLD_r100_200006.nc"                
[1127] "MLD_r100_200007.nc"                 "MLD_r100_200008.nc"                
[1129] "MLD_r100_200009.nc"                 "MLD_r100_200010.nc"                
[1131] "MLD_r100_200011.nc"                 "MLD_r100_200012.nc"                
[1133] "MLD_r100_200101.nc"                 "MLD_r100_200102.nc"                
[1135] "MLD_r100_200103.nc"                 "MLD_r100_200104.nc"                
[1137] "MLD_r100_200105.nc"                 "MLD_r100_200106.nc"                
[1139] "MLD_r100_200107.nc"                 "MLD_r100_200108.nc"                
[1141] "MLD_r100_200109.nc"                 "MLD_r100_200110.nc"                
[1143] "MLD_r100_200111.nc"                 "MLD_r100_200112.nc"                
[1145] "MLD_r100_200201.nc"                 "MLD_r100_200202.nc"                
[1147] "MLD_r100_200203.nc"                 "MLD_r100_200204.nc"                
[1149] "MLD_r100_200205.nc"                 "MLD_r100_200206.nc"                
[1151] "MLD_r100_200207.nc"                 "MLD_r100_200208.nc"                
[1153] "MLD_r100_200209.nc"                 "MLD_r100_200210.nc"                
[1155] "MLD_r100_200211.nc"                 "MLD_r100_200212.nc"                
[1157] "MLD_r100_200301.nc"                 "MLD_r100_200302.nc"                
[1159] "MLD_r100_200303.nc"                 "MLD_r100_200304.nc"                
[1161] "MLD_r100_200305.nc"                 "MLD_r100_200306.nc"                
[1163] "MLD_r100_200307.nc"                 "MLD_r100_200308.nc"                
[1165] "MLD_r100_200309.nc"                 "MLD_r100_200310.nc"                
[1167] "MLD_r100_200311.nc"                 "MLD_r100_200312.nc"                
[1169] "MLD_r100_200401.nc"                 "MLD_r100_200402.nc"                
[1171] "MLD_r100_200403.nc"                 "MLD_r100_200404.nc"                
[1173] "MLD_r100_200405.nc"                 "MLD_r100_200406.nc"                
[1175] "MLD_r100_200407.nc"                 "MLD_r100_200408.nc"                
[1177] "MLD_r100_200409.nc"                 "MLD_r100_200410.nc"                
[1179] "MLD_r100_200411.nc"                 "MLD_r100_200412.nc"                
[1181] "MLD_r100_200501.nc"                 "MLD_r100_200502.nc"                
[1183] "MLD_r100_200503.nc"                 "MLD_r100_200504.nc"                
[1185] "MLD_r100_200505.nc"                 "MLD_r100_200506.nc"                
[1187] "MLD_r100_200507.nc"                 "MLD_r100_200508.nc"                
[1189] "MLD_r100_200509.nc"                 "MLD_r100_200510.nc"                
[1191] "MLD_r100_200511.nc"                 "MLD_r100_200512.nc"                
[1193] "MLD_r100_200601.nc"                 "MLD_r100_200602.nc"                
[1195] "MLD_r100_200603.nc"                 "MLD_r100_200604.nc"                
[1197] "MLD_r100_200605.nc"                 "MLD_r100_200606.nc"                
[1199] "MLD_r100_200607.nc"                 "MLD_r100_200608.nc"                
[1201] "MLD_r100_200609.nc"                 "MLD_r100_200610.nc"                
[1203] "MLD_r100_200611.nc"                 "MLD_r100_200612.nc"                
[1205] "MLD_r100_200701.nc"                 "MLD_r100_200702.nc"                
[1207] "MLD_r100_200703.nc"                 "MLD_r100_200704.nc"                
[1209] "MLD_r100_200705.nc"                 "MLD_r100_200706.nc"                
[1211] "MLD_r100_200707.nc"                 "MLD_r100_200708.nc"                
[1213] "MLD_r100_200709.nc"                 "MLD_r100_200710.nc"                
[1215] "MLD_r100_200711.nc"                 "MLD_r100_200712.nc"                
[1217] "MLD_r100_200801.nc"                 "MLD_r100_200802.nc"                
[1219] "MLD_r100_200803.nc"                 "MLD_r100_200804.nc"                
[1221] "MLD_r100_200805.nc"                 "MLD_r100_200806.nc"                
[1223] "MLD_r100_200807.nc"                 "MLD_r100_200808.nc"                
[1225] "MLD_r100_200809.nc"                 "MLD_r100_200810.nc"                
[1227] "MLD_r100_200811.nc"                 "MLD_r100_200812.nc"                
[1229] "MLD_r100_200901.nc"                 "MLD_r100_200902.nc"                
[1231] "MLD_r100_200903.nc"                 "MLD_r100_200904.nc"                
[1233] "MLD_r100_200905.nc"                 "MLD_r100_200906.nc"                
[1235] "MLD_r100_200907.nc"                 "MLD_r100_200908.nc"                
[1237] "MLD_r100_200909.nc"                 "MLD_r100_200910.nc"                
[1239] "MLD_r100_200911.nc"                 "MLD_r100_200912.nc"                
[1241] "MLD_r100_201001.nc"                 "MLD_r100_201002.nc"                
[1243] "MLD_r100_201003.nc"                 "MLD_r100_201004.nc"                
[1245] "MLD_r100_201005.nc"                 "MLD_r100_201006.nc"                
[1247] "MLD_r100_201007.nc"                 "MLD_r100_201008.nc"                
[1249] "MLD_r100_201009.nc"                 "MLD_r100_201010.nc"                
[1251] "MLD_r100_201011.nc"                 "MLD_r100_201012.nc"                
[1253] "MLD_r100_201101.nc"                 "MLD_r100_201102.nc"                
[1255] "MLD_r100_201103.nc"                 "MLD_r100_201104.nc"                
[1257] "MLD_r100_201105.nc"                 "MLD_r100_201106.nc"                
[1259] "MLD_r100_201107.nc"                 "MLD_r100_201108.nc"                
[1261] "MLD_r100_201109.nc"                 "MLD_r100_201110.nc"                
[1263] "MLD_r100_201111.nc"                 "MLD_r100_201112.nc"                
[1265] "MLD_r100_201201.nc"                 "MLD_r100_201202.nc"                
[1267] "MLD_r100_201203.nc"                 "MLD_r100_201204.nc"                
[1269] "MLD_r100_201205.nc"                 "MLD_r100_201206.nc"                
[1271] "MLD_r100_201207.nc"                 "MLD_r100_201208.nc"                
[1273] "MLD_r100_201209.nc"                 "MLD_r100_201210.nc"                
[1275] "MLD_r100_201211.nc"                 "MLD_r100_201212.nc"                
[1277] "MLD_r100_201301.nc"                 "MLD_r100_201302.nc"                
[1279] "MLD_r100_201303.nc"                 "MLD_r100_201304.nc"                
[1281] "MLD_r100_201305.nc"                 "MLD_r100_201306.nc"                
[1283] "MLD_r100_201307.nc"                 "MLD_r100_201308.nc"                
[1285] "MLD_r100_201309.nc"                 "MLD_r100_201310.nc"                
[1287] "MLD_r100_201311.nc"                 "MLD_r100_201312.nc"                
[1289] "MLD_r100_201401.nc"                 "MLD_r100_201402.nc"                
[1291] "MLD_r100_201403.nc"                 "MLD_r100_201404.nc"                
[1293] "MLD_r100_201405.nc"                 "MLD_r100_201406.nc"                
[1295] "MLD_r100_201407.nc"                 "MLD_r100_201408.nc"                
[1297] "MLD_r100_201409.nc"                 "MLD_r100_201410.nc"                
[1299] "MLD_r100_201411.nc"                 "MLD_r100_201412.nc"                
[1301] "MLD_r100_201501.nc"                 "MLD_r100_201502.nc"                
[1303] "MLD_r100_201503.nc"                 "MLD_r100_201504.nc"                
[1305] "MLD_r100_201505.nc"                 "MLD_r100_201506.nc"                
[1307] "MLD_r100_201507.nc"                 "MLD_r100_201508.nc"                
[1309] "MLD_r100_201509.nc"                 "MLD_r100_201510.nc"                
[1311] "MLD_r100_201511.nc"                 "MLD_r100_201512.nc"                
[1313] "MLD_r100_201601.nc"                 "MLD_r100_201602.nc"                
[1315] "MLD_r100_201603.nc"                 "MLD_r100_201604.nc"                
[1317] "MLD_r100_201605.nc"                 "MLD_r100_201606.nc"                
[1319] "MLD_r100_201607.nc"                 "MLD_r100_201608.nc"                
[1321] "MLD_r100_201609.nc"                 "MLD_r100_201610.nc"                
[1323] "MLD_r100_201611.nc"                 "MLD_r100_201612.nc"                
[1325] "MLD_r100_201701.nc"                 "MLD_r100_201702.nc"                
[1327] "MLD_r100_201703.nc"                 "MLD_r100_201704.nc"                
[1329] "MLD_r100_201705.nc"                 "MLD_r100_201706.nc"                
[1331] "MLD_r100_201707.nc"                 "MLD_r100_201708.nc"                
[1333] "MLD_r100_201709.nc"                 "MLD_r100_201710.nc"                
[1335] "MLD_r100_201711.nc"                 "MLD_r100_201712.nc"                
[1337] "MLD_r100_201801.nc"                 "MLD_r100_201802.nc"                
[1339] "MLD_r100_201803.nc"                 "MLD_r100_201804.nc"                
[1341] "MLD_r100_201805.nc"                 "MLD_r100_201806.nc"                
[1343] "MLD_r100_201807.nc"                 "MLD_r100_201808.nc"                
[1345] "MLD_r100_201809.nc"                 "MLD_r100_201810.nc"                
[1347] "MLD_r100_201811.nc"                 "MLD_r100_201812.nc"                
[1349] "MLD_r100_201901.nc"                 "MLD_r100_201902.nc"                
[1351] "MLD_r100_201903.nc"                 "MLD_r100_201904.nc"                
[1353] "MLD_r100_201905.nc"                 "MLD_r100_201906.nc"                
[1355] "MLD_r100_201907.nc"                 "MLD_r100_201908.nc"                
[1357] "MLD_r100_201909.nc"                 "MLD_r100_201910.nc"                
[1359] "MLD_r100_201911.nc"                 "MLD_r100_201912.nc"                
[1361] "MLD_r100_202001.nc"                 "MLD_r100_202002.nc"                
[1363] "MLD_r100_202003.nc"                 "MLD_r100_202004.nc"                
[1365] "MLD_r100_202005.nc"                 "MLD_r100_202006.nc"                
[1367] "MLD_r100_202007.nc"                 "MLD_r100_202008.nc"                
[1369] "MLD_r100_202009.nc"                 "MLD_r100_202010.nc"                
[1371] "MLD_r100_202011.nc"                 "MLD_r100_202012.nc"                
[1373] "MLD_r100_202101.nc"                 "MLD_r100_202102.nc"                
[1375] "MLD_r100_202103.nc"                 "MLD_r100_202104.nc"                
[1377] "MLD_r100_202105.nc"                 "MLD_r100_202106.nc"                
[1379] "MLD_r100_202107.nc"                 "MLD_r100_202108.nc"                
[1381] "MLD_r100_202109.nc"                 "MLD_r100_202110.nc"                
[1383] "MLD_r100_202111.nc"                 "MLD_r100_202112.nc"                
[1385] "MLD_r100_202201.nc"                 "MLD_r100_202202.nc"                
[1387] "MLD_r100_202203.nc"                 "MLD_r100_202204.nc"                
[1389] "MLD_r100_202205.nc"                 "MLD_r100_202206.nc"                
[1391] "MLD_r100_202207.nc"                 "MLD_r100_202208.nc"                
[1393] "MLD_r100_202209.nc"                 "MLD_r100_202210.nc"                
[1395] "MLD_r100_202211.nc"                 "MLD_r100_202212.nc"                
[1397] "MLD_r100_202301.nc"                 "MLD_r100_202302.nc"                
[1399] "MLD_r100_202303.nc"                 "MLD_r100_202304.nc"                
[1401] "MLD_r100_202305.nc"                 "MLD_r100_202306.nc"                
[1403] "MLD_r100_202307.nc"                 "MLD_r100_202308.nc"                
[1405] "MLD_r100_202309.nc"                 "Sea_Ice_r100_198501.nc"            
[1407] "Sea_Ice_r100_198502.nc"             "Sea_Ice_r100_198503.nc"            
[1409] "Sea_Ice_r100_198504.nc"             "Sea_Ice_r100_198505.nc"            
[1411] "Sea_Ice_r100_198506.nc"             "Sea_Ice_r100_198507.nc"            
[1413] "Sea_Ice_r100_198508.nc"             "Sea_Ice_r100_198509.nc"            
[1415] "Sea_Ice_r100_198510.nc"             "Sea_Ice_r100_198511.nc"            
[1417] "Sea_Ice_r100_198512.nc"             "Sea_Ice_r100_198601.nc"            
[1419] "Sea_Ice_r100_198602.nc"             "Sea_Ice_r100_198603.nc"            
[1421] "Sea_Ice_r100_198604.nc"             "Sea_Ice_r100_198605.nc"            
[1423] "Sea_Ice_r100_198606.nc"             "Sea_Ice_r100_198607.nc"            
[1425] "Sea_Ice_r100_198608.nc"             "Sea_Ice_r100_198609.nc"            
[1427] "Sea_Ice_r100_198610.nc"             "Sea_Ice_r100_198611.nc"            
[1429] "Sea_Ice_r100_198612.nc"             "Sea_Ice_r100_198701.nc"            
[1431] "Sea_Ice_r100_198702.nc"             "Sea_Ice_r100_198703.nc"            
[1433] "Sea_Ice_r100_198704.nc"             "Sea_Ice_r100_198705.nc"            
[1435] "Sea_Ice_r100_198706.nc"             "Sea_Ice_r100_198707.nc"            
[1437] "Sea_Ice_r100_198708.nc"             "Sea_Ice_r100_198709.nc"            
[1439] "Sea_Ice_r100_198710.nc"             "Sea_Ice_r100_198711.nc"            
[1441] "Sea_Ice_r100_198712.nc"             "Sea_Ice_r100_198801.nc"            
[1443] "Sea_Ice_r100_198802.nc"             "Sea_Ice_r100_198803.nc"            
[1445] "Sea_Ice_r100_198804.nc"             "Sea_Ice_r100_198805.nc"            
[1447] "Sea_Ice_r100_198806.nc"             "Sea_Ice_r100_198807.nc"            
[1449] "Sea_Ice_r100_198808.nc"             "Sea_Ice_r100_198809.nc"            
[1451] "Sea_Ice_r100_198810.nc"             "Sea_Ice_r100_198811.nc"            
[1453] "Sea_Ice_r100_198812.nc"             "Sea_Ice_r100_198901.nc"            
[1455] "Sea_Ice_r100_198902.nc"             "Sea_Ice_r100_198903.nc"            
[1457] "Sea_Ice_r100_198904.nc"             "Sea_Ice_r100_198905.nc"            
[1459] "Sea_Ice_r100_198906.nc"             "Sea_Ice_r100_198907.nc"            
[1461] "Sea_Ice_r100_198908.nc"             "Sea_Ice_r100_198909.nc"            
[1463] "Sea_Ice_r100_198910.nc"             "Sea_Ice_r100_198911.nc"            
[1465] "Sea_Ice_r100_198912.nc"             "Sea_Ice_r100_199001.nc"            
[1467] "Sea_Ice_r100_199002.nc"             "Sea_Ice_r100_199003.nc"            
[1469] "Sea_Ice_r100_199004.nc"             "Sea_Ice_r100_199005.nc"            
[1471] "Sea_Ice_r100_199006.nc"             "Sea_Ice_r100_199007.nc"            
[1473] "Sea_Ice_r100_199008.nc"             "Sea_Ice_r100_199009.nc"            
[1475] "Sea_Ice_r100_199010.nc"             "Sea_Ice_r100_199011.nc"            
[1477] "Sea_Ice_r100_199012.nc"             "Sea_Ice_r100_199101.nc"            
[1479] "Sea_Ice_r100_199102.nc"             "Sea_Ice_r100_199103.nc"            
[1481] "Sea_Ice_r100_199104.nc"             "Sea_Ice_r100_199105.nc"            
[1483] "Sea_Ice_r100_199106.nc"             "Sea_Ice_r100_199107.nc"            
[1485] "Sea_Ice_r100_199108.nc"             "Sea_Ice_r100_199109.nc"            
[1487] "Sea_Ice_r100_199110.nc"             "Sea_Ice_r100_199111.nc"            
[1489] "Sea_Ice_r100_199112.nc"             "Sea_Ice_r100_199201.nc"            
[1491] "Sea_Ice_r100_199202.nc"             "Sea_Ice_r100_199203.nc"            
[1493] "Sea_Ice_r100_199204.nc"             "Sea_Ice_r100_199205.nc"            
[1495] "Sea_Ice_r100_199206.nc"             "Sea_Ice_r100_199207.nc"            
[1497] "Sea_Ice_r100_199208.nc"             "Sea_Ice_r100_199209.nc"            
[1499] "Sea_Ice_r100_199210.nc"             "Sea_Ice_r100_199211.nc"            
[1501] "Sea_Ice_r100_199212.nc"             "Sea_Ice_r100_199301.nc"            
[1503] "Sea_Ice_r100_199302.nc"             "Sea_Ice_r100_199303.nc"            
[1505] "Sea_Ice_r100_199304.nc"             "Sea_Ice_r100_199305.nc"            
[1507] "Sea_Ice_r100_199306.nc"             "Sea_Ice_r100_199307.nc"            
[1509] "Sea_Ice_r100_199308.nc"             "Sea_Ice_r100_199309.nc"            
[1511] "Sea_Ice_r100_199310.nc"             "Sea_Ice_r100_199311.nc"            
[1513] "Sea_Ice_r100_199312.nc"             "Sea_Ice_r100_199401.nc"            
[1515] "Sea_Ice_r100_199402.nc"             "Sea_Ice_r100_199403.nc"            
[1517] "Sea_Ice_r100_199404.nc"             "Sea_Ice_r100_199405.nc"            
[1519] "Sea_Ice_r100_199406.nc"             "Sea_Ice_r100_199407.nc"            
[1521] "Sea_Ice_r100_199408.nc"             "Sea_Ice_r100_199409.nc"            
[1523] "Sea_Ice_r100_199410.nc"             "Sea_Ice_r100_199411.nc"            
[1525] "Sea_Ice_r100_199412.nc"             "Sea_Ice_r100_199501.nc"            
[1527] "Sea_Ice_r100_199502.nc"             "Sea_Ice_r100_199503.nc"            
[1529] "Sea_Ice_r100_199504.nc"             "Sea_Ice_r100_199505.nc"            
[1531] "Sea_Ice_r100_199506.nc"             "Sea_Ice_r100_199507.nc"            
[1533] "Sea_Ice_r100_199508.nc"             "Sea_Ice_r100_199509.nc"            
[1535] "Sea_Ice_r100_199510.nc"             "Sea_Ice_r100_199511.nc"            
[1537] "Sea_Ice_r100_199512.nc"             "Sea_Ice_r100_199601.nc"            
[1539] "Sea_Ice_r100_199602.nc"             "Sea_Ice_r100_199603.nc"            
[1541] "Sea_Ice_r100_199604.nc"             "Sea_Ice_r100_199605.nc"            
[1543] "Sea_Ice_r100_199606.nc"             "Sea_Ice_r100_199607.nc"            
[1545] "Sea_Ice_r100_199608.nc"             "Sea_Ice_r100_199609.nc"            
[1547] "Sea_Ice_r100_199610.nc"             "Sea_Ice_r100_199611.nc"            
[1549] "Sea_Ice_r100_199612.nc"             "Sea_Ice_r100_199701.nc"            
[1551] "Sea_Ice_r100_199702.nc"             "Sea_Ice_r100_199703.nc"            
[1553] "Sea_Ice_r100_199704.nc"             "Sea_Ice_r100_199705.nc"            
[1555] "Sea_Ice_r100_199706.nc"             "Sea_Ice_r100_199707.nc"            
[1557] "Sea_Ice_r100_199708.nc"             "Sea_Ice_r100_199709.nc"            
[1559] "Sea_Ice_r100_199710.nc"             "Sea_Ice_r100_199711.nc"            
[1561] "Sea_Ice_r100_199712.nc"             "Sea_Ice_r100_199801.nc"            
[1563] "Sea_Ice_r100_199802.nc"             "Sea_Ice_r100_199803.nc"            
[1565] "Sea_Ice_r100_199804.nc"             "Sea_Ice_r100_199805.nc"            
[1567] "Sea_Ice_r100_199806.nc"             "Sea_Ice_r100_199807.nc"            
[1569] "Sea_Ice_r100_199808.nc"             "Sea_Ice_r100_199809.nc"            
[1571] "Sea_Ice_r100_199810.nc"             "Sea_Ice_r100_199811.nc"            
[1573] "Sea_Ice_r100_199812.nc"             "Sea_Ice_r100_199901.nc"            
[1575] "Sea_Ice_r100_199902.nc"             "Sea_Ice_r100_199903.nc"            
[1577] "Sea_Ice_r100_199904.nc"             "Sea_Ice_r100_199905.nc"            
[1579] "Sea_Ice_r100_199906.nc"             "Sea_Ice_r100_199907.nc"            
[1581] "Sea_Ice_r100_199908.nc"             "Sea_Ice_r100_199909.nc"            
[1583] "Sea_Ice_r100_199910.nc"             "Sea_Ice_r100_199911.nc"            
[1585] "Sea_Ice_r100_199912.nc"             "Sea_Ice_r100_200001.nc"            
[1587] "Sea_Ice_r100_200002.nc"             "Sea_Ice_r100_200003.nc"            
[1589] "Sea_Ice_r100_200004.nc"             "Sea_Ice_r100_200005.nc"            
[1591] "Sea_Ice_r100_200006.nc"             "Sea_Ice_r100_200007.nc"            
[1593] "Sea_Ice_r100_200008.nc"             "Sea_Ice_r100_200009.nc"            
[1595] "Sea_Ice_r100_200010.nc"             "Sea_Ice_r100_200011.nc"            
[1597] "Sea_Ice_r100_200012.nc"             "Sea_Ice_r100_200101.nc"            
[1599] "Sea_Ice_r100_200102.nc"             "Sea_Ice_r100_200103.nc"            
[1601] "Sea_Ice_r100_200104.nc"             "Sea_Ice_r100_200105.nc"            
[1603] "Sea_Ice_r100_200106.nc"             "Sea_Ice_r100_200107.nc"            
[1605] "Sea_Ice_r100_200108.nc"             "Sea_Ice_r100_200109.nc"            
[1607] "Sea_Ice_r100_200110.nc"             "Sea_Ice_r100_200111.nc"            
[1609] "Sea_Ice_r100_200112.nc"             "Sea_Ice_r100_200201.nc"            
[1611] "Sea_Ice_r100_200202.nc"             "Sea_Ice_r100_200203.nc"            
[1613] "Sea_Ice_r100_200204.nc"             "Sea_Ice_r100_200205.nc"            
[1615] "Sea_Ice_r100_200206.nc"             "Sea_Ice_r100_200207.nc"            
[1617] "Sea_Ice_r100_200208.nc"             "Sea_Ice_r100_200209.nc"            
[1619] "Sea_Ice_r100_200210.nc"             "Sea_Ice_r100_200211.nc"            
[1621] "Sea_Ice_r100_200212.nc"             "Sea_Ice_r100_200301.nc"            
[1623] "Sea_Ice_r100_200302.nc"             "Sea_Ice_r100_200303.nc"            
[1625] "Sea_Ice_r100_200304.nc"             "Sea_Ice_r100_200305.nc"            
[1627] "Sea_Ice_r100_200306.nc"             "Sea_Ice_r100_200307.nc"            
[1629] "Sea_Ice_r100_200308.nc"             "Sea_Ice_r100_200309.nc"            
[1631] "Sea_Ice_r100_200310.nc"             "Sea_Ice_r100_200311.nc"            
[1633] "Sea_Ice_r100_200312.nc"             "Sea_Ice_r100_200401.nc"            
[1635] "Sea_Ice_r100_200402.nc"             "Sea_Ice_r100_200403.nc"            
[1637] "Sea_Ice_r100_200404.nc"             "Sea_Ice_r100_200405.nc"            
[1639] "Sea_Ice_r100_200406.nc"             "Sea_Ice_r100_200407.nc"            
[1641] "Sea_Ice_r100_200408.nc"             "Sea_Ice_r100_200409.nc"            
[1643] "Sea_Ice_r100_200410.nc"             "Sea_Ice_r100_200411.nc"            
[1645] "Sea_Ice_r100_200412.nc"             "Sea_Ice_r100_200501.nc"            
[1647] "Sea_Ice_r100_200502.nc"             "Sea_Ice_r100_200503.nc"            
[1649] "Sea_Ice_r100_200504.nc"             "Sea_Ice_r100_200505.nc"            
[1651] "Sea_Ice_r100_200506.nc"             "Sea_Ice_r100_200507.nc"            
[1653] "Sea_Ice_r100_200508.nc"             "Sea_Ice_r100_200509.nc"            
[1655] "Sea_Ice_r100_200510.nc"             "Sea_Ice_r100_200511.nc"            
[1657] "Sea_Ice_r100_200512.nc"             "Sea_Ice_r100_200601.nc"            
[1659] "Sea_Ice_r100_200602.nc"             "Sea_Ice_r100_200603.nc"            
[1661] "Sea_Ice_r100_200604.nc"             "Sea_Ice_r100_200605.nc"            
[1663] "Sea_Ice_r100_200606.nc"             "Sea_Ice_r100_200607.nc"            
[1665] "Sea_Ice_r100_200608.nc"             "Sea_Ice_r100_200609.nc"            
[1667] "Sea_Ice_r100_200610.nc"             "Sea_Ice_r100_200611.nc"            
[1669] "Sea_Ice_r100_200612.nc"             "Sea_Ice_r100_200701.nc"            
[1671] "Sea_Ice_r100_200702.nc"             "Sea_Ice_r100_200703.nc"            
[1673] "Sea_Ice_r100_200704.nc"             "Sea_Ice_r100_200705.nc"            
[1675] "Sea_Ice_r100_200706.nc"             "Sea_Ice_r100_200707.nc"            
[1677] "Sea_Ice_r100_200708.nc"             "Sea_Ice_r100_200709.nc"            
[1679] "Sea_Ice_r100_200710.nc"             "Sea_Ice_r100_200711.nc"            
[1681] "Sea_Ice_r100_200712.nc"             "Sea_Ice_r100_200801.nc"            
[1683] "Sea_Ice_r100_200802.nc"             "Sea_Ice_r100_200803.nc"            
[1685] "Sea_Ice_r100_200804.nc"             "Sea_Ice_r100_200805.nc"            
[1687] "Sea_Ice_r100_200806.nc"             "Sea_Ice_r100_200807.nc"            
[1689] "Sea_Ice_r100_200808.nc"             "Sea_Ice_r100_200809.nc"            
[1691] "Sea_Ice_r100_200810.nc"             "Sea_Ice_r100_200811.nc"            
[1693] "Sea_Ice_r100_200812.nc"             "Sea_Ice_r100_200901.nc"            
[1695] "Sea_Ice_r100_200902.nc"             "Sea_Ice_r100_200903.nc"            
[1697] "Sea_Ice_r100_200904.nc"             "Sea_Ice_r100_200905.nc"            
[1699] "Sea_Ice_r100_200906.nc"             "Sea_Ice_r100_200907.nc"            
[1701] "Sea_Ice_r100_200908.nc"             "Sea_Ice_r100_200909.nc"            
[1703] "Sea_Ice_r100_200910.nc"             "Sea_Ice_r100_200911.nc"            
[1705] "Sea_Ice_r100_200912.nc"             "Sea_Ice_r100_201001.nc"            
[1707] "Sea_Ice_r100_201002.nc"             "Sea_Ice_r100_201003.nc"            
[1709] "Sea_Ice_r100_201004.nc"             "Sea_Ice_r100_201005.nc"            
[1711] "Sea_Ice_r100_201006.nc"             "Sea_Ice_r100_201007.nc"            
[1713] "Sea_Ice_r100_201008.nc"             "Sea_Ice_r100_201009.nc"            
[1715] "Sea_Ice_r100_201010.nc"             "Sea_Ice_r100_201011.nc"            
[1717] "Sea_Ice_r100_201012.nc"             "Sea_Ice_r100_201101.nc"            
[1719] "Sea_Ice_r100_201102.nc"             "Sea_Ice_r100_201103.nc"            
[1721] "Sea_Ice_r100_201104.nc"             "Sea_Ice_r100_201105.nc"            
[1723] "Sea_Ice_r100_201106.nc"             "Sea_Ice_r100_201107.nc"            
[1725] "Sea_Ice_r100_201108.nc"             "Sea_Ice_r100_201109.nc"            
[1727] "Sea_Ice_r100_201110.nc"             "Sea_Ice_r100_201111.nc"            
[1729] "Sea_Ice_r100_201112.nc"             "Sea_Ice_r100_201201.nc"            
[1731] "Sea_Ice_r100_201202.nc"             "Sea_Ice_r100_201203.nc"            
[1733] "Sea_Ice_r100_201204.nc"             "Sea_Ice_r100_201205.nc"            
[1735] "Sea_Ice_r100_201206.nc"             "Sea_Ice_r100_201207.nc"            
[1737] "Sea_Ice_r100_201208.nc"             "Sea_Ice_r100_201209.nc"            
[1739] "Sea_Ice_r100_201210.nc"             "Sea_Ice_r100_201211.nc"            
[1741] "Sea_Ice_r100_201212.nc"             "Sea_Ice_r100_201301.nc"            
[1743] "Sea_Ice_r100_201302.nc"             "Sea_Ice_r100_201303.nc"            
[1745] "Sea_Ice_r100_201304.nc"             "Sea_Ice_r100_201305.nc"            
[1747] "Sea_Ice_r100_201306.nc"             "Sea_Ice_r100_201307.nc"            
[1749] "Sea_Ice_r100_201308.nc"             "Sea_Ice_r100_201309.nc"            
[1751] "Sea_Ice_r100_201310.nc"             "Sea_Ice_r100_201311.nc"            
[1753] "Sea_Ice_r100_201312.nc"             "Sea_Ice_r100_201401.nc"            
[1755] "Sea_Ice_r100_201402.nc"             "Sea_Ice_r100_201403.nc"            
[1757] "Sea_Ice_r100_201404.nc"             "Sea_Ice_r100_201405.nc"            
[1759] "Sea_Ice_r100_201406.nc"             "Sea_Ice_r100_201407.nc"            
[1761] "Sea_Ice_r100_201408.nc"             "Sea_Ice_r100_201409.nc"            
[1763] "Sea_Ice_r100_201410.nc"             "Sea_Ice_r100_201411.nc"            
[1765] "Sea_Ice_r100_201412.nc"             "Sea_Ice_r100_201501.nc"            
[1767] "Sea_Ice_r100_201502.nc"             "Sea_Ice_r100_201503.nc"            
[1769] "Sea_Ice_r100_201504.nc"             "Sea_Ice_r100_201505.nc"            
[1771] "Sea_Ice_r100_201506.nc"             "Sea_Ice_r100_201507.nc"            
[1773] "Sea_Ice_r100_201508.nc"             "Sea_Ice_r100_201509.nc"            
[1775] "Sea_Ice_r100_201510.nc"             "Sea_Ice_r100_201511.nc"            
[1777] "Sea_Ice_r100_201512.nc"             "Sea_Ice_r100_201601.nc"            
[1779] "Sea_Ice_r100_201602.nc"             "Sea_Ice_r100_201603.nc"            
[1781] "Sea_Ice_r100_201604.nc"             "Sea_Ice_r100_201605.nc"            
[1783] "Sea_Ice_r100_201606.nc"             "Sea_Ice_r100_201607.nc"            
[1785] "Sea_Ice_r100_201608.nc"             "Sea_Ice_r100_201609.nc"            
[1787] "Sea_Ice_r100_201610.nc"             "Sea_Ice_r100_201611.nc"            
[1789] "Sea_Ice_r100_201612.nc"             "Sea_Ice_r100_201701.nc"            
[1791] "Sea_Ice_r100_201702.nc"             "Sea_Ice_r100_201703.nc"            
[1793] "Sea_Ice_r100_201704.nc"             "Sea_Ice_r100_201705.nc"            
[1795] "Sea_Ice_r100_201706.nc"             "Sea_Ice_r100_201707.nc"            
[1797] "Sea_Ice_r100_201708.nc"             "Sea_Ice_r100_201709.nc"            
[1799] "Sea_Ice_r100_201710.nc"             "Sea_Ice_r100_201711.nc"            
[1801] "Sea_Ice_r100_201712.nc"             "Sea_Ice_r100_201801.nc"            
[1803] "Sea_Ice_r100_201802.nc"             "Sea_Ice_r100_201803.nc"            
[1805] "Sea_Ice_r100_201804.nc"             "Sea_Ice_r100_201805.nc"            
[1807] "Sea_Ice_r100_201806.nc"             "Sea_Ice_r100_201807.nc"            
[1809] "Sea_Ice_r100_201808.nc"             "Sea_Ice_r100_201809.nc"            
[1811] "Sea_Ice_r100_201810.nc"             "Sea_Ice_r100_201811.nc"            
[1813] "Sea_Ice_r100_201812.nc"             "Sea_Ice_r100_201901.nc"            
[1815] "Sea_Ice_r100_201902.nc"             "Sea_Ice_r100_201903.nc"            
[1817] "Sea_Ice_r100_201904.nc"             "Sea_Ice_r100_201905.nc"            
[1819] "Sea_Ice_r100_201906.nc"             "Sea_Ice_r100_201907.nc"            
[1821] "Sea_Ice_r100_201908.nc"             "Sea_Ice_r100_201909.nc"            
[1823] "Sea_Ice_r100_201910.nc"             "Sea_Ice_r100_201911.nc"            
[1825] "Sea_Ice_r100_201912.nc"             "Sea_Ice_r100_202001.nc"            
[1827] "Sea_Ice_r100_202002.nc"             "Sea_Ice_r100_202003.nc"            
[1829] "Sea_Ice_r100_202004.nc"             "Sea_Ice_r100_202005.nc"            
[1831] "Sea_Ice_r100_202006.nc"             "Sea_Ice_r100_202007.nc"            
[1833] "Sea_Ice_r100_202008.nc"             "Sea_Ice_r100_202009.nc"            
[1835] "Sea_Ice_r100_202010.nc"             "Sea_Ice_r100_202011.nc"            
[1837] "Sea_Ice_r100_202012.nc"             "Sea_Ice_r100_202101.nc"            
[1839] "Sea_Ice_r100_202102.nc"             "Sea_Ice_r100_202103.nc"            
[1841] "Sea_Ice_r100_202104.nc"             "Sea_Ice_r100_202105.nc"            
[1843] "Sea_Ice_r100_202106.nc"             "Sea_Ice_r100_202107.nc"            
[1845] "Sea_Ice_r100_202108.nc"             "Sea_Ice_r100_202109.nc"            
[1847] "Sea_Ice_r100_202110.nc"             "Sea_Ice_r100_202111.nc"            
[1849] "Sea_Ice_r100_202112.nc"             "Sea_Ice_r100_202201.nc"            
[1851] "Sea_Ice_r100_202202.nc"             "Sea_Ice_r100_202203.nc"            
[1853] "Sea_Ice_r100_202204.nc"             "Sea_Ice_r100_202205.nc"            
[1855] "Sea_Ice_r100_202206.nc"             "Sea_Ice_r100_202207.nc"            
[1857] "Sea_Ice_r100_202208.nc"             "Sea_Ice_r100_202209.nc"            
[1859] "Sea_Ice_r100_202210.nc"             "Sea_Ice_r100_202211.nc"            
[1861] "Sea_Ice_r100_202212.nc"             "Sea_Ice_r100_202301.nc"            
[1863] "Sea_Ice_r100_202302.nc"             "Sea_Ice_r100_202303.nc"            
[1865] "Sea_Ice_r100_202304.nc"             "Sea_Ice_r100_202305.nc"            
[1867] "Sea_Ice_r100_202306.nc"             "Sea_Ice_r100_202307.nc"            
[1869] "Sea_Ice_r100_202308.nc"             "Sea_Ice_r100_202309.nc"            
[1871] "SSH_r100_198501.nc"                 "SSH_r100_198502.nc"                
[1873] "SSH_r100_198503.nc"                 "SSH_r100_198504.nc"                
[1875] "SSH_r100_198505.nc"                 "SSH_r100_198506.nc"                
[1877] "SSH_r100_198507.nc"                 "SSH_r100_198508.nc"                
[1879] "SSH_r100_198509.nc"                 "SSH_r100_198510.nc"                
[1881] "SSH_r100_198511.nc"                 "SSH_r100_198512.nc"                
[1883] "SSH_r100_198601.nc"                 "SSH_r100_198602.nc"                
[1885] "SSH_r100_198603.nc"                 "SSH_r100_198604.nc"                
[1887] "SSH_r100_198605.nc"                 "SSH_r100_198606.nc"                
[1889] "SSH_r100_198607.nc"                 "SSH_r100_198608.nc"                
[1891] "SSH_r100_198609.nc"                 "SSH_r100_198610.nc"                
[1893] "SSH_r100_198611.nc"                 "SSH_r100_198612.nc"                
[1895] "SSH_r100_198701.nc"                 "SSH_r100_198702.nc"                
[1897] "SSH_r100_198703.nc"                 "SSH_r100_198704.nc"                
[1899] "SSH_r100_198705.nc"                 "SSH_r100_198706.nc"                
[1901] "SSH_r100_198707.nc"                 "SSH_r100_198708.nc"                
[1903] "SSH_r100_198709.nc"                 "SSH_r100_198710.nc"                
[1905] "SSH_r100_198711.nc"                 "SSH_r100_198712.nc"                
[1907] "SSH_r100_198801.nc"                 "SSH_r100_198802.nc"                
[1909] "SSH_r100_198803.nc"                 "SSH_r100_198804.nc"                
[1911] "SSH_r100_198805.nc"                 "SSH_r100_198806.nc"                
[1913] "SSH_r100_198807.nc"                 "SSH_r100_198808.nc"                
[1915] "SSH_r100_198809.nc"                 "SSH_r100_198810.nc"                
[1917] "SSH_r100_198811.nc"                 "SSH_r100_198812.nc"                
[1919] "SSH_r100_198901.nc"                 "SSH_r100_198902.nc"                
[1921] "SSH_r100_198903.nc"                 "SSH_r100_198904.nc"                
[1923] "SSH_r100_198905.nc"                 "SSH_r100_198906.nc"                
[1925] "SSH_r100_198907.nc"                 "SSH_r100_198908.nc"                
[1927] "SSH_r100_198909.nc"                 "SSH_r100_198910.nc"                
[1929] "SSH_r100_198911.nc"                 "SSH_r100_198912.nc"                
[1931] "SSH_r100_199001.nc"                 "SSH_r100_199002.nc"                
[1933] "SSH_r100_199003.nc"                 "SSH_r100_199004.nc"                
[1935] "SSH_r100_199005.nc"                 "SSH_r100_199006.nc"                
[1937] "SSH_r100_199007.nc"                 "SSH_r100_199008.nc"                
[1939] "SSH_r100_199009.nc"                 "SSH_r100_199010.nc"                
[1941] "SSH_r100_199011.nc"                 "SSH_r100_199012.nc"                
[1943] "SSH_r100_199101.nc"                 "SSH_r100_199102.nc"                
[1945] "SSH_r100_199103.nc"                 "SSH_r100_199104.nc"                
[1947] "SSH_r100_199105.nc"                 "SSH_r100_199106.nc"                
[1949] "SSH_r100_199107.nc"                 "SSH_r100_199108.nc"                
[1951] "SSH_r100_199109.nc"                 "SSH_r100_199110.nc"                
[1953] "SSH_r100_199111.nc"                 "SSH_r100_199112.nc"                
[1955] "SSH_r100_199201.nc"                 "SSH_r100_199202.nc"                
[1957] "SSH_r100_199203.nc"                 "SSH_r100_199204.nc"                
[1959] "SSH_r100_199205.nc"                 "SSH_r100_199206.nc"                
[1961] "SSH_r100_199207.nc"                 "SSH_r100_199208.nc"                
[1963] "SSH_r100_199209.nc"                 "SSH_r100_199210.nc"                
[1965] "SSH_r100_199211.nc"                 "SSH_r100_199212.nc"                
[1967] "SSH_r100_199301.nc"                 "SSH_r100_199302.nc"                
[1969] "SSH_r100_199303.nc"                 "SSH_r100_199304.nc"                
[1971] "SSH_r100_199305.nc"                 "SSH_r100_199306.nc"                
[1973] "SSH_r100_199307.nc"                 "SSH_r100_199308.nc"                
[1975] "SSH_r100_199309.nc"                 "SSH_r100_199310.nc"                
[1977] "SSH_r100_199311.nc"                 "SSH_r100_199312.nc"                
[1979] "SSH_r100_199401.nc"                 "SSH_r100_199402.nc"                
[1981] "SSH_r100_199403.nc"                 "SSH_r100_199404.nc"                
[1983] "SSH_r100_199405.nc"                 "SSH_r100_199406.nc"                
[1985] "SSH_r100_199407.nc"                 "SSH_r100_199408.nc"                
[1987] "SSH_r100_199409.nc"                 "SSH_r100_199410.nc"                
[1989] "SSH_r100_199411.nc"                 "SSH_r100_199412.nc"                
[1991] "SSH_r100_199501.nc"                 "SSH_r100_199502.nc"                
[1993] "SSH_r100_199503.nc"                 "SSH_r100_199504.nc"                
[1995] "SSH_r100_199505.nc"                 "SSH_r100_199506.nc"                
[1997] "SSH_r100_199507.nc"                 "SSH_r100_199508.nc"                
[1999] "SSH_r100_199509.nc"                 "SSH_r100_199510.nc"                
[2001] "SSH_r100_199511.nc"                 "SSH_r100_199512.nc"                
[2003] "SSH_r100_199601.nc"                 "SSH_r100_199602.nc"                
[2005] "SSH_r100_199603.nc"                 "SSH_r100_199604.nc"                
[2007] "SSH_r100_199605.nc"                 "SSH_r100_199606.nc"                
[2009] "SSH_r100_199607.nc"                 "SSH_r100_199608.nc"                
[2011] "SSH_r100_199609.nc"                 "SSH_r100_199610.nc"                
[2013] "SSH_r100_199611.nc"                 "SSH_r100_199612.nc"                
[2015] "SSH_r100_199701.nc"                 "SSH_r100_199702.nc"                
[2017] "SSH_r100_199703.nc"                 "SSH_r100_199704.nc"                
[2019] "SSH_r100_199705.nc"                 "SSH_r100_199706.nc"                
[2021] "SSH_r100_199707.nc"                 "SSH_r100_199708.nc"                
[2023] "SSH_r100_199709.nc"                 "SSH_r100_199710.nc"                
[2025] "SSH_r100_199711.nc"                 "SSH_r100_199712.nc"                
[2027] "SSH_r100_199801.nc"                 "SSH_r100_199802.nc"                
[2029] "SSH_r100_199803.nc"                 "SSH_r100_199804.nc"                
[2031] "SSH_r100_199805.nc"                 "SSH_r100_199806.nc"                
[2033] "SSH_r100_199807.nc"                 "SSH_r100_199808.nc"                
[2035] "SSH_r100_199809.nc"                 "SSH_r100_199810.nc"                
[2037] "SSH_r100_199811.nc"                 "SSH_r100_199812.nc"                
[2039] "SSH_r100_199901.nc"                 "SSH_r100_199902.nc"                
[2041] "SSH_r100_199903.nc"                 "SSH_r100_199904.nc"                
[2043] "SSH_r100_199905.nc"                 "SSH_r100_199906.nc"                
[2045] "SSH_r100_199907.nc"                 "SSH_r100_199908.nc"                
[2047] "SSH_r100_199909.nc"                 "SSH_r100_199910.nc"                
[2049] "SSH_r100_199911.nc"                 "SSH_r100_199912.nc"                
[2051] "SSH_r100_200001.nc"                 "SSH_r100_200002.nc"                
[2053] "SSH_r100_200003.nc"                 "SSH_r100_200004.nc"                
[2055] "SSH_r100_200005.nc"                 "SSH_r100_200006.nc"                
[2057] "SSH_r100_200007.nc"                 "SSH_r100_200008.nc"                
[2059] "SSH_r100_200009.nc"                 "SSH_r100_200010.nc"                
[2061] "SSH_r100_200011.nc"                 "SSH_r100_200012.nc"                
[2063] "SSH_r100_200101.nc"                 "SSH_r100_200102.nc"                
[2065] "SSH_r100_200103.nc"                 "SSH_r100_200104.nc"                
[2067] "SSH_r100_200105.nc"                 "SSH_r100_200106.nc"                
[2069] "SSH_r100_200107.nc"                 "SSH_r100_200108.nc"                
[2071] "SSH_r100_200109.nc"                 "SSH_r100_200110.nc"                
[2073] "SSH_r100_200111.nc"                 "SSH_r100_200112.nc"                
[2075] "SSH_r100_200201.nc"                 "SSH_r100_200202.nc"                
[2077] "SSH_r100_200203.nc"                 "SSH_r100_200204.nc"                
[2079] "SSH_r100_200205.nc"                 "SSH_r100_200206.nc"                
[2081] "SSH_r100_200207.nc"                 "SSH_r100_200208.nc"                
[2083] "SSH_r100_200209.nc"                 "SSH_r100_200210.nc"                
[2085] "SSH_r100_200211.nc"                 "SSH_r100_200212.nc"                
[2087] "SSH_r100_200301.nc"                 "SSH_r100_200302.nc"                
[2089] "SSH_r100_200303.nc"                 "SSH_r100_200304.nc"                
[2091] "SSH_r100_200305.nc"                 "SSH_r100_200306.nc"                
[2093] "SSH_r100_200307.nc"                 "SSH_r100_200308.nc"                
[2095] "SSH_r100_200309.nc"                 "SSH_r100_200310.nc"                
[2097] "SSH_r100_200311.nc"                 "SSH_r100_200312.nc"                
[2099] "SSH_r100_200401.nc"                 "SSH_r100_200402.nc"                
[2101] "SSH_r100_200403.nc"                 "SSH_r100_200404.nc"                
[2103] "SSH_r100_200405.nc"                 "SSH_r100_200406.nc"                
[2105] "SSH_r100_200407.nc"                 "SSH_r100_200408.nc"                
[2107] "SSH_r100_200409.nc"                 "SSH_r100_200410.nc"                
[2109] "SSH_r100_200411.nc"                 "SSH_r100_200412.nc"                
[2111] "SSH_r100_200501.nc"                 "SSH_r100_200502.nc"                
[2113] "SSH_r100_200503.nc"                 "SSH_r100_200504.nc"                
[2115] "SSH_r100_200505.nc"                 "SSH_r100_200506.nc"                
[2117] "SSH_r100_200507.nc"                 "SSH_r100_200508.nc"                
[2119] "SSH_r100_200509.nc"                 "SSH_r100_200510.nc"                
[2121] "SSH_r100_200511.nc"                 "SSH_r100_200512.nc"                
[2123] "SSH_r100_200601.nc"                 "SSH_r100_200602.nc"                
[2125] "SSH_r100_200603.nc"                 "SSH_r100_200604.nc"                
[2127] "SSH_r100_200605.nc"                 "SSH_r100_200606.nc"                
[2129] "SSH_r100_200607.nc"                 "SSH_r100_200608.nc"                
[2131] "SSH_r100_200609.nc"                 "SSH_r100_200610.nc"                
[2133] "SSH_r100_200611.nc"                 "SSH_r100_200612.nc"                
[2135] "SSH_r100_200701.nc"                 "SSH_r100_200702.nc"                
[2137] "SSH_r100_200703.nc"                 "SSH_r100_200704.nc"                
[2139] "SSH_r100_200705.nc"                 "SSH_r100_200706.nc"                
[2141] "SSH_r100_200707.nc"                 "SSH_r100_200708.nc"                
[2143] "SSH_r100_200709.nc"                 "SSH_r100_200710.nc"                
[2145] "SSH_r100_200711.nc"                 "SSH_r100_200712.nc"                
[2147] "SSH_r100_200801.nc"                 "SSH_r100_200802.nc"                
[2149] "SSH_r100_200803.nc"                 "SSH_r100_200804.nc"                
[2151] "SSH_r100_200805.nc"                 "SSH_r100_200806.nc"                
[2153] "SSH_r100_200807.nc"                 "SSH_r100_200808.nc"                
[2155] "SSH_r100_200809.nc"                 "SSH_r100_200810.nc"                
[2157] "SSH_r100_200811.nc"                 "SSH_r100_200812.nc"                
[2159] "SSH_r100_200901.nc"                 "SSH_r100_200902.nc"                
[2161] "SSH_r100_200903.nc"                 "SSH_r100_200904.nc"                
[2163] "SSH_r100_200905.nc"                 "SSH_r100_200906.nc"                
[2165] "SSH_r100_200907.nc"                 "SSH_r100_200908.nc"                
[2167] "SSH_r100_200909.nc"                 "SSH_r100_200910.nc"                
[2169] "SSH_r100_200911.nc"                 "SSH_r100_200912.nc"                
[2171] "SSH_r100_201001.nc"                 "SSH_r100_201002.nc"                
[2173] "SSH_r100_201003.nc"                 "SSH_r100_201004.nc"                
[2175] "SSH_r100_201005.nc"                 "SSH_r100_201006.nc"                
[2177] "SSH_r100_201007.nc"                 "SSH_r100_201008.nc"                
[2179] "SSH_r100_201009.nc"                 "SSH_r100_201010.nc"                
[2181] "SSH_r100_201011.nc"                 "SSH_r100_201012.nc"                
[2183] "SSH_r100_201101.nc"                 "SSH_r100_201102.nc"                
[2185] "SSH_r100_201103.nc"                 "SSH_r100_201104.nc"                
[2187] "SSH_r100_201105.nc"                 "SSH_r100_201106.nc"                
[2189] "SSH_r100_201107.nc"                 "SSH_r100_201108.nc"                
[2191] "SSH_r100_201109.nc"                 "SSH_r100_201110.nc"                
[2193] "SSH_r100_201111.nc"                 "SSH_r100_201112.nc"                
[2195] "SSH_r100_201201.nc"                 "SSH_r100_201202.nc"                
[2197] "SSH_r100_201203.nc"                 "SSH_r100_201204.nc"                
[2199] "SSH_r100_201205.nc"                 "SSH_r100_201206.nc"                
[2201] "SSH_r100_201207.nc"                 "SSH_r100_201208.nc"                
[2203] "SSH_r100_201209.nc"                 "SSH_r100_201210.nc"                
[2205] "SSH_r100_201211.nc"                 "SSH_r100_201212.nc"                
[2207] "SSH_r100_201301.nc"                 "SSH_r100_201302.nc"                
[2209] "SSH_r100_201303.nc"                 "SSH_r100_201304.nc"                
[2211] "SSH_r100_201305.nc"                 "SSH_r100_201306.nc"                
[2213] "SSH_r100_201307.nc"                 "SSH_r100_201308.nc"                
[2215] "SSH_r100_201309.nc"                 "SSH_r100_201310.nc"                
[2217] "SSH_r100_201311.nc"                 "SSH_r100_201312.nc"                
[2219] "SSH_r100_201401.nc"                 "SSH_r100_201402.nc"                
[2221] "SSH_r100_201403.nc"                 "SSH_r100_201404.nc"                
[2223] "SSH_r100_201405.nc"                 "SSH_r100_201406.nc"                
[2225] "SSH_r100_201407.nc"                 "SSH_r100_201408.nc"                
[2227] "SSH_r100_201409.nc"                 "SSH_r100_201410.nc"                
[2229] "SSH_r100_201411.nc"                 "SSH_r100_201412.nc"                
[2231] "SSH_r100_201501.nc"                 "SSH_r100_201502.nc"                
[2233] "SSH_r100_201503.nc"                 "SSH_r100_201504.nc"                
[2235] "SSH_r100_201505.nc"                 "SSH_r100_201506.nc"                
[2237] "SSH_r100_201507.nc"                 "SSH_r100_201508.nc"                
[2239] "SSH_r100_201509.nc"                 "SSH_r100_201510.nc"                
[2241] "SSH_r100_201511.nc"                 "SSH_r100_201512.nc"                
[2243] "SSH_r100_201601.nc"                 "SSH_r100_201602.nc"                
[2245] "SSH_r100_201603.nc"                 "SSH_r100_201604.nc"                
[2247] "SSH_r100_201605.nc"                 "SSH_r100_201606.nc"                
[2249] "SSH_r100_201607.nc"                 "SSH_r100_201608.nc"                
[2251] "SSH_r100_201609.nc"                 "SSH_r100_201610.nc"                
[2253] "SSH_r100_201611.nc"                 "SSH_r100_201612.nc"                
[2255] "SSH_r100_201701.nc"                 "SSH_r100_201702.nc"                
[2257] "SSH_r100_201703.nc"                 "SSH_r100_201704.nc"                
[2259] "SSH_r100_201705.nc"                 "SSH_r100_201706.nc"                
[2261] "SSH_r100_201707.nc"                 "SSH_r100_201708.nc"                
[2263] "SSH_r100_201709.nc"                 "SSH_r100_201710.nc"                
[2265] "SSH_r100_201711.nc"                 "SSH_r100_201712.nc"                
[2267] "SSH_r100_201801.nc"                 "SSH_r100_201802.nc"                
[2269] "SSH_r100_201803.nc"                 "SSH_r100_201804.nc"                
[2271] "SSH_r100_201805.nc"                 "SSH_r100_201806.nc"                
[2273] "SSH_r100_201807.nc"                 "SSH_r100_201808.nc"                
[2275] "SSH_r100_201809.nc"                 "SSH_r100_201810.nc"                
[2277] "SSH_r100_201811.nc"                 "SSH_r100_201812.nc"                
[2279] "SSH_r100_201901.nc"                 "SSH_r100_201902.nc"                
[2281] "SSH_r100_201903.nc"                 "SSH_r100_201904.nc"                
[2283] "SSH_r100_201905.nc"                 "SSH_r100_201906.nc"                
[2285] "SSH_r100_201907.nc"                 "SSH_r100_201908.nc"                
[2287] "SSH_r100_201909.nc"                 "SSH_r100_201910.nc"                
[2289] "SSH_r100_201911.nc"                 "SSH_r100_201912.nc"                
[2291] "SSH_r100_202001.nc"                 "SSH_r100_202002.nc"                
[2293] "SSH_r100_202003.nc"                 "SSH_r100_202004.nc"                
[2295] "SSH_r100_202005.nc"                 "SSH_r100_202006.nc"                
[2297] "SSH_r100_202007.nc"                 "SSH_r100_202008.nc"                
[2299] "SSH_r100_202009.nc"                 "SSH_r100_202010.nc"                
[2301] "SSH_r100_202011.nc"                 "SSH_r100_202012.nc"                
[2303] "SSH_r100_202101.nc"                 "SSH_r100_202102.nc"                
[2305] "SSH_r100_202103.nc"                 "SSH_r100_202104.nc"                
[2307] "SSH_r100_202105.nc"                 "SSH_r100_202106.nc"                
[2309] "SSH_r100_202107.nc"                 "SSH_r100_202108.nc"                
[2311] "SSH_r100_202109.nc"                 "SSH_r100_202110.nc"                
[2313] "SSH_r100_202111.nc"                 "SSH_r100_202112.nc"                
[2315] "SSH_r100_202201.nc"                 "SSH_r100_202202.nc"                
[2317] "SSH_r100_202203.nc"                 "SSH_r100_202204.nc"                
[2319] "SSH_r100_202205.nc"                 "SSH_r100_202206.nc"                
[2321] "SSH_r100_202207.nc"                 "SSH_r100_202208.nc"                
[2323] "SSH_r100_202209.nc"                 "SSH_r100_202210.nc"                
[2325] "SSH_r100_202211.nc"                 "SSH_r100_202212.nc"                
[2327] "SSH_r100_202301.nc"                 "SSH_r100_202302.nc"                
[2329] "SSH_r100_202303.nc"                 "SSH_r100_202304.nc"                
[2331] "SSH_r100_202305.nc"                 "SSH_r100_202306.nc"                
[2333] "SSH_r100_202307.nc"                 "SSH_r100_202308.nc"                
[2335] "SSH_r100_202309.nc"                 "SSH_r100_202310.nc"                
[2337] "SSH_r100_202311.nc"                 "SSH_r100_202312.nc"                
[2339] "SSH_r100_202401.nc"                 "SSH_r100_202402.nc"                
[2341] "SSS_r100_198501.nc"                 "SSS_r100_198502.nc"                
[2343] "SSS_r100_198503.nc"                 "SSS_r100_198504.nc"                
[2345] "SSS_r100_198505.nc"                 "SSS_r100_198506.nc"                
[2347] "SSS_r100_198507.nc"                 "SSS_r100_198508.nc"                
[2349] "SSS_r100_198509.nc"                 "SSS_r100_198510.nc"                
[2351] "SSS_r100_198511.nc"                 "SSS_r100_198512.nc"                
[2353] "SSS_r100_198601.nc"                 "SSS_r100_198602.nc"                
[2355] "SSS_r100_198603.nc"                 "SSS_r100_198604.nc"                
[2357] "SSS_r100_198605.nc"                 "SSS_r100_198606.nc"                
[2359] "SSS_r100_198607.nc"                 "SSS_r100_198608.nc"                
[2361] "SSS_r100_198609.nc"                 "SSS_r100_198610.nc"                
[2363] "SSS_r100_198611.nc"                 "SSS_r100_198612.nc"                
[2365] "SSS_r100_198701.nc"                 "SSS_r100_198702.nc"                
[2367] "SSS_r100_198703.nc"                 "SSS_r100_198704.nc"                
[2369] "SSS_r100_198705.nc"                 "SSS_r100_198706.nc"                
[2371] "SSS_r100_198707.nc"                 "SSS_r100_198708.nc"                
[2373] "SSS_r100_198709.nc"                 "SSS_r100_198710.nc"                
[2375] "SSS_r100_198711.nc"                 "SSS_r100_198712.nc"                
[2377] "SSS_r100_198801.nc"                 "SSS_r100_198802.nc"                
[2379] "SSS_r100_198803.nc"                 "SSS_r100_198804.nc"                
[2381] "SSS_r100_198805.nc"                 "SSS_r100_198806.nc"                
[2383] "SSS_r100_198807.nc"                 "SSS_r100_198808.nc"                
[2385] "SSS_r100_198809.nc"                 "SSS_r100_198810.nc"                
[2387] "SSS_r100_198811.nc"                 "SSS_r100_198812.nc"                
[2389] "SSS_r100_198901.nc"                 "SSS_r100_198902.nc"                
[2391] "SSS_r100_198903.nc"                 "SSS_r100_198904.nc"                
[2393] "SSS_r100_198905.nc"                 "SSS_r100_198906.nc"                
[2395] "SSS_r100_198907.nc"                 "SSS_r100_198908.nc"                
[2397] "SSS_r100_198909.nc"                 "SSS_r100_198910.nc"                
[2399] "SSS_r100_198911.nc"                 "SSS_r100_198912.nc"                
[2401] "SSS_r100_199001.nc"                 "SSS_r100_199002.nc"                
[2403] "SSS_r100_199003.nc"                 "SSS_r100_199004.nc"                
[2405] "SSS_r100_199005.nc"                 "SSS_r100_199006.nc"                
[2407] "SSS_r100_199007.nc"                 "SSS_r100_199008.nc"                
[2409] "SSS_r100_199009.nc"                 "SSS_r100_199010.nc"                
[2411] "SSS_r100_199011.nc"                 "SSS_r100_199012.nc"                
[2413] "SSS_r100_199101.nc"                 "SSS_r100_199102.nc"                
[2415] "SSS_r100_199103.nc"                 "SSS_r100_199104.nc"                
[2417] "SSS_r100_199105.nc"                 "SSS_r100_199106.nc"                
[2419] "SSS_r100_199107.nc"                 "SSS_r100_199108.nc"                
[2421] "SSS_r100_199109.nc"                 "SSS_r100_199110.nc"                
[2423] "SSS_r100_199111.nc"                 "SSS_r100_199112.nc"                
[2425] "SSS_r100_199201.nc"                 "SSS_r100_199202.nc"                
[2427] "SSS_r100_199203.nc"                 "SSS_r100_199204.nc"                
[2429] "SSS_r100_199205.nc"                 "SSS_r100_199206.nc"                
[2431] "SSS_r100_199207.nc"                 "SSS_r100_199208.nc"                
[2433] "SSS_r100_199209.nc"                 "SSS_r100_199210.nc"                
[2435] "SSS_r100_199211.nc"                 "SSS_r100_199212.nc"                
[2437] "SSS_r100_199301.nc"                 "SSS_r100_199302.nc"                
[2439] "SSS_r100_199303.nc"                 "SSS_r100_199304.nc"                
[2441] "SSS_r100_199305.nc"                 "SSS_r100_199306.nc"                
[2443] "SSS_r100_199307.nc"                 "SSS_r100_199308.nc"                
[2445] "SSS_r100_199309.nc"                 "SSS_r100_199310.nc"                
[2447] "SSS_r100_199311.nc"                 "SSS_r100_199312.nc"                
[2449] "SSS_r100_199401.nc"                 "SSS_r100_199402.nc"                
[2451] "SSS_r100_199403.nc"                 "SSS_r100_199404.nc"                
[2453] "SSS_r100_199405.nc"                 "SSS_r100_199406.nc"                
[2455] "SSS_r100_199407.nc"                 "SSS_r100_199408.nc"                
[2457] "SSS_r100_199409.nc"                 "SSS_r100_199410.nc"                
[2459] "SSS_r100_199411.nc"                 "SSS_r100_199412.nc"                
[2461] "SSS_r100_199501.nc"                 "SSS_r100_199502.nc"                
[2463] "SSS_r100_199503.nc"                 "SSS_r100_199504.nc"                
[2465] "SSS_r100_199505.nc"                 "SSS_r100_199506.nc"                
[2467] "SSS_r100_199507.nc"                 "SSS_r100_199508.nc"                
[2469] "SSS_r100_199509.nc"                 "SSS_r100_199510.nc"                
[2471] "SSS_r100_199511.nc"                 "SSS_r100_199512.nc"                
[2473] "SSS_r100_199601.nc"                 "SSS_r100_199602.nc"                
[2475] "SSS_r100_199603.nc"                 "SSS_r100_199604.nc"                
[2477] "SSS_r100_199605.nc"                 "SSS_r100_199606.nc"                
[2479] "SSS_r100_199607.nc"                 "SSS_r100_199608.nc"                
[2481] "SSS_r100_199609.nc"                 "SSS_r100_199610.nc"                
[2483] "SSS_r100_199611.nc"                 "SSS_r100_199612.nc"                
[2485] "SSS_r100_199701.nc"                 "SSS_r100_199702.nc"                
[2487] "SSS_r100_199703.nc"                 "SSS_r100_199704.nc"                
[2489] "SSS_r100_199705.nc"                 "SSS_r100_199706.nc"                
[2491] "SSS_r100_199707.nc"                 "SSS_r100_199708.nc"                
[2493] "SSS_r100_199709.nc"                 "SSS_r100_199710.nc"                
[2495] "SSS_r100_199711.nc"                 "SSS_r100_199712.nc"                
[2497] "SSS_r100_199801.nc"                 "SSS_r100_199802.nc"                
[2499] "SSS_r100_199803.nc"                 "SSS_r100_199804.nc"                
[2501] "SSS_r100_199805.nc"                 "SSS_r100_199806.nc"                
[2503] "SSS_r100_199807.nc"                 "SSS_r100_199808.nc"                
[2505] "SSS_r100_199809.nc"                 "SSS_r100_199810.nc"                
[2507] "SSS_r100_199811.nc"                 "SSS_r100_199812.nc"                
[2509] "SSS_r100_199901.nc"                 "SSS_r100_199902.nc"                
[2511] "SSS_r100_199903.nc"                 "SSS_r100_199904.nc"                
[2513] "SSS_r100_199905.nc"                 "SSS_r100_199906.nc"                
[2515] "SSS_r100_199907.nc"                 "SSS_r100_199908.nc"                
[2517] "SSS_r100_199909.nc"                 "SSS_r100_199910.nc"                
[2519] "SSS_r100_199911.nc"                 "SSS_r100_199912.nc"                
[2521] "SSS_r100_200001.nc"                 "SSS_r100_200002.nc"                
[2523] "SSS_r100_200003.nc"                 "SSS_r100_200004.nc"                
[2525] "SSS_r100_200005.nc"                 "SSS_r100_200006.nc"                
[2527] "SSS_r100_200007.nc"                 "SSS_r100_200008.nc"                
[2529] "SSS_r100_200009.nc"                 "SSS_r100_200010.nc"                
[2531] "SSS_r100_200011.nc"                 "SSS_r100_200012.nc"                
[2533] "SSS_r100_200101.nc"                 "SSS_r100_200102.nc"                
[2535] "SSS_r100_200103.nc"                 "SSS_r100_200104.nc"                
[2537] "SSS_r100_200105.nc"                 "SSS_r100_200106.nc"                
[2539] "SSS_r100_200107.nc"                 "SSS_r100_200108.nc"                
[2541] "SSS_r100_200109.nc"                 "SSS_r100_200110.nc"                
[2543] "SSS_r100_200111.nc"                 "SSS_r100_200112.nc"                
[2545] "SSS_r100_200201.nc"                 "SSS_r100_200202.nc"                
[2547] "SSS_r100_200203.nc"                 "SSS_r100_200204.nc"                
[2549] "SSS_r100_200205.nc"                 "SSS_r100_200206.nc"                
[2551] "SSS_r100_200207.nc"                 "SSS_r100_200208.nc"                
[2553] "SSS_r100_200209.nc"                 "SSS_r100_200210.nc"                
[2555] "SSS_r100_200211.nc"                 "SSS_r100_200212.nc"                
[2557] "SSS_r100_200301.nc"                 "SSS_r100_200302.nc"                
[2559] "SSS_r100_200303.nc"                 "SSS_r100_200304.nc"                
[2561] "SSS_r100_200305.nc"                 "SSS_r100_200306.nc"                
[2563] "SSS_r100_200307.nc"                 "SSS_r100_200308.nc"                
[2565] "SSS_r100_200309.nc"                 "SSS_r100_200310.nc"                
[2567] "SSS_r100_200311.nc"                 "SSS_r100_200312.nc"                
[2569] "SSS_r100_200401.nc"                 "SSS_r100_200402.nc"                
[2571] "SSS_r100_200403.nc"                 "SSS_r100_200404.nc"                
[2573] "SSS_r100_200405.nc"                 "SSS_r100_200406.nc"                
[2575] "SSS_r100_200407.nc"                 "SSS_r100_200408.nc"                
[2577] "SSS_r100_200409.nc"                 "SSS_r100_200410.nc"                
[2579] "SSS_r100_200411.nc"                 "SSS_r100_200412.nc"                
[2581] "SSS_r100_200501.nc"                 "SSS_r100_200502.nc"                
[2583] "SSS_r100_200503.nc"                 "SSS_r100_200504.nc"                
[2585] "SSS_r100_200505.nc"                 "SSS_r100_200506.nc"                
[2587] "SSS_r100_200507.nc"                 "SSS_r100_200508.nc"                
[2589] "SSS_r100_200509.nc"                 "SSS_r100_200510.nc"                
[2591] "SSS_r100_200511.nc"                 "SSS_r100_200512.nc"                
[2593] "SSS_r100_200601.nc"                 "SSS_r100_200602.nc"                
[2595] "SSS_r100_200603.nc"                 "SSS_r100_200604.nc"                
[2597] "SSS_r100_200605.nc"                 "SSS_r100_200606.nc"                
[2599] "SSS_r100_200607.nc"                 "SSS_r100_200608.nc"                
[2601] "SSS_r100_200609.nc"                 "SSS_r100_200610.nc"                
[2603] "SSS_r100_200611.nc"                 "SSS_r100_200612.nc"                
[2605] "SSS_r100_200701.nc"                 "SSS_r100_200702.nc"                
[2607] "SSS_r100_200703.nc"                 "SSS_r100_200704.nc"                
[2609] "SSS_r100_200705.nc"                 "SSS_r100_200706.nc"                
[2611] "SSS_r100_200707.nc"                 "SSS_r100_200708.nc"                
[2613] "SSS_r100_200709.nc"                 "SSS_r100_200710.nc"                
[2615] "SSS_r100_200711.nc"                 "SSS_r100_200712.nc"                
[2617] "SSS_r100_200801.nc"                 "SSS_r100_200802.nc"                
[2619] "SSS_r100_200803.nc"                 "SSS_r100_200804.nc"                
[2621] "SSS_r100_200805.nc"                 "SSS_r100_200806.nc"                
[2623] "SSS_r100_200807.nc"                 "SSS_r100_200808.nc"                
[2625] "SSS_r100_200809.nc"                 "SSS_r100_200810.nc"                
[2627] "SSS_r100_200811.nc"                 "SSS_r100_200812.nc"                
[2629] "SSS_r100_200901.nc"                 "SSS_r100_200902.nc"                
[2631] "SSS_r100_200903.nc"                 "SSS_r100_200904.nc"                
[2633] "SSS_r100_200905.nc"                 "SSS_r100_200906.nc"                
[2635] "SSS_r100_200907.nc"                 "SSS_r100_200908.nc"                
[2637] "SSS_r100_200909.nc"                 "SSS_r100_200910.nc"                
[2639] "SSS_r100_200911.nc"                 "SSS_r100_200912.nc"                
[2641] "SSS_r100_201001.nc"                 "SSS_r100_201002.nc"                
[2643] "SSS_r100_201003.nc"                 "SSS_r100_201004.nc"                
[2645] "SSS_r100_201005.nc"                 "SSS_r100_201006.nc"                
[2647] "SSS_r100_201007.nc"                 "SSS_r100_201008.nc"                
[2649] "SSS_r100_201009.nc"                 "SSS_r100_201010.nc"                
[2651] "SSS_r100_201011.nc"                 "SSS_r100_201012.nc"                
[2653] "SSS_r100_201101.nc"                 "SSS_r100_201102.nc"                
[2655] "SSS_r100_201103.nc"                 "SSS_r100_201104.nc"                
[2657] "SSS_r100_201105.nc"                 "SSS_r100_201106.nc"                
[2659] "SSS_r100_201107.nc"                 "SSS_r100_201108.nc"                
[2661] "SSS_r100_201109.nc"                 "SSS_r100_201110.nc"                
[2663] "SSS_r100_201111.nc"                 "SSS_r100_201112.nc"                
[2665] "SSS_r100_201201.nc"                 "SSS_r100_201202.nc"                
[2667] "SSS_r100_201203.nc"                 "SSS_r100_201204.nc"                
[2669] "SSS_r100_201205.nc"                 "SSS_r100_201206.nc"                
[2671] "SSS_r100_201207.nc"                 "SSS_r100_201208.nc"                
[2673] "SSS_r100_201209.nc"                 "SSS_r100_201210.nc"                
[2675] "SSS_r100_201211.nc"                 "SSS_r100_201212.nc"                
[2677] "SSS_r100_201301.nc"                 "SSS_r100_201302.nc"                
[2679] "SSS_r100_201303.nc"                 "SSS_r100_201304.nc"                
[2681] "SSS_r100_201305.nc"                 "SSS_r100_201306.nc"                
[2683] "SSS_r100_201307.nc"                 "SSS_r100_201308.nc"                
[2685] "SSS_r100_201309.nc"                 "SSS_r100_201310.nc"                
[2687] "SSS_r100_201311.nc"                 "SSS_r100_201312.nc"                
[2689] "SSS_r100_201401.nc"                 "SSS_r100_201402.nc"                
[2691] "SSS_r100_201403.nc"                 "SSS_r100_201404.nc"                
[2693] "SSS_r100_201405.nc"                 "SSS_r100_201406.nc"                
[2695] "SSS_r100_201407.nc"                 "SSS_r100_201408.nc"                
[2697] "SSS_r100_201409.nc"                 "SSS_r100_201410.nc"                
[2699] "SSS_r100_201411.nc"                 "SSS_r100_201412.nc"                
[2701] "SSS_r100_201501.nc"                 "SSS_r100_201502.nc"                
[2703] "SSS_r100_201503.nc"                 "SSS_r100_201504.nc"                
[2705] "SSS_r100_201505.nc"                 "SSS_r100_201506.nc"                
[2707] "SSS_r100_201507.nc"                 "SSS_r100_201508.nc"                
[2709] "SSS_r100_201509.nc"                 "SSS_r100_201510.nc"                
[2711] "SSS_r100_201511.nc"                 "SSS_r100_201512.nc"                
[2713] "SSS_r100_201601.nc"                 "SSS_r100_201602.nc"                
[2715] "SSS_r100_201603.nc"                 "SSS_r100_201604.nc"                
[2717] "SSS_r100_201605.nc"                 "SSS_r100_201606.nc"                
[2719] "SSS_r100_201607.nc"                 "SSS_r100_201608.nc"                
[2721] "SSS_r100_201609.nc"                 "SSS_r100_201610.nc"                
[2723] "SSS_r100_201611.nc"                 "SSS_r100_201612.nc"                
[2725] "SSS_r100_201701.nc"                 "SSS_r100_201702.nc"                
[2727] "SSS_r100_201703.nc"                 "SSS_r100_201704.nc"                
[2729] "SSS_r100_201705.nc"                 "SSS_r100_201706.nc"                
[2731] "SSS_r100_201707.nc"                 "SSS_r100_201708.nc"                
[2733] "SSS_r100_201709.nc"                 "SSS_r100_201710.nc"                
[2735] "SSS_r100_201711.nc"                 "SSS_r100_201712.nc"                
[2737] "SSS_r100_201801.nc"                 "SSS_r100_201802.nc"                
[2739] "SSS_r100_201803.nc"                 "SSS_r100_201804.nc"                
[2741] "SSS_r100_201805.nc"                 "SSS_r100_201806.nc"                
[2743] "SSS_r100_201807.nc"                 "SSS_r100_201808.nc"                
[2745] "SSS_r100_201809.nc"                 "SSS_r100_201810.nc"                
[2747] "SSS_r100_201811.nc"                 "SSS_r100_201812.nc"                
[2749] "SSS_r100_201901.nc"                 "SSS_r100_201902.nc"                
[2751] "SSS_r100_201903.nc"                 "SSS_r100_201904.nc"                
[2753] "SSS_r100_201905.nc"                 "SSS_r100_201906.nc"                
[2755] "SSS_r100_201907.nc"                 "SSS_r100_201908.nc"                
[2757] "SSS_r100_201909.nc"                 "SSS_r100_201910.nc"                
[2759] "SSS_r100_201911.nc"                 "SSS_r100_201912.nc"                
[2761] "SSS_r100_202001.nc"                 "SSS_r100_202002.nc"                
[2763] "SSS_r100_202003.nc"                 "SSS_r100_202004.nc"                
[2765] "SSS_r100_202005.nc"                 "SSS_r100_202006.nc"                
[2767] "SSS_r100_202007.nc"                 "SSS_r100_202008.nc"                
[2769] "SSS_r100_202009.nc"                 "SSS_r100_202010.nc"                
[2771] "SSS_r100_202011.nc"                 "SSS_r100_202012.nc"                
[2773] "SSS_r100_202101.nc"                 "SSS_r100_202102.nc"                
[2775] "SSS_r100_202103.nc"                 "SSS_r100_202104.nc"                
[2777] "SSS_r100_202105.nc"                 "SSS_r100_202106.nc"                
[2779] "SSS_r100_202107.nc"                 "SSS_r100_202108.nc"                
[2781] "SSS_r100_202109.nc"                 "SSS_r100_202110.nc"                
[2783] "SSS_r100_202111.nc"                 "SSS_r100_202112.nc"                
[2785] "SSS_r100_202201.nc"                 "SSS_r100_202202.nc"                
[2787] "SSS_r100_202203.nc"                 "SSS_r100_202204.nc"                
[2789] "SSS_r100_202205.nc"                 "SSS_r100_202206.nc"                
[2791] "SSS_r100_202207.nc"                 "SSS_r100_202208.nc"                
[2793] "SSS_r100_202209.nc"                 "SSS_r100_202210.nc"                
[2795] "SSS_r100_202211.nc"                 "SSS_r100_202212.nc"                
[2797] "SSS_r100_202301.nc"                 "SSS_r100_202302.nc"                
[2799] "SSS_r100_202303.nc"                 "SSS_r100_202304.nc"                
[2801] "SSS_r100_202305.nc"                 "SSS_r100_202306.nc"                
[2803] "SSS_r100_202307.nc"                 "SSS_r100_202308.nc"                
[2805] "SSS_r100_202309.nc"                 "SSS_r100_202310.nc"                
[2807] "SSS_r100_202311.nc"                 "SSS_r100_202312.nc"                
[2809] "SSS_r100_202401.nc"                 "SSS_r100_202402.nc"                
[2811] "SST_r100_198501.nc"                 "SST_r100_198502.nc"                
[2813] "SST_r100_198503.nc"                 "SST_r100_198504.nc"                
[2815] "SST_r100_198505.nc"                 "SST_r100_198506.nc"                
[2817] "SST_r100_198507.nc"                 "SST_r100_198508.nc"                
[2819] "SST_r100_198509.nc"                 "SST_r100_198510.nc"                
[2821] "SST_r100_198511.nc"                 "SST_r100_198512.nc"                
[2823] "SST_r100_198601.nc"                 "SST_r100_198602.nc"                
[2825] "SST_r100_198603.nc"                 "SST_r100_198604.nc"                
[2827] "SST_r100_198605.nc"                 "SST_r100_198606.nc"                
[2829] "SST_r100_198607.nc"                 "SST_r100_198608.nc"                
[2831] "SST_r100_198609.nc"                 "SST_r100_198610.nc"                
[2833] "SST_r100_198611.nc"                 "SST_r100_198612.nc"                
[2835] "SST_r100_198701.nc"                 "SST_r100_198702.nc"                
[2837] "SST_r100_198703.nc"                 "SST_r100_198704.nc"                
[2839] "SST_r100_198705.nc"                 "SST_r100_198706.nc"                
[2841] "SST_r100_198707.nc"                 "SST_r100_198708.nc"                
[2843] "SST_r100_198709.nc"                 "SST_r100_198710.nc"                
[2845] "SST_r100_198711.nc"                 "SST_r100_198712.nc"                
[2847] "SST_r100_198801.nc"                 "SST_r100_198802.nc"                
[2849] "SST_r100_198803.nc"                 "SST_r100_198804.nc"                
[2851] "SST_r100_198805.nc"                 "SST_r100_198806.nc"                
[2853] "SST_r100_198807.nc"                 "SST_r100_198808.nc"                
[2855] "SST_r100_198809.nc"                 "SST_r100_198810.nc"                
[2857] "SST_r100_198811.nc"                 "SST_r100_198812.nc"                
[2859] "SST_r100_198901.nc"                 "SST_r100_198902.nc"                
[2861] "SST_r100_198903.nc"                 "SST_r100_198904.nc"                
[2863] "SST_r100_198905.nc"                 "SST_r100_198906.nc"                
[2865] "SST_r100_198907.nc"                 "SST_r100_198908.nc"                
[2867] "SST_r100_198909.nc"                 "SST_r100_198910.nc"                
[2869] "SST_r100_198911.nc"                 "SST_r100_198912.nc"                
[2871] "SST_r100_199001.nc"                 "SST_r100_199002.nc"                
[2873] "SST_r100_199003.nc"                 "SST_r100_199004.nc"                
[2875] "SST_r100_199005.nc"                 "SST_r100_199006.nc"                
[2877] "SST_r100_199007.nc"                 "SST_r100_199008.nc"                
[2879] "SST_r100_199009.nc"                 "SST_r100_199010.nc"                
[2881] "SST_r100_199011.nc"                 "SST_r100_199012.nc"                
[2883] "SST_r100_199101.nc"                 "SST_r100_199102.nc"                
[2885] "SST_r100_199103.nc"                 "SST_r100_199104.nc"                
[2887] "SST_r100_199105.nc"                 "SST_r100_199106.nc"                
[2889] "SST_r100_199107.nc"                 "SST_r100_199108.nc"                
[2891] "SST_r100_199109.nc"                 "SST_r100_199110.nc"                
[2893] "SST_r100_199111.nc"                 "SST_r100_199112.nc"                
[2895] "SST_r100_199201.nc"                 "SST_r100_199202.nc"                
[2897] "SST_r100_199203.nc"                 "SST_r100_199204.nc"                
[2899] "SST_r100_199205.nc"                 "SST_r100_199206.nc"                
[2901] "SST_r100_199207.nc"                 "SST_r100_199208.nc"                
[2903] "SST_r100_199209.nc"                 "SST_r100_199210.nc"                
[2905] "SST_r100_199211.nc"                 "SST_r100_199212.nc"                
[2907] "SST_r100_199301.nc"                 "SST_r100_199302.nc"                
[2909] "SST_r100_199303.nc"                 "SST_r100_199304.nc"                
[2911] "SST_r100_199305.nc"                 "SST_r100_199306.nc"                
[2913] "SST_r100_199307.nc"                 "SST_r100_199308.nc"                
[2915] "SST_r100_199309.nc"                 "SST_r100_199310.nc"                
[2917] "SST_r100_199311.nc"                 "SST_r100_199312.nc"                
[2919] "SST_r100_199401.nc"                 "SST_r100_199402.nc"                
[2921] "SST_r100_199403.nc"                 "SST_r100_199404.nc"                
[2923] "SST_r100_199405.nc"                 "SST_r100_199406.nc"                
[2925] "SST_r100_199407.nc"                 "SST_r100_199408.nc"                
[2927] "SST_r100_199409.nc"                 "SST_r100_199410.nc"                
[2929] "SST_r100_199411.nc"                 "SST_r100_199412.nc"                
[2931] "SST_r100_199501.nc"                 "SST_r100_199502.nc"                
[2933] "SST_r100_199503.nc"                 "SST_r100_199504.nc"                
[2935] "SST_r100_199505.nc"                 "SST_r100_199506.nc"                
[2937] "SST_r100_199507.nc"                 "SST_r100_199508.nc"                
[2939] "SST_r100_199509.nc"                 "SST_r100_199510.nc"                
[2941] "SST_r100_199511.nc"                 "SST_r100_199512.nc"                
[2943] "SST_r100_199601.nc"                 "SST_r100_199602.nc"                
[2945] "SST_r100_199603.nc"                 "SST_r100_199604.nc"                
[2947] "SST_r100_199605.nc"                 "SST_r100_199606.nc"                
[2949] "SST_r100_199607.nc"                 "SST_r100_199608.nc"                
[2951] "SST_r100_199609.nc"                 "SST_r100_199610.nc"                
[2953] "SST_r100_199611.nc"                 "SST_r100_199612.nc"                
[2955] "SST_r100_199701.nc"                 "SST_r100_199702.nc"                
[2957] "SST_r100_199703.nc"                 "SST_r100_199704.nc"                
[2959] "SST_r100_199705.nc"                 "SST_r100_199706.nc"                
[2961] "SST_r100_199707.nc"                 "SST_r100_199708.nc"                
[2963] "SST_r100_199709.nc"                 "SST_r100_199710.nc"                
[2965] "SST_r100_199711.nc"                 "SST_r100_199712.nc"                
[2967] "SST_r100_199801.nc"                 "SST_r100_199802.nc"                
[2969] "SST_r100_199803.nc"                 "SST_r100_199804.nc"                
[2971] "SST_r100_199805.nc"                 "SST_r100_199806.nc"                
[2973] "SST_r100_199807.nc"                 "SST_r100_199808.nc"                
[2975] "SST_r100_199809.nc"                 "SST_r100_199810.nc"                
[2977] "SST_r100_199811.nc"                 "SST_r100_199812.nc"                
[2979] "SST_r100_199901.nc"                 "SST_r100_199902.nc"                
[2981] "SST_r100_199903.nc"                 "SST_r100_199904.nc"                
[2983] "SST_r100_199905.nc"                 "SST_r100_199906.nc"                
[2985] "SST_r100_199907.nc"                 "SST_r100_199908.nc"                
[2987] "SST_r100_199909.nc"                 "SST_r100_199910.nc"                
[2989] "SST_r100_199911.nc"                 "SST_r100_199912.nc"                
[2991] "SST_r100_200001.nc"                 "SST_r100_200002.nc"                
[2993] "SST_r100_200003.nc"                 "SST_r100_200004.nc"                
[2995] "SST_r100_200005.nc"                 "SST_r100_200006.nc"                
[2997] "SST_r100_200007.nc"                 "SST_r100_200008.nc"                
[2999] "SST_r100_200009.nc"                 "SST_r100_200010.nc"                
[3001] "SST_r100_200011.nc"                 "SST_r100_200012.nc"                
[3003] "SST_r100_200101.nc"                 "SST_r100_200102.nc"                
[3005] "SST_r100_200103.nc"                 "SST_r100_200104.nc"                
[3007] "SST_r100_200105.nc"                 "SST_r100_200106.nc"                
[3009] "SST_r100_200107.nc"                 "SST_r100_200108.nc"                
[3011] "SST_r100_200109.nc"                 "SST_r100_200110.nc"                
[3013] "SST_r100_200111.nc"                 "SST_r100_200112.nc"                
[3015] "SST_r100_200201.nc"                 "SST_r100_200202.nc"                
[3017] "SST_r100_200203.nc"                 "SST_r100_200204.nc"                
[3019] "SST_r100_200205.nc"                 "SST_r100_200206.nc"                
[3021] "SST_r100_200207.nc"                 "SST_r100_200208.nc"                
[3023] "SST_r100_200209.nc"                 "SST_r100_200210.nc"                
[3025] "SST_r100_200211.nc"                 "SST_r100_200212.nc"                
[3027] "SST_r100_200301.nc"                 "SST_r100_200302.nc"                
[3029] "SST_r100_200303.nc"                 "SST_r100_200304.nc"                
[3031] "SST_r100_200305.nc"                 "SST_r100_200306.nc"                
[3033] "SST_r100_200307.nc"                 "SST_r100_200308.nc"                
[3035] "SST_r100_200309.nc"                 "SST_r100_200310.nc"                
[3037] "SST_r100_200311.nc"                 "SST_r100_200312.nc"                
[3039] "SST_r100_200401.nc"                 "SST_r100_200402.nc"                
[3041] "SST_r100_200403.nc"                 "SST_r100_200404.nc"                
[3043] "SST_r100_200405.nc"                 "SST_r100_200406.nc"                
[3045] "SST_r100_200407.nc"                 "SST_r100_200408.nc"                
[3047] "SST_r100_200409.nc"                 "SST_r100_200410.nc"                
[3049] "SST_r100_200411.nc"                 "SST_r100_200412.nc"                
[3051] "SST_r100_200501.nc"                 "SST_r100_200502.nc"                
[3053] "SST_r100_200503.nc"                 "SST_r100_200504.nc"                
[3055] "SST_r100_200505.nc"                 "SST_r100_200506.nc"                
[3057] "SST_r100_200507.nc"                 "SST_r100_200508.nc"                
[3059] "SST_r100_200509.nc"                 "SST_r100_200510.nc"                
[3061] "SST_r100_200511.nc"                 "SST_r100_200512.nc"                
[3063] "SST_r100_200601.nc"                 "SST_r100_200602.nc"                
[3065] "SST_r100_200603.nc"                 "SST_r100_200604.nc"                
[3067] "SST_r100_200605.nc"                 "SST_r100_200606.nc"                
[3069] "SST_r100_200607.nc"                 "SST_r100_200608.nc"                
[3071] "SST_r100_200609.nc"                 "SST_r100_200610.nc"                
[3073] "SST_r100_200611.nc"                 "SST_r100_200612.nc"                
[3075] "SST_r100_200701.nc"                 "SST_r100_200702.nc"                
[3077] "SST_r100_200703.nc"                 "SST_r100_200704.nc"                
[3079] "SST_r100_200705.nc"                 "SST_r100_200706.nc"                
[3081] "SST_r100_200707.nc"                 "SST_r100_200708.nc"                
[3083] "SST_r100_200709.nc"                 "SST_r100_200710.nc"                
[3085] "SST_r100_200711.nc"                 "SST_r100_200712.nc"                
[3087] "SST_r100_200801.nc"                 "SST_r100_200802.nc"                
[3089] "SST_r100_200803.nc"                 "SST_r100_200804.nc"                
[3091] "SST_r100_200805.nc"                 "SST_r100_200806.nc"                
[3093] "SST_r100_200807.nc"                 "SST_r100_200808.nc"                
[3095] "SST_r100_200809.nc"                 "SST_r100_200810.nc"                
[3097] "SST_r100_200811.nc"                 "SST_r100_200812.nc"                
[3099] "SST_r100_200901.nc"                 "SST_r100_200902.nc"                
[3101] "SST_r100_200903.nc"                 "SST_r100_200904.nc"                
[3103] "SST_r100_200905.nc"                 "SST_r100_200906.nc"                
[3105] "SST_r100_200907.nc"                 "SST_r100_200908.nc"                
[3107] "SST_r100_200909.nc"                 "SST_r100_200910.nc"                
[3109] "SST_r100_200911.nc"                 "SST_r100_200912.nc"                
[3111] "SST_r100_201001.nc"                 "SST_r100_201002.nc"                
[3113] "SST_r100_201003.nc"                 "SST_r100_201004.nc"                
[3115] "SST_r100_201005.nc"                 "SST_r100_201006.nc"                
[3117] "SST_r100_201007.nc"                 "SST_r100_201008.nc"                
[3119] "SST_r100_201009.nc"                 "SST_r100_201010.nc"                
[3121] "SST_r100_201011.nc"                 "SST_r100_201012.nc"                
[3123] "SST_r100_201101.nc"                 "SST_r100_201102.nc"                
[3125] "SST_r100_201103.nc"                 "SST_r100_201104.nc"                
[3127] "SST_r100_201105.nc"                 "SST_r100_201106.nc"                
[3129] "SST_r100_201107.nc"                 "SST_r100_201108.nc"                
[3131] "SST_r100_201109.nc"                 "SST_r100_201110.nc"                
[3133] "SST_r100_201111.nc"                 "SST_r100_201112.nc"                
[3135] "SST_r100_201201.nc"                 "SST_r100_201202.nc"                
[3137] "SST_r100_201203.nc"                 "SST_r100_201204.nc"                
[3139] "SST_r100_201205.nc"                 "SST_r100_201206.nc"                
[3141] "SST_r100_201207.nc"                 "SST_r100_201208.nc"                
[3143] "SST_r100_201209.nc"                 "SST_r100_201210.nc"                
[3145] "SST_r100_201211.nc"                 "SST_r100_201212.nc"                
[3147] "SST_r100_201301.nc"                 "SST_r100_201302.nc"                
[3149] "SST_r100_201303.nc"                 "SST_r100_201304.nc"                
[3151] "SST_r100_201305.nc"                 "SST_r100_201306.nc"                
[3153] "SST_r100_201307.nc"                 "SST_r100_201308.nc"                
[3155] "SST_r100_201309.nc"                 "SST_r100_201310.nc"                
[3157] "SST_r100_201311.nc"                 "SST_r100_201312.nc"                
[3159] "SST_r100_201401.nc"                 "SST_r100_201402.nc"                
[3161] "SST_r100_201403.nc"                 "SST_r100_201404.nc"                
[3163] "SST_r100_201405.nc"                 "SST_r100_201406.nc"                
[3165] "SST_r100_201407.nc"                 "SST_r100_201408.nc"                
[3167] "SST_r100_201409.nc"                 "SST_r100_201410.nc"                
[3169] "SST_r100_201411.nc"                 "SST_r100_201412.nc"                
[3171] "SST_r100_201501.nc"                 "SST_r100_201502.nc"                
[3173] "SST_r100_201503.nc"                 "SST_r100_201504.nc"                
[3175] "SST_r100_201505.nc"                 "SST_r100_201506.nc"                
[3177] "SST_r100_201507.nc"                 "SST_r100_201508.nc"                
[3179] "SST_r100_201509.nc"                 "SST_r100_201510.nc"                
[3181] "SST_r100_201511.nc"                 "SST_r100_201512.nc"                
[3183] "SST_r100_201601.nc"                 "SST_r100_201602.nc"                
[3185] "SST_r100_201603.nc"                 "SST_r100_201604.nc"                
[3187] "SST_r100_201605.nc"                 "SST_r100_201606.nc"                
[3189] "SST_r100_201607.nc"                 "SST_r100_201608.nc"                
[3191] "SST_r100_201609.nc"                 "SST_r100_201610.nc"                
[3193] "SST_r100_201611.nc"                 "SST_r100_201612.nc"                
[3195] "SST_r100_201701.nc"                 "SST_r100_201702.nc"                
[3197] "SST_r100_201703.nc"                 "SST_r100_201704.nc"                
[3199] "SST_r100_201705.nc"                 "SST_r100_201706.nc"                
[3201] "SST_r100_201707.nc"                 "SST_r100_201708.nc"                
[3203] "SST_r100_201709.nc"                 "SST_r100_201710.nc"                
[3205] "SST_r100_201711.nc"                 "SST_r100_201712.nc"                
[3207] "SST_r100_201801.nc"                 "SST_r100_201802.nc"                
[3209] "SST_r100_201803.nc"                 "SST_r100_201804.nc"                
[3211] "SST_r100_201805.nc"                 "SST_r100_201806.nc"                
[3213] "SST_r100_201807.nc"                 "SST_r100_201808.nc"                
[3215] "SST_r100_201809.nc"                 "SST_r100_201810.nc"                
[3217] "SST_r100_201811.nc"                 "SST_r100_201812.nc"                
[3219] "SST_r100_201901.nc"                 "SST_r100_201902.nc"                
[3221] "SST_r100_201903.nc"                 "SST_r100_201904.nc"                
[3223] "SST_r100_201905.nc"                 "SST_r100_201906.nc"                
[3225] "SST_r100_201907.nc"                 "SST_r100_201908.nc"                
[3227] "SST_r100_201909.nc"                 "SST_r100_201910.nc"                
[3229] "SST_r100_201911.nc"                 "SST_r100_201912.nc"                
[3231] "SST_r100_202001.nc"                 "SST_r100_202002.nc"                
[3233] "SST_r100_202003.nc"                 "SST_r100_202004.nc"                
[3235] "SST_r100_202005.nc"                 "SST_r100_202006.nc"                
[3237] "SST_r100_202007.nc"                 "SST_r100_202008.nc"                
[3239] "SST_r100_202009.nc"                 "SST_r100_202010.nc"                
[3241] "SST_r100_202011.nc"                 "SST_r100_202012.nc"                
[3243] "SST_r100_202101.nc"                 "SST_r100_202102.nc"                
[3245] "SST_r100_202103.nc"                 "SST_r100_202104.nc"                
[3247] "SST_r100_202105.nc"                 "SST_r100_202106.nc"                
[3249] "SST_r100_202107.nc"                 "SST_r100_202108.nc"                
[3251] "SST_r100_202109.nc"                 "SST_r100_202110.nc"                
[3253] "SST_r100_202111.nc"                 "SST_r100_202112.nc"                
[3255] "SST_r100_202201.nc"                 "SST_r100_202202.nc"                
[3257] "SST_r100_202203.nc"                 "SST_r100_202204.nc"                
[3259] "SST_r100_202205.nc"                 "SST_r100_202206.nc"                
[3261] "SST_r100_202207.nc"                 "SST_r100_202208.nc"                
[3263] "SST_r100_202209.nc"                 "SST_r100_202210.nc"                
[3265] "SST_r100_202211.nc"                 "SST_r100_202212.nc"                
[3267] "SST_r100_202301.nc"                 "SST_r100_202302.nc"                
[3269] "SST_r100_202303.nc"                 "SST_r100_202304.nc"                
[3271] "SST_r100_202305.nc"                 "SST_r100_202306.nc"                
[3273] "SST_r100_202307.nc"                 "SST_r100_202308.nc"                
[3275] "SST_r100_202309.nc"                 "SST_SI_r100_202310.nc"             
[3277] "SST_SI_r100_202311.nc"              "SST_SI_r100_202312.nc"             
[3279] "SST_SI_r100_202401.nc"              "SST_SI_r100_202402.nc"             
[3281] "xCO2_r100_198501.nc"                "xCO2_r100_198502.nc"               
[3283] "xCO2_r100_198503.nc"                "xCO2_r100_198504.nc"               
[3285] "xCO2_r100_198505.nc"                "xCO2_r100_198506.nc"               
[3287] "xCO2_r100_198507.nc"                "xCO2_r100_198508.nc"               
[3289] "xCO2_r100_198509.nc"                "xCO2_r100_198510.nc"               
[3291] "xCO2_r100_198511.nc"                "xCO2_r100_198512.nc"               
[3293] "xCO2_r100_198601.nc"                "xCO2_r100_198602.nc"               
[3295] "xCO2_r100_198603.nc"                "xCO2_r100_198604.nc"               
[3297] "xCO2_r100_198605.nc"                "xCO2_r100_198606.nc"               
[3299] "xCO2_r100_198607.nc"                "xCO2_r100_198608.nc"               
[3301] "xCO2_r100_198609.nc"                "xCO2_r100_198610.nc"               
[3303] "xCO2_r100_198611.nc"                "xCO2_r100_198612.nc"               
[3305] "xCO2_r100_198701.nc"                "xCO2_r100_198702.nc"               
[3307] "xCO2_r100_198703.nc"                "xCO2_r100_198704.nc"               
[3309] "xCO2_r100_198705.nc"                "xCO2_r100_198706.nc"               
[3311] "xCO2_r100_198707.nc"                "xCO2_r100_198708.nc"               
[3313] "xCO2_r100_198709.nc"                "xCO2_r100_198710.nc"               
[3315] "xCO2_r100_198711.nc"                "xCO2_r100_198712.nc"               
[3317] "xCO2_r100_198801.nc"                "xCO2_r100_198802.nc"               
[3319] "xCO2_r100_198803.nc"                "xCO2_r100_198804.nc"               
[3321] "xCO2_r100_198805.nc"                "xCO2_r100_198806.nc"               
[3323] "xCO2_r100_198807.nc"                "xCO2_r100_198808.nc"               
[3325] "xCO2_r100_198809.nc"                "xCO2_r100_198810.nc"               
[3327] "xCO2_r100_198811.nc"                "xCO2_r100_198812.nc"               
[3329] "xCO2_r100_198901.nc"                "xCO2_r100_198902.nc"               
[3331] "xCO2_r100_198903.nc"                "xCO2_r100_198904.nc"               
[3333] "xCO2_r100_198905.nc"                "xCO2_r100_198906.nc"               
[3335] "xCO2_r100_198907.nc"                "xCO2_r100_198908.nc"               
[3337] "xCO2_r100_198909.nc"                "xCO2_r100_198910.nc"               
[3339] "xCO2_r100_198911.nc"                "xCO2_r100_198912.nc"               
[3341] "xCO2_r100_199001.nc"                "xCO2_r100_199002.nc"               
[3343] "xCO2_r100_199003.nc"                "xCO2_r100_199004.nc"               
[3345] "xCO2_r100_199005.nc"                "xCO2_r100_199006.nc"               
[3347] "xCO2_r100_199007.nc"                "xCO2_r100_199008.nc"               
[3349] "xCO2_r100_199009.nc"                "xCO2_r100_199010.nc"               
[3351] "xCO2_r100_199011.nc"                "xCO2_r100_199012.nc"               
[3353] "xCO2_r100_199101.nc"                "xCO2_r100_199102.nc"               
[3355] "xCO2_r100_199103.nc"                "xCO2_r100_199104.nc"               
[3357] "xCO2_r100_199105.nc"                "xCO2_r100_199106.nc"               
[3359] "xCO2_r100_199107.nc"                "xCO2_r100_199108.nc"               
[3361] "xCO2_r100_199109.nc"                "xCO2_r100_199110.nc"               
[3363] "xCO2_r100_199111.nc"                "xCO2_r100_199112.nc"               
[3365] "xCO2_r100_199201.nc"                "xCO2_r100_199202.nc"               
[3367] "xCO2_r100_199203.nc"                "xCO2_r100_199204.nc"               
[3369] "xCO2_r100_199205.nc"                "xCO2_r100_199206.nc"               
[3371] "xCO2_r100_199207.nc"                "xCO2_r100_199208.nc"               
[3373] "xCO2_r100_199209.nc"                "xCO2_r100_199210.nc"               
[3375] "xCO2_r100_199211.nc"                "xCO2_r100_199212.nc"               
[3377] "xCO2_r100_199301.nc"                "xCO2_r100_199302.nc"               
[3379] "xCO2_r100_199303.nc"                "xCO2_r100_199304.nc"               
[3381] "xCO2_r100_199305.nc"                "xCO2_r100_199306.nc"               
[3383] "xCO2_r100_199307.nc"                "xCO2_r100_199308.nc"               
[3385] "xCO2_r100_199309.nc"                "xCO2_r100_199310.nc"               
[3387] "xCO2_r100_199311.nc"                "xCO2_r100_199312.nc"               
[3389] "xCO2_r100_199401.nc"                "xCO2_r100_199402.nc"               
[3391] "xCO2_r100_199403.nc"                "xCO2_r100_199404.nc"               
[3393] "xCO2_r100_199405.nc"                "xCO2_r100_199406.nc"               
[3395] "xCO2_r100_199407.nc"                "xCO2_r100_199408.nc"               
[3397] "xCO2_r100_199409.nc"                "xCO2_r100_199410.nc"               
[3399] "xCO2_r100_199411.nc"                "xCO2_r100_199412.nc"               
[3401] "xCO2_r100_199501.nc"                "xCO2_r100_199502.nc"               
[3403] "xCO2_r100_199503.nc"                "xCO2_r100_199504.nc"               
[3405] "xCO2_r100_199505.nc"                "xCO2_r100_199506.nc"               
[3407] "xCO2_r100_199507.nc"                "xCO2_r100_199508.nc"               
[3409] "xCO2_r100_199509.nc"                "xCO2_r100_199510.nc"               
[3411] "xCO2_r100_199511.nc"                "xCO2_r100_199512.nc"               
[3413] "xCO2_r100_199601.nc"                "xCO2_r100_199602.nc"               
[3415] "xCO2_r100_199603.nc"                "xCO2_r100_199604.nc"               
[3417] "xCO2_r100_199605.nc"                "xCO2_r100_199606.nc"               
[3419] "xCO2_r100_199607.nc"                "xCO2_r100_199608.nc"               
[3421] "xCO2_r100_199609.nc"                "xCO2_r100_199610.nc"               
[3423] "xCO2_r100_199611.nc"                "xCO2_r100_199612.nc"               
[3425] "xCO2_r100_199701.nc"                "xCO2_r100_199702.nc"               
[3427] "xCO2_r100_199703.nc"                "xCO2_r100_199704.nc"               
[3429] "xCO2_r100_199705.nc"                "xCO2_r100_199706.nc"               
[3431] "xCO2_r100_199707.nc"                "xCO2_r100_199708.nc"               
[3433] "xCO2_r100_199709.nc"                "xCO2_r100_199710.nc"               
[3435] "xCO2_r100_199711.nc"                "xCO2_r100_199712.nc"               
[3437] "xCO2_r100_199801.nc"                "xCO2_r100_199802.nc"               
[3439] "xCO2_r100_199803.nc"                "xCO2_r100_199804.nc"               
[3441] "xCO2_r100_199805.nc"                "xCO2_r100_199806.nc"               
[3443] "xCO2_r100_199807.nc"                "xCO2_r100_199808.nc"               
[3445] "xCO2_r100_199809.nc"                "xCO2_r100_199810.nc"               
[3447] "xCO2_r100_199811.nc"                "xCO2_r100_199812.nc"               
[3449] "xCO2_r100_199901.nc"                "xCO2_r100_199902.nc"               
[3451] "xCO2_r100_199903.nc"                "xCO2_r100_199904.nc"               
[3453] "xCO2_r100_199905.nc"                "xCO2_r100_199906.nc"               
[3455] "xCO2_r100_199907.nc"                "xCO2_r100_199908.nc"               
[3457] "xCO2_r100_199909.nc"                "xCO2_r100_199910.nc"               
[3459] "xCO2_r100_199911.nc"                "xCO2_r100_199912.nc"               
[3461] "xCO2_r100_200001.nc"                "xCO2_r100_200002.nc"               
[3463] "xCO2_r100_200003.nc"                "xCO2_r100_200004.nc"               
[3465] "xCO2_r100_200005.nc"                "xCO2_r100_200006.nc"               
[3467] "xCO2_r100_200007.nc"                "xCO2_r100_200008.nc"               
[3469] "xCO2_r100_200009.nc"                "xCO2_r100_200010.nc"               
[3471] "xCO2_r100_200011.nc"                "xCO2_r100_200012.nc"               
[3473] "xCO2_r100_200101.nc"                "xCO2_r100_200102.nc"               
[3475] "xCO2_r100_200103.nc"                "xCO2_r100_200104.nc"               
[3477] "xCO2_r100_200105.nc"                "xCO2_r100_200106.nc"               
[3479] "xCO2_r100_200107.nc"                "xCO2_r100_200108.nc"               
[3481] "xCO2_r100_200109.nc"                "xCO2_r100_200110.nc"               
[3483] "xCO2_r100_200111.nc"                "xCO2_r100_200112.nc"               
[3485] "xCO2_r100_200201.nc"                "xCO2_r100_200202.nc"               
[3487] "xCO2_r100_200203.nc"                "xCO2_r100_200204.nc"               
[3489] "xCO2_r100_200205.nc"                "xCO2_r100_200206.nc"               
[3491] "xCO2_r100_200207.nc"                "xCO2_r100_200208.nc"               
[3493] "xCO2_r100_200209.nc"                "xCO2_r100_200210.nc"               
[3495] "xCO2_r100_200211.nc"                "xCO2_r100_200212.nc"               
[3497] "xCO2_r100_200301.nc"                "xCO2_r100_200302.nc"               
[3499] "xCO2_r100_200303.nc"                "xCO2_r100_200304.nc"               
[3501] "xCO2_r100_200305.nc"                "xCO2_r100_200306.nc"               
[3503] "xCO2_r100_200307.nc"                "xCO2_r100_200308.nc"               
[3505] "xCO2_r100_200309.nc"                "xCO2_r100_200310.nc"               
[3507] "xCO2_r100_200311.nc"                "xCO2_r100_200312.nc"               
[3509] "xCO2_r100_200401.nc"                "xCO2_r100_200402.nc"               
[3511] "xCO2_r100_200403.nc"                "xCO2_r100_200404.nc"               
[3513] "xCO2_r100_200405.nc"                "xCO2_r100_200406.nc"               
[3515] "xCO2_r100_200407.nc"                "xCO2_r100_200408.nc"               
[3517] "xCO2_r100_200409.nc"                "xCO2_r100_200410.nc"               
[3519] "xCO2_r100_200411.nc"                "xCO2_r100_200412.nc"               
[3521] "xCO2_r100_200501.nc"                "xCO2_r100_200502.nc"               
[3523] "xCO2_r100_200503.nc"                "xCO2_r100_200504.nc"               
[3525] "xCO2_r100_200505.nc"                "xCO2_r100_200506.nc"               
[3527] "xCO2_r100_200507.nc"                "xCO2_r100_200508.nc"               
[3529] "xCO2_r100_200509.nc"                "xCO2_r100_200510.nc"               
[3531] "xCO2_r100_200511.nc"                "xCO2_r100_200512.nc"               
[3533] "xCO2_r100_200601.nc"                "xCO2_r100_200602.nc"               
[3535] "xCO2_r100_200603.nc"                "xCO2_r100_200604.nc"               
[3537] "xCO2_r100_200605.nc"                "xCO2_r100_200606.nc"               
[3539] "xCO2_r100_200607.nc"                "xCO2_r100_200608.nc"               
[3541] "xCO2_r100_200609.nc"                "xCO2_r100_200610.nc"               
[3543] "xCO2_r100_200611.nc"                "xCO2_r100_200612.nc"               
[3545] "xCO2_r100_200701.nc"                "xCO2_r100_200702.nc"               
[3547] "xCO2_r100_200703.nc"                "xCO2_r100_200704.nc"               
[3549] "xCO2_r100_200705.nc"                "xCO2_r100_200706.nc"               
[3551] "xCO2_r100_200707.nc"                "xCO2_r100_200708.nc"               
[3553] "xCO2_r100_200709.nc"                "xCO2_r100_200710.nc"               
[3555] "xCO2_r100_200711.nc"                "xCO2_r100_200712.nc"               
[3557] "xCO2_r100_200801.nc"                "xCO2_r100_200802.nc"               
[3559] "xCO2_r100_200803.nc"                "xCO2_r100_200804.nc"               
[3561] "xCO2_r100_200805.nc"                "xCO2_r100_200806.nc"               
[3563] "xCO2_r100_200807.nc"                "xCO2_r100_200808.nc"               
[3565] "xCO2_r100_200809.nc"                "xCO2_r100_200810.nc"               
[3567] "xCO2_r100_200811.nc"                "xCO2_r100_200812.nc"               
[3569] "xCO2_r100_200901.nc"                "xCO2_r100_200902.nc"               
[3571] "xCO2_r100_200903.nc"                "xCO2_r100_200904.nc"               
[3573] "xCO2_r100_200905.nc"                "xCO2_r100_200906.nc"               
[3575] "xCO2_r100_200907.nc"                "xCO2_r100_200908.nc"               
[3577] "xCO2_r100_200909.nc"                "xCO2_r100_200910.nc"               
[3579] "xCO2_r100_200911.nc"                "xCO2_r100_200912.nc"               
[3581] "xCO2_r100_201001.nc"                "xCO2_r100_201002.nc"               
[3583] "xCO2_r100_201003.nc"                "xCO2_r100_201004.nc"               
[3585] "xCO2_r100_201005.nc"                "xCO2_r100_201006.nc"               
[3587] "xCO2_r100_201007.nc"                "xCO2_r100_201008.nc"               
[3589] "xCO2_r100_201009.nc"                "xCO2_r100_201010.nc"               
[3591] "xCO2_r100_201011.nc"                "xCO2_r100_201012.nc"               
[3593] "xCO2_r100_201101.nc"                "xCO2_r100_201102.nc"               
[3595] "xCO2_r100_201103.nc"                "xCO2_r100_201104.nc"               
[3597] "xCO2_r100_201105.nc"                "xCO2_r100_201106.nc"               
[3599] "xCO2_r100_201107.nc"                "xCO2_r100_201108.nc"               
[3601] "xCO2_r100_201109.nc"                "xCO2_r100_201110.nc"               
[3603] "xCO2_r100_201111.nc"                "xCO2_r100_201112.nc"               
[3605] "xCO2_r100_201201.nc"                "xCO2_r100_201202.nc"               
[3607] "xCO2_r100_201203.nc"                "xCO2_r100_201204.nc"               
[3609] "xCO2_r100_201205.nc"                "xCO2_r100_201206.nc"               
[3611] "xCO2_r100_201207.nc"                "xCO2_r100_201208.nc"               
[3613] "xCO2_r100_201209.nc"                "xCO2_r100_201210.nc"               
[3615] "xCO2_r100_201211.nc"                "xCO2_r100_201212.nc"               
[3617] "xCO2_r100_201301.nc"                "xCO2_r100_201302.nc"               
[3619] "xCO2_r100_201303.nc"                "xCO2_r100_201304.nc"               
[3621] "xCO2_r100_201305.nc"                "xCO2_r100_201306.nc"               
[3623] "xCO2_r100_201307.nc"                "xCO2_r100_201308.nc"               
[3625] "xCO2_r100_201309.nc"                "xCO2_r100_201310.nc"               
[3627] "xCO2_r100_201311.nc"                "xCO2_r100_201312.nc"               
[3629] "xCO2_r100_201401.nc"                "xCO2_r100_201402.nc"               
[3631] "xCO2_r100_201403.nc"                "xCO2_r100_201404.nc"               
[3633] "xCO2_r100_201405.nc"                "xCO2_r100_201406.nc"               
[3635] "xCO2_r100_201407.nc"                "xCO2_r100_201408.nc"               
[3637] "xCO2_r100_201409.nc"                "xCO2_r100_201410.nc"               
[3639] "xCO2_r100_201411.nc"                "xCO2_r100_201412.nc"               
[3641] "xCO2_r100_201501.nc"                "xCO2_r100_201502.nc"               
[3643] "xCO2_r100_201503.nc"                "xCO2_r100_201504.nc"               
[3645] "xCO2_r100_201505.nc"                "xCO2_r100_201506.nc"               
[3647] "xCO2_r100_201507.nc"                "xCO2_r100_201508.nc"               
[3649] "xCO2_r100_201509.nc"                "xCO2_r100_201510.nc"               
[3651] "xCO2_r100_201511.nc"                "xCO2_r100_201512.nc"               
[3653] "xCO2_r100_201601.nc"                "xCO2_r100_201602.nc"               
[3655] "xCO2_r100_201603.nc"                "xCO2_r100_201604.nc"               
[3657] "xCO2_r100_201605.nc"                "xCO2_r100_201606.nc"               
[3659] "xCO2_r100_201607.nc"                "xCO2_r100_201608.nc"               
[3661] "xCO2_r100_201609.nc"                "xCO2_r100_201610.nc"               
[3663] "xCO2_r100_201611.nc"                "xCO2_r100_201612.nc"               
[3665] "xCO2_r100_201701.nc"                "xCO2_r100_201702.nc"               
[3667] "xCO2_r100_201703.nc"                "xCO2_r100_201704.nc"               
[3669] "xCO2_r100_201705.nc"                "xCO2_r100_201706.nc"               
[3671] "xCO2_r100_201707.nc"                "xCO2_r100_201708.nc"               
[3673] "xCO2_r100_201709.nc"                "xCO2_r100_201710.nc"               
[3675] "xCO2_r100_201711.nc"                "xCO2_r100_201712.nc"               
[3677] "xCO2_r100_201801.nc"                "xCO2_r100_201802.nc"               
[3679] "xCO2_r100_201803.nc"                "xCO2_r100_201804.nc"               
[3681] "xCO2_r100_201805.nc"                "xCO2_r100_201806.nc"               
[3683] "xCO2_r100_201807.nc"                "xCO2_r100_201808.nc"               
[3685] "xCO2_r100_201809.nc"                "xCO2_r100_201810.nc"               
[3687] "xCO2_r100_201811.nc"                "xCO2_r100_201812.nc"               
[3689] "xCO2_r100_201901.nc"                "xCO2_r100_201902.nc"               
[3691] "xCO2_r100_201903.nc"                "xCO2_r100_201904.nc"               
[3693] "xCO2_r100_201905.nc"                "xCO2_r100_201906.nc"               
[3695] "xCO2_r100_201907.nc"                "xCO2_r100_201908.nc"               
[3697] "xCO2_r100_201909.nc"                "xCO2_r100_201910.nc"               
[3699] "xCO2_r100_201911.nc"                "xCO2_r100_201912.nc"               
[3701] "xCO2_r100_202001.nc"                "xCO2_r100_202002.nc"               
[3703] "xCO2_r100_202003.nc"                "xCO2_r100_202004.nc"               
[3705] "xCO2_r100_202005.nc"                "xCO2_r100_202006.nc"               
[3707] "xCO2_r100_202007.nc"                "xCO2_r100_202008.nc"               
[3709] "xCO2_r100_202009.nc"                "xCO2_r100_202010.nc"               
[3711] "xCO2_r100_202011.nc"                "xCO2_r100_202012.nc"               
[3713] "xCO2_r100_202101.nc"                "xCO2_r100_202102.nc"               
[3715] "xCO2_r100_202103.nc"                "xCO2_r100_202104.nc"               
[3717] "xCO2_r100_202105.nc"                "xCO2_r100_202106.nc"               
[3719] "xCO2_r100_202107.nc"                "xCO2_r100_202108.nc"               
[3721] "xCO2_r100_202109.nc"                "xCO2_r100_202110.nc"               
[3723] "xCO2_r100_202111.nc"                "xCO2_r100_202112.nc"               
[3725] "xCO2_r100_202201.nc"                "xCO2_r100_202202.nc"               
[3727] "xCO2_r100_202203.nc"                "xCO2_r100_202204.nc"               
[3729] "xCO2_r100_202205.nc"                "xCO2_r100_202206.nc"               
[3731] "xCO2_r100_202207.nc"                "xCO2_r100_202208.nc"               
[3733] "xCO2_r100_202209.nc"                "xCO2_r100_202210.nc"               
[3735] "xCO2_r100_202211.nc"                "xCO2_r100_202212.nc"               
[3737] "xCO2_r100_202301.nc"                "xCO2_r100_202302.nc"               
[3739] "xCO2_r100_202303.nc"                "xCO2_r100_202304.nc"               
[3741] "xCO2_r100_202305.nc"                "xCO2_r100_202306.nc"               
[3743] "xCO2_r100_202307.nc"                "xCO2_r100_202308.nc"               
[3745] "xCO2_r100_202309.nc"                "xCO2_r100_202310.nc"               
[3747] "xCO2_r100_202311.nc"                "xCO2_r100_202312.nc"               
[3749] "xCO2_r100_202401.nc"                "xCO2_r100_202402.nc"               
file_names <- str_split(CMEMS_files, "_", simplify = TRUE)[,1] %>% unique()
# n_var <- length(file_names) - 1
# CMEMS_files <- CMEMS_files[c(1,470*1:n_var,470*1:n_var+1, 3215)]
# CMEMS_files <- sort(CMEMS_files)

for (i_file_name in file_names) {
  # i_file_name <- file_names[1]
  CMEMS_files_var <-
    CMEMS_files[CMEMS_files %>% str_detect(i_file_name)]
  
  if(i_file_name == "xCO2"){
  CMEMS_files_var <-
    CMEMS_files_var[!CMEMS_files_var %>% str_detect("fluxCO2")]
  }
  
  for (i_name in CMEMS_files_var) {
    # i_name <- CMEMS_files_var[1]
    print(i_name)
    
    library(ncdf4)
    nc <- nc_open(paste0(path_CMEMS, i_name))
    var_name <- names(nc$var)[1]
    
    i_pco2_product_var <-
      read_ncdf(paste0(path_CMEMS, i_name),
                make_units = FALSE,
                var = var_name)
    
    if (exists("pco2_product_var")) {
      pco2_product_var <-
        c(pco2_product_var,
          i_pco2_product_var)
    }
    
    if (!exists("pco2_product_var")) {
      pco2_product_var <- i_pco2_product_var
    }
    
  }
  
  pco2_product_var <- pco2_product_var %>%
  as_tibble()
  
  if (exists("pco2_product")) {
    pco2_product <-
      full_join(pco2_product,
                pco2_product_var)
  }
  
  if (!exists("pco2_product")) {
    pco2_product <- pco2_product_var
  }
  
  rm(pco2_product_var)
  
}
[1] "CHL_r100_198501.nc"
[1] "CHL_r100_198502.nc"
[1] "CHL_r100_198503.nc"
[1] "CHL_r100_198504.nc"
[1] "CHL_r100_198505.nc"
[1] "CHL_r100_198506.nc"
[1] "CHL_r100_198507.nc"
[1] "CHL_r100_198508.nc"
[1] "CHL_r100_198509.nc"
[1] "CHL_r100_198510.nc"
[1] "CHL_r100_198511.nc"
[1] "CHL_r100_198512.nc"
[1] "CHL_r100_198601.nc"
[1] "CHL_r100_198602.nc"
[1] "CHL_r100_198603.nc"
[1] "CHL_r100_198604.nc"
[1] "CHL_r100_198605.nc"
[1] "CHL_r100_198606.nc"
[1] "CHL_r100_198607.nc"
[1] "CHL_r100_198608.nc"
[1] "CHL_r100_198609.nc"
[1] "CHL_r100_198610.nc"
[1] "CHL_r100_198611.nc"
[1] "CHL_r100_198612.nc"
[1] "CHL_r100_198701.nc"
[1] "CHL_r100_198702.nc"
[1] "CHL_r100_198703.nc"
[1] "CHL_r100_198704.nc"
[1] "CHL_r100_198705.nc"
[1] "CHL_r100_198706.nc"
[1] "CHL_r100_198707.nc"
[1] "CHL_r100_198708.nc"
[1] "CHL_r100_198709.nc"
[1] "CHL_r100_198710.nc"
[1] "CHL_r100_198711.nc"
[1] "CHL_r100_198712.nc"
[1] "CHL_r100_198801.nc"
[1] "CHL_r100_198802.nc"
[1] "CHL_r100_198803.nc"
[1] "CHL_r100_198804.nc"
[1] "CHL_r100_198805.nc"
[1] "CHL_r100_198806.nc"
[1] "CHL_r100_198807.nc"
[1] "CHL_r100_198808.nc"
[1] "CHL_r100_198809.nc"
[1] "CHL_r100_198810.nc"
[1] "CHL_r100_198811.nc"
[1] "CHL_r100_198812.nc"
[1] "CHL_r100_198901.nc"
[1] "CHL_r100_198902.nc"
[1] "CHL_r100_198903.nc"
[1] "CHL_r100_198904.nc"
[1] "CHL_r100_198905.nc"
[1] "CHL_r100_198906.nc"
[1] "CHL_r100_198907.nc"
[1] "CHL_r100_198908.nc"
[1] "CHL_r100_198909.nc"
[1] "CHL_r100_198910.nc"
[1] "CHL_r100_198911.nc"
[1] "CHL_r100_198912.nc"
[1] "CHL_r100_199001.nc"
[1] "CHL_r100_199002.nc"
[1] "CHL_r100_199003.nc"
[1] "CHL_r100_199004.nc"
[1] "CHL_r100_199005.nc"
[1] "CHL_r100_199006.nc"
[1] "CHL_r100_199007.nc"
[1] "CHL_r100_199008.nc"
[1] "CHL_r100_199009.nc"
[1] "CHL_r100_199010.nc"
[1] "CHL_r100_199011.nc"
[1] "CHL_r100_199012.nc"
[1] "CHL_r100_199101.nc"
[1] "CHL_r100_199102.nc"
[1] "CHL_r100_199103.nc"
[1] "CHL_r100_199104.nc"
[1] "CHL_r100_199105.nc"
[1] "CHL_r100_199106.nc"
[1] "CHL_r100_199107.nc"
[1] "CHL_r100_199108.nc"
[1] "CHL_r100_199109.nc"
[1] "CHL_r100_199110.nc"
[1] "CHL_r100_199111.nc"
[1] "CHL_r100_199112.nc"
[1] "CHL_r100_199201.nc"
[1] "CHL_r100_199202.nc"
[1] "CHL_r100_199203.nc"
[1] "CHL_r100_199204.nc"
[1] "CHL_r100_199205.nc"
[1] "CHL_r100_199206.nc"
[1] "CHL_r100_199207.nc"
[1] "CHL_r100_199208.nc"
[1] "CHL_r100_199209.nc"
[1] "CHL_r100_199210.nc"
[1] "CHL_r100_199211.nc"
[1] "CHL_r100_199212.nc"
[1] "CHL_r100_199301.nc"
[1] "CHL_r100_199302.nc"
[1] "CHL_r100_199303.nc"
[1] "CHL_r100_199304.nc"
[1] "CHL_r100_199305.nc"
[1] "CHL_r100_199306.nc"
[1] "CHL_r100_199307.nc"
[1] "CHL_r100_199308.nc"
[1] "CHL_r100_199309.nc"
[1] "CHL_r100_199310.nc"
[1] "CHL_r100_199311.nc"
[1] "CHL_r100_199312.nc"
[1] "CHL_r100_199401.nc"
[1] "CHL_r100_199402.nc"
[1] "CHL_r100_199403.nc"
[1] "CHL_r100_199404.nc"
[1] "CHL_r100_199405.nc"
[1] "CHL_r100_199406.nc"
[1] "CHL_r100_199407.nc"
[1] "CHL_r100_199408.nc"
[1] "CHL_r100_199409.nc"
[1] "CHL_r100_199410.nc"
[1] "CHL_r100_199411.nc"
[1] "CHL_r100_199412.nc"
[1] "CHL_r100_199501.nc"
[1] "CHL_r100_199502.nc"
[1] "CHL_r100_199503.nc"
[1] "CHL_r100_199504.nc"
[1] "CHL_r100_199505.nc"
[1] "CHL_r100_199506.nc"
[1] "CHL_r100_199507.nc"
[1] "CHL_r100_199508.nc"
[1] "CHL_r100_199509.nc"
[1] "CHL_r100_199510.nc"
[1] "CHL_r100_199511.nc"
[1] "CHL_r100_199512.nc"
[1] "CHL_r100_199601.nc"
[1] "CHL_r100_199602.nc"
[1] "CHL_r100_199603.nc"
[1] "CHL_r100_199604.nc"
[1] "CHL_r100_199605.nc"
[1] "CHL_r100_199606.nc"
[1] "CHL_r100_199607.nc"
[1] "CHL_r100_199608.nc"
[1] "CHL_r100_199609.nc"
[1] "CHL_r100_199610.nc"
[1] "CHL_r100_199611.nc"
[1] "CHL_r100_199612.nc"
[1] "CHL_r100_199701.nc"
[1] "CHL_r100_199702.nc"
[1] "CHL_r100_199703.nc"
[1] "CHL_r100_199704.nc"
[1] "CHL_r100_199705.nc"
[1] "CHL_r100_199706.nc"
[1] "CHL_r100_199707.nc"
[1] "CHL_r100_199708.nc"
[1] "CHL_r100_199709.nc"
[1] "CHL_r100_199710.nc"
[1] "CHL_r100_199711.nc"
[1] "CHL_r100_199712.nc"
[1] "CHL_r100_199801.nc"
[1] "CHL_r100_199802.nc"
[1] "CHL_r100_199803.nc"
[1] "CHL_r100_199804.nc"
[1] "CHL_r100_199805.nc"
[1] "CHL_r100_199806.nc"
[1] "CHL_r100_199807.nc"
[1] "CHL_r100_199808.nc"
[1] "CHL_r100_199809.nc"
[1] "CHL_r100_199810.nc"
[1] "CHL_r100_199811.nc"
[1] "CHL_r100_199812.nc"
[1] "CHL_r100_199901.nc"
[1] "CHL_r100_199902.nc"
[1] "CHL_r100_199903.nc"
[1] "CHL_r100_199904.nc"
[1] "CHL_r100_199905.nc"
[1] "CHL_r100_199906.nc"
[1] "CHL_r100_199907.nc"
[1] "CHL_r100_199908.nc"
[1] "CHL_r100_199909.nc"
[1] "CHL_r100_199910.nc"
[1] "CHL_r100_199911.nc"
[1] "CHL_r100_199912.nc"
[1] "CHL_r100_200001.nc"
[1] "CHL_r100_200002.nc"
[1] "CHL_r100_200003.nc"
[1] "CHL_r100_200004.nc"
[1] "CHL_r100_200005.nc"
[1] "CHL_r100_200006.nc"
[1] "CHL_r100_200007.nc"
[1] "CHL_r100_200008.nc"
[1] "CHL_r100_200009.nc"
[1] "CHL_r100_200010.nc"
[1] "CHL_r100_200011.nc"
[1] "CHL_r100_200012.nc"
[1] "CHL_r100_200101.nc"
[1] "CHL_r100_200102.nc"
[1] "CHL_r100_200103.nc"
[1] "CHL_r100_200104.nc"
[1] "CHL_r100_200105.nc"
[1] "CHL_r100_200106.nc"
[1] "CHL_r100_200107.nc"
[1] "CHL_r100_200108.nc"
[1] "CHL_r100_200109.nc"
[1] "CHL_r100_200110.nc"
[1] "CHL_r100_200111.nc"
[1] "CHL_r100_200112.nc"
[1] "CHL_r100_200201.nc"
[1] "CHL_r100_200202.nc"
[1] "CHL_r100_200203.nc"
[1] "CHL_r100_200204.nc"
[1] "CHL_r100_200205.nc"
[1] "CHL_r100_200206.nc"
[1] "CHL_r100_200207.nc"
[1] "CHL_r100_200208.nc"
[1] "CHL_r100_200209.nc"
[1] "CHL_r100_200210.nc"
[1] "CHL_r100_200211.nc"
[1] "CHL_r100_200212.nc"
[1] "CHL_r100_200301.nc"
[1] "CHL_r100_200302.nc"
[1] "CHL_r100_200303.nc"
[1] "CHL_r100_200304.nc"
[1] "CHL_r100_200305.nc"
[1] "CHL_r100_200306.nc"
[1] "CHL_r100_200307.nc"
[1] "CHL_r100_200308.nc"
[1] "CHL_r100_200309.nc"
[1] "CHL_r100_200310.nc"
[1] "CHL_r100_200311.nc"
[1] "CHL_r100_200312.nc"
[1] "CHL_r100_200401.nc"
[1] "CHL_r100_200402.nc"
[1] "CHL_r100_200403.nc"
[1] "CHL_r100_200404.nc"
[1] "CHL_r100_200405.nc"
[1] "CHL_r100_200406.nc"
[1] "CHL_r100_200407.nc"
[1] "CHL_r100_200408.nc"
[1] "CHL_r100_200409.nc"
[1] "CHL_r100_200410.nc"
[1] "CHL_r100_200411.nc"
[1] "CHL_r100_200412.nc"
[1] "CHL_r100_200501.nc"
[1] "CHL_r100_200502.nc"
[1] "CHL_r100_200503.nc"
[1] "CHL_r100_200504.nc"
[1] "CHL_r100_200505.nc"
[1] "CHL_r100_200506.nc"
[1] "CHL_r100_200507.nc"
[1] "CHL_r100_200508.nc"
[1] "CHL_r100_200509.nc"
[1] "CHL_r100_200510.nc"
[1] "CHL_r100_200511.nc"
[1] "CHL_r100_200512.nc"
[1] "CHL_r100_200601.nc"
[1] "CHL_r100_200602.nc"
[1] "CHL_r100_200603.nc"
[1] "CHL_r100_200604.nc"
[1] "CHL_r100_200605.nc"
[1] "CHL_r100_200606.nc"
[1] "CHL_r100_200607.nc"
[1] "CHL_r100_200608.nc"
[1] "CHL_r100_200609.nc"
[1] "CHL_r100_200610.nc"
[1] "CHL_r100_200611.nc"
[1] "CHL_r100_200612.nc"
[1] "CHL_r100_200701.nc"
[1] "CHL_r100_200702.nc"
[1] "CHL_r100_200703.nc"
[1] "CHL_r100_200704.nc"
[1] "CHL_r100_200705.nc"
[1] "CHL_r100_200706.nc"
[1] "CHL_r100_200707.nc"
[1] "CHL_r100_200708.nc"
[1] "CHL_r100_200709.nc"
[1] "CHL_r100_200710.nc"
[1] "CHL_r100_200711.nc"
[1] "CHL_r100_200712.nc"
[1] "CHL_r100_200801.nc"
[1] "CHL_r100_200802.nc"
[1] "CHL_r100_200803.nc"
[1] "CHL_r100_200804.nc"
[1] "CHL_r100_200805.nc"
[1] "CHL_r100_200806.nc"
[1] "CHL_r100_200807.nc"
[1] "CHL_r100_200808.nc"
[1] "CHL_r100_200809.nc"
[1] "CHL_r100_200810.nc"
[1] "CHL_r100_200811.nc"
[1] "CHL_r100_200812.nc"
[1] "CHL_r100_200901.nc"
[1] "CHL_r100_200902.nc"
[1] "CHL_r100_200903.nc"
[1] "CHL_r100_200904.nc"
[1] "CHL_r100_200905.nc"
[1] "CHL_r100_200906.nc"
[1] "CHL_r100_200907.nc"
[1] "CHL_r100_200908.nc"
[1] "CHL_r100_200909.nc"
[1] "CHL_r100_200910.nc"
[1] "CHL_r100_200911.nc"
[1] "CHL_r100_200912.nc"
[1] "CHL_r100_201001.nc"
[1] "CHL_r100_201002.nc"
[1] "CHL_r100_201003.nc"
[1] "CHL_r100_201004.nc"
[1] "CHL_r100_201005.nc"
[1] "CHL_r100_201006.nc"
[1] "CHL_r100_201007.nc"
[1] "CHL_r100_201008.nc"
[1] "CHL_r100_201009.nc"
[1] "CHL_r100_201010.nc"
[1] "CHL_r100_201011.nc"
[1] "CHL_r100_201012.nc"
[1] "CHL_r100_201101.nc"
[1] "CHL_r100_201102.nc"
[1] "CHL_r100_201103.nc"
[1] "CHL_r100_201104.nc"
[1] "CHL_r100_201105.nc"
[1] "CHL_r100_201106.nc"
[1] "CHL_r100_201107.nc"
[1] "CHL_r100_201108.nc"
[1] "CHL_r100_201109.nc"
[1] "CHL_r100_201110.nc"
[1] "CHL_r100_201111.nc"
[1] "CHL_r100_201112.nc"
[1] "CHL_r100_201201.nc"
[1] "CHL_r100_201202.nc"
[1] "CHL_r100_201203.nc"
[1] "CHL_r100_201204.nc"
[1] "CHL_r100_201205.nc"
[1] "CHL_r100_201206.nc"
[1] "CHL_r100_201207.nc"
[1] "CHL_r100_201208.nc"
[1] "CHL_r100_201209.nc"
[1] "CHL_r100_201210.nc"
[1] "CHL_r100_201211.nc"
[1] "CHL_r100_201212.nc"
[1] "CHL_r100_201301.nc"
[1] "CHL_r100_201302.nc"
[1] "CHL_r100_201303.nc"
[1] "CHL_r100_201304.nc"
[1] "CHL_r100_201305.nc"
[1] "CHL_r100_201306.nc"
[1] "CHL_r100_201307.nc"
[1] "CHL_r100_201308.nc"
[1] "CHL_r100_201309.nc"
[1] "CHL_r100_201310.nc"
[1] "CHL_r100_201311.nc"
[1] "CHL_r100_201312.nc"
[1] "CHL_r100_201401.nc"
[1] "CHL_r100_201402.nc"
[1] "CHL_r100_201403.nc"
[1] "CHL_r100_201404.nc"
[1] "CHL_r100_201405.nc"
[1] "CHL_r100_201406.nc"
[1] "CHL_r100_201407.nc"
[1] "CHL_r100_201408.nc"
[1] "CHL_r100_201409.nc"
[1] "CHL_r100_201410.nc"
[1] "CHL_r100_201411.nc"
[1] "CHL_r100_201412.nc"
[1] "CHL_r100_201501.nc"
[1] "CHL_r100_201502.nc"
[1] "CHL_r100_201503.nc"
[1] "CHL_r100_201504.nc"
[1] "CHL_r100_201505.nc"
[1] "CHL_r100_201506.nc"
[1] "CHL_r100_201507.nc"
[1] "CHL_r100_201508.nc"
[1] "CHL_r100_201509.nc"
[1] "CHL_r100_201510.nc"
[1] "CHL_r100_201511.nc"
[1] "CHL_r100_201512.nc"
[1] "CHL_r100_201601.nc"
[1] "CHL_r100_201602.nc"
[1] "CHL_r100_201603.nc"
[1] "CHL_r100_201604.nc"
[1] "CHL_r100_201605.nc"
[1] "CHL_r100_201606.nc"
[1] "CHL_r100_201607.nc"
[1] "CHL_r100_201608.nc"
[1] "CHL_r100_201609.nc"
[1] "CHL_r100_201610.nc"
[1] "CHL_r100_201611.nc"
[1] "CHL_r100_201612.nc"
[1] "CHL_r100_201701.nc"
[1] "CHL_r100_201702.nc"
[1] "CHL_r100_201703.nc"
[1] "CHL_r100_201704.nc"
[1] "CHL_r100_201705.nc"
[1] "CHL_r100_201706.nc"
[1] "CHL_r100_201707.nc"
[1] "CHL_r100_201708.nc"
[1] "CHL_r100_201709.nc"
[1] "CHL_r100_201710.nc"
[1] "CHL_r100_201711.nc"
[1] "CHL_r100_201712.nc"
[1] "CHL_r100_201801.nc"
[1] "CHL_r100_201802.nc"
[1] "CHL_r100_201803.nc"
[1] "CHL_r100_201804.nc"
[1] "CHL_r100_201805.nc"
[1] "CHL_r100_201806.nc"
[1] "CHL_r100_201807.nc"
[1] "CHL_r100_201808.nc"
[1] "CHL_r100_201809.nc"
[1] "CHL_r100_201810.nc"
[1] "CHL_r100_201811.nc"
[1] "CHL_r100_201812.nc"
[1] "CHL_r100_201901.nc"
[1] "CHL_r100_201902.nc"
[1] "CHL_r100_201903.nc"
[1] "CHL_r100_201904.nc"
[1] "CHL_r100_201905.nc"
[1] "CHL_r100_201906.nc"
[1] "CHL_r100_201907.nc"
[1] "CHL_r100_201908.nc"
[1] "CHL_r100_201909.nc"
[1] "CHL_r100_201910.nc"
[1] "CHL_r100_201911.nc"
[1] "CHL_r100_201912.nc"
[1] "CHL_r100_202001.nc"
[1] "CHL_r100_202002.nc"
[1] "CHL_r100_202003.nc"
[1] "CHL_r100_202004.nc"
[1] "CHL_r100_202005.nc"
[1] "CHL_r100_202006.nc"
[1] "CHL_r100_202007.nc"
[1] "CHL_r100_202008.nc"
[1] "CHL_r100_202009.nc"
[1] "CHL_r100_202010.nc"
[1] "CHL_r100_202011.nc"
[1] "CHL_r100_202012.nc"
[1] "CHL_r100_202101.nc"
[1] "CHL_r100_202102.nc"
[1] "CHL_r100_202103.nc"
[1] "CHL_r100_202104.nc"
[1] "CHL_r100_202105.nc"
[1] "CHL_r100_202106.nc"
[1] "CHL_r100_202107.nc"
[1] "CHL_r100_202108.nc"
[1] "CHL_r100_202109.nc"
[1] "CHL_r100_202110.nc"
[1] "CHL_r100_202111.nc"
[1] "CHL_r100_202112.nc"
[1] "CHL_r100_202201.nc"
[1] "CHL_r100_202202.nc"
[1] "CHL_r100_202203.nc"
[1] "CHL_r100_202204.nc"
[1] "CHL_r100_202205.nc"
[1] "CHL_r100_202206.nc"
[1] "CHL_r100_202207.nc"
[1] "CHL_r100_202208.nc"
[1] "CHL_r100_202209.nc"
[1] "CHL_r100_202210.nc"
[1] "CHL_r100_202211.nc"
[1] "CHL_r100_202212.nc"
[1] "CHL_r100_202301.nc"
[1] "CHL_r100_202302.nc"
[1] "CHL_r100_202303.nc"
[1] "CHL_r100_202304.nc"
[1] "CHL_r100_202305.nc"
[1] "CHL_r100_202306.nc"
[1] "CHL_r100_202307.nc"
[1] "CHL_r100_202308.nc"
[1] "CHL_r100_202309.nc"
[1] "CHL_r100_202310.nc"
[1] "CHL_r100_202311.nc"
[1] "CHL_r100_202312.nc"
[1] "CHL_r100_202401.nc"
[1] "CHL_r100_202402.nc"
[1] "fluxCO2_model_v2023_r100_198501.nc"
[1] "fluxCO2_model_v2023_r100_198502.nc"
[1] "fluxCO2_model_v2023_r100_198503.nc"
[1] "fluxCO2_model_v2023_r100_198504.nc"
[1] "fluxCO2_model_v2023_r100_198505.nc"
[1] "fluxCO2_model_v2023_r100_198506.nc"
[1] "fluxCO2_model_v2023_r100_198507.nc"
[1] "fluxCO2_model_v2023_r100_198508.nc"
[1] "fluxCO2_model_v2023_r100_198509.nc"
[1] "fluxCO2_model_v2023_r100_198510.nc"
[1] "fluxCO2_model_v2023_r100_198511.nc"
[1] "fluxCO2_model_v2023_r100_198512.nc"
[1] "fluxCO2_model_v2023_r100_198601.nc"
[1] "fluxCO2_model_v2023_r100_198602.nc"
[1] "fluxCO2_model_v2023_r100_198603.nc"
[1] "fluxCO2_model_v2023_r100_198604.nc"
[1] "fluxCO2_model_v2023_r100_198605.nc"
[1] "fluxCO2_model_v2023_r100_198606.nc"
[1] "fluxCO2_model_v2023_r100_198607.nc"
[1] "fluxCO2_model_v2023_r100_198608.nc"
[1] "fluxCO2_model_v2023_r100_198609.nc"
[1] "fluxCO2_model_v2023_r100_198610.nc"
[1] "fluxCO2_model_v2023_r100_198611.nc"
[1] "fluxCO2_model_v2023_r100_198612.nc"
[1] "fluxCO2_model_v2023_r100_198701.nc"
[1] "fluxCO2_model_v2023_r100_198702.nc"
[1] "fluxCO2_model_v2023_r100_198703.nc"
[1] "fluxCO2_model_v2023_r100_198704.nc"
[1] "fluxCO2_model_v2023_r100_198705.nc"
[1] "fluxCO2_model_v2023_r100_198706.nc"
[1] "fluxCO2_model_v2023_r100_198707.nc"
[1] "fluxCO2_model_v2023_r100_198708.nc"
[1] "fluxCO2_model_v2023_r100_198709.nc"
[1] "fluxCO2_model_v2023_r100_198710.nc"
[1] "fluxCO2_model_v2023_r100_198711.nc"
[1] "fluxCO2_model_v2023_r100_198712.nc"
[1] "fluxCO2_model_v2023_r100_198801.nc"
[1] "fluxCO2_model_v2023_r100_198802.nc"
[1] "fluxCO2_model_v2023_r100_198803.nc"
[1] "fluxCO2_model_v2023_r100_198804.nc"
[1] "fluxCO2_model_v2023_r100_198805.nc"
[1] "fluxCO2_model_v2023_r100_198806.nc"
[1] "fluxCO2_model_v2023_r100_198807.nc"
[1] "fluxCO2_model_v2023_r100_198808.nc"
[1] "fluxCO2_model_v2023_r100_198809.nc"
[1] "fluxCO2_model_v2023_r100_198810.nc"
[1] "fluxCO2_model_v2023_r100_198811.nc"
[1] "fluxCO2_model_v2023_r100_198812.nc"
[1] "fluxCO2_model_v2023_r100_198901.nc"
[1] "fluxCO2_model_v2023_r100_198902.nc"
[1] "fluxCO2_model_v2023_r100_198903.nc"
[1] "fluxCO2_model_v2023_r100_198904.nc"
[1] "fluxCO2_model_v2023_r100_198905.nc"
[1] "fluxCO2_model_v2023_r100_198906.nc"
[1] "fluxCO2_model_v2023_r100_198907.nc"
[1] "fluxCO2_model_v2023_r100_198908.nc"
[1] "fluxCO2_model_v2023_r100_198909.nc"
[1] "fluxCO2_model_v2023_r100_198910.nc"
[1] "fluxCO2_model_v2023_r100_198911.nc"
[1] "fluxCO2_model_v2023_r100_198912.nc"
[1] "fluxCO2_model_v2023_r100_199001.nc"
[1] "fluxCO2_model_v2023_r100_199002.nc"
[1] "fluxCO2_model_v2023_r100_199003.nc"
[1] "fluxCO2_model_v2023_r100_199004.nc"
[1] "fluxCO2_model_v2023_r100_199005.nc"
[1] "fluxCO2_model_v2023_r100_199006.nc"
[1] "fluxCO2_model_v2023_r100_199007.nc"
[1] "fluxCO2_model_v2023_r100_199008.nc"
[1] "fluxCO2_model_v2023_r100_199009.nc"
[1] "fluxCO2_model_v2023_r100_199010.nc"
[1] "fluxCO2_model_v2023_r100_199011.nc"
[1] "fluxCO2_model_v2023_r100_199012.nc"
[1] "fluxCO2_model_v2023_r100_199101.nc"
[1] "fluxCO2_model_v2023_r100_199102.nc"
[1] "fluxCO2_model_v2023_r100_199103.nc"
[1] "fluxCO2_model_v2023_r100_199104.nc"
[1] "fluxCO2_model_v2023_r100_199105.nc"
[1] "fluxCO2_model_v2023_r100_199106.nc"
[1] "fluxCO2_model_v2023_r100_199107.nc"
[1] "fluxCO2_model_v2023_r100_199108.nc"
[1] "fluxCO2_model_v2023_r100_199109.nc"
[1] "fluxCO2_model_v2023_r100_199110.nc"
[1] "fluxCO2_model_v2023_r100_199111.nc"
[1] "fluxCO2_model_v2023_r100_199112.nc"
[1] "fluxCO2_model_v2023_r100_199201.nc"
[1] "fluxCO2_model_v2023_r100_199202.nc"
[1] "fluxCO2_model_v2023_r100_199203.nc"
[1] "fluxCO2_model_v2023_r100_199204.nc"
[1] "fluxCO2_model_v2023_r100_199205.nc"
[1] "fluxCO2_model_v2023_r100_199206.nc"
[1] "fluxCO2_model_v2023_r100_199207.nc"
[1] "fluxCO2_model_v2023_r100_199208.nc"
[1] "fluxCO2_model_v2023_r100_199209.nc"
[1] "fluxCO2_model_v2023_r100_199210.nc"
[1] "fluxCO2_model_v2023_r100_199211.nc"
[1] "fluxCO2_model_v2023_r100_199212.nc"
[1] "fluxCO2_model_v2023_r100_199301.nc"
[1] "fluxCO2_model_v2023_r100_199302.nc"
[1] "fluxCO2_model_v2023_r100_199303.nc"
[1] "fluxCO2_model_v2023_r100_199304.nc"
[1] "fluxCO2_model_v2023_r100_199305.nc"
[1] "fluxCO2_model_v2023_r100_199306.nc"
[1] "fluxCO2_model_v2023_r100_199307.nc"
[1] "fluxCO2_model_v2023_r100_199308.nc"
[1] "fluxCO2_model_v2023_r100_199309.nc"
[1] "fluxCO2_model_v2023_r100_199310.nc"
[1] "fluxCO2_model_v2023_r100_199311.nc"
[1] "fluxCO2_model_v2023_r100_199312.nc"
[1] "fluxCO2_model_v2023_r100_199401.nc"
[1] "fluxCO2_model_v2023_r100_199402.nc"
[1] "fluxCO2_model_v2023_r100_199403.nc"
[1] "fluxCO2_model_v2023_r100_199404.nc"
[1] "fluxCO2_model_v2023_r100_199405.nc"
[1] "fluxCO2_model_v2023_r100_199406.nc"
[1] "fluxCO2_model_v2023_r100_199407.nc"
[1] "fluxCO2_model_v2023_r100_199408.nc"
[1] "fluxCO2_model_v2023_r100_199409.nc"
[1] "fluxCO2_model_v2023_r100_199410.nc"
[1] "fluxCO2_model_v2023_r100_199411.nc"
[1] "fluxCO2_model_v2023_r100_199412.nc"
[1] "fluxCO2_model_v2023_r100_199501.nc"
[1] "fluxCO2_model_v2023_r100_199502.nc"
[1] "fluxCO2_model_v2023_r100_199503.nc"
[1] "fluxCO2_model_v2023_r100_199504.nc"
[1] "fluxCO2_model_v2023_r100_199505.nc"
[1] "fluxCO2_model_v2023_r100_199506.nc"
[1] "fluxCO2_model_v2023_r100_199507.nc"
[1] "fluxCO2_model_v2023_r100_199508.nc"
[1] "fluxCO2_model_v2023_r100_199509.nc"
[1] "fluxCO2_model_v2023_r100_199510.nc"
[1] "fluxCO2_model_v2023_r100_199511.nc"
[1] "fluxCO2_model_v2023_r100_199512.nc"
[1] "fluxCO2_model_v2023_r100_199601.nc"
[1] "fluxCO2_model_v2023_r100_199602.nc"
[1] "fluxCO2_model_v2023_r100_199603.nc"
[1] "fluxCO2_model_v2023_r100_199604.nc"
[1] "fluxCO2_model_v2023_r100_199605.nc"
[1] "fluxCO2_model_v2023_r100_199606.nc"
[1] "fluxCO2_model_v2023_r100_199607.nc"
[1] "fluxCO2_model_v2023_r100_199608.nc"
[1] "fluxCO2_model_v2023_r100_199609.nc"
[1] "fluxCO2_model_v2023_r100_199610.nc"
[1] "fluxCO2_model_v2023_r100_199611.nc"
[1] "fluxCO2_model_v2023_r100_199612.nc"
[1] "fluxCO2_model_v2023_r100_199701.nc"
[1] "fluxCO2_model_v2023_r100_199702.nc"
[1] "fluxCO2_model_v2023_r100_199703.nc"
[1] "fluxCO2_model_v2023_r100_199704.nc"
[1] "fluxCO2_model_v2023_r100_199705.nc"
[1] "fluxCO2_model_v2023_r100_199706.nc"
[1] "fluxCO2_model_v2023_r100_199707.nc"
[1] "fluxCO2_model_v2023_r100_199708.nc"
[1] "fluxCO2_model_v2023_r100_199709.nc"
[1] "fluxCO2_model_v2023_r100_199710.nc"
[1] "fluxCO2_model_v2023_r100_199711.nc"
[1] "fluxCO2_model_v2023_r100_199712.nc"
[1] "fluxCO2_model_v2023_r100_199801.nc"
[1] "fluxCO2_model_v2023_r100_199802.nc"
[1] "fluxCO2_model_v2023_r100_199803.nc"
[1] "fluxCO2_model_v2023_r100_199804.nc"
[1] "fluxCO2_model_v2023_r100_199805.nc"
[1] "fluxCO2_model_v2023_r100_199806.nc"
[1] "fluxCO2_model_v2023_r100_199807.nc"
[1] "fluxCO2_model_v2023_r100_199808.nc"
[1] "fluxCO2_model_v2023_r100_199809.nc"
[1] "fluxCO2_model_v2023_r100_199810.nc"
[1] "fluxCO2_model_v2023_r100_199811.nc"
[1] "fluxCO2_model_v2023_r100_199812.nc"
[1] "fluxCO2_model_v2023_r100_199901.nc"
[1] "fluxCO2_model_v2023_r100_199902.nc"
[1] "fluxCO2_model_v2023_r100_199903.nc"
[1] "fluxCO2_model_v2023_r100_199904.nc"
[1] "fluxCO2_model_v2023_r100_199905.nc"
[1] "fluxCO2_model_v2023_r100_199906.nc"
[1] "fluxCO2_model_v2023_r100_199907.nc"
[1] "fluxCO2_model_v2023_r100_199908.nc"
[1] "fluxCO2_model_v2023_r100_199909.nc"
[1] "fluxCO2_model_v2023_r100_199910.nc"
[1] "fluxCO2_model_v2023_r100_199911.nc"
[1] "fluxCO2_model_v2023_r100_199912.nc"
[1] "fluxCO2_model_v2023_r100_200001.nc"
[1] "fluxCO2_model_v2023_r100_200002.nc"
[1] "fluxCO2_model_v2023_r100_200003.nc"
[1] "fluxCO2_model_v2023_r100_200004.nc"
[1] "fluxCO2_model_v2023_r100_200005.nc"
[1] "fluxCO2_model_v2023_r100_200006.nc"
[1] "fluxCO2_model_v2023_r100_200007.nc"
[1] "fluxCO2_model_v2023_r100_200008.nc"
[1] "fluxCO2_model_v2023_r100_200009.nc"
[1] "fluxCO2_model_v2023_r100_200010.nc"
[1] "fluxCO2_model_v2023_r100_200011.nc"
[1] "fluxCO2_model_v2023_r100_200012.nc"
[1] "fluxCO2_model_v2023_r100_200101.nc"
[1] "fluxCO2_model_v2023_r100_200102.nc"
[1] "fluxCO2_model_v2023_r100_200103.nc"
[1] "fluxCO2_model_v2023_r100_200104.nc"
[1] "fluxCO2_model_v2023_r100_200105.nc"
[1] "fluxCO2_model_v2023_r100_200106.nc"
[1] "fluxCO2_model_v2023_r100_200107.nc"
[1] "fluxCO2_model_v2023_r100_200108.nc"
[1] "fluxCO2_model_v2023_r100_200109.nc"
[1] "fluxCO2_model_v2023_r100_200110.nc"
[1] "fluxCO2_model_v2023_r100_200111.nc"
[1] "fluxCO2_model_v2023_r100_200112.nc"
[1] "fluxCO2_model_v2023_r100_200201.nc"
[1] "fluxCO2_model_v2023_r100_200202.nc"
[1] "fluxCO2_model_v2023_r100_200203.nc"
[1] "fluxCO2_model_v2023_r100_200204.nc"
[1] "fluxCO2_model_v2023_r100_200205.nc"
[1] "fluxCO2_model_v2023_r100_200206.nc"
[1] "fluxCO2_model_v2023_r100_200207.nc"
[1] "fluxCO2_model_v2023_r100_200208.nc"
[1] "fluxCO2_model_v2023_r100_200209.nc"
[1] "fluxCO2_model_v2023_r100_200210.nc"
[1] "fluxCO2_model_v2023_r100_200211.nc"
[1] "fluxCO2_model_v2023_r100_200212.nc"
[1] "fluxCO2_model_v2023_r100_200301.nc"
[1] "fluxCO2_model_v2023_r100_200302.nc"
[1] "fluxCO2_model_v2023_r100_200303.nc"
[1] "fluxCO2_model_v2023_r100_200304.nc"
[1] "fluxCO2_model_v2023_r100_200305.nc"
[1] "fluxCO2_model_v2023_r100_200306.nc"
[1] "fluxCO2_model_v2023_r100_200307.nc"
[1] "fluxCO2_model_v2023_r100_200308.nc"
[1] "fluxCO2_model_v2023_r100_200309.nc"
[1] "fluxCO2_model_v2023_r100_200310.nc"
[1] "fluxCO2_model_v2023_r100_200311.nc"
[1] "fluxCO2_model_v2023_r100_200312.nc"
[1] "fluxCO2_model_v2023_r100_200401.nc"
[1] "fluxCO2_model_v2023_r100_200402.nc"
[1] "fluxCO2_model_v2023_r100_200403.nc"
[1] "fluxCO2_model_v2023_r100_200404.nc"
[1] "fluxCO2_model_v2023_r100_200405.nc"
[1] "fluxCO2_model_v2023_r100_200406.nc"
[1] "fluxCO2_model_v2023_r100_200407.nc"
[1] "fluxCO2_model_v2023_r100_200408.nc"
[1] "fluxCO2_model_v2023_r100_200409.nc"
[1] "fluxCO2_model_v2023_r100_200410.nc"
[1] "fluxCO2_model_v2023_r100_200411.nc"
[1] "fluxCO2_model_v2023_r100_200412.nc"
[1] "fluxCO2_model_v2023_r100_200501.nc"
[1] "fluxCO2_model_v2023_r100_200502.nc"
[1] "fluxCO2_model_v2023_r100_200503.nc"
[1] "fluxCO2_model_v2023_r100_200504.nc"
[1] "fluxCO2_model_v2023_r100_200505.nc"
[1] "fluxCO2_model_v2023_r100_200506.nc"
[1] "fluxCO2_model_v2023_r100_200507.nc"
[1] "fluxCO2_model_v2023_r100_200508.nc"
[1] "fluxCO2_model_v2023_r100_200509.nc"
[1] "fluxCO2_model_v2023_r100_200510.nc"
[1] "fluxCO2_model_v2023_r100_200511.nc"
[1] "fluxCO2_model_v2023_r100_200512.nc"
[1] "fluxCO2_model_v2023_r100_200601.nc"
[1] "fluxCO2_model_v2023_r100_200602.nc"
[1] "fluxCO2_model_v2023_r100_200603.nc"
[1] "fluxCO2_model_v2023_r100_200604.nc"
[1] "fluxCO2_model_v2023_r100_200605.nc"
[1] "fluxCO2_model_v2023_r100_200606.nc"
[1] "fluxCO2_model_v2023_r100_200607.nc"
[1] "fluxCO2_model_v2023_r100_200608.nc"
[1] "fluxCO2_model_v2023_r100_200609.nc"
[1] "fluxCO2_model_v2023_r100_200610.nc"
[1] "fluxCO2_model_v2023_r100_200611.nc"
[1] "fluxCO2_model_v2023_r100_200612.nc"
[1] "fluxCO2_model_v2023_r100_200701.nc"
[1] "fluxCO2_model_v2023_r100_200702.nc"
[1] "fluxCO2_model_v2023_r100_200703.nc"
[1] "fluxCO2_model_v2023_r100_200704.nc"
[1] "fluxCO2_model_v2023_r100_200705.nc"
[1] "fluxCO2_model_v2023_r100_200706.nc"
[1] "fluxCO2_model_v2023_r100_200707.nc"
[1] "fluxCO2_model_v2023_r100_200708.nc"
[1] "fluxCO2_model_v2023_r100_200709.nc"
[1] "fluxCO2_model_v2023_r100_200710.nc"
[1] "fluxCO2_model_v2023_r100_200711.nc"
[1] "fluxCO2_model_v2023_r100_200712.nc"
[1] "fluxCO2_model_v2023_r100_200801.nc"
[1] "fluxCO2_model_v2023_r100_200802.nc"
[1] "fluxCO2_model_v2023_r100_200803.nc"
[1] "fluxCO2_model_v2023_r100_200804.nc"
[1] "fluxCO2_model_v2023_r100_200805.nc"
[1] "fluxCO2_model_v2023_r100_200806.nc"
[1] "fluxCO2_model_v2023_r100_200807.nc"
[1] "fluxCO2_model_v2023_r100_200808.nc"
[1] "fluxCO2_model_v2023_r100_200809.nc"
[1] "fluxCO2_model_v2023_r100_200810.nc"
[1] "fluxCO2_model_v2023_r100_200811.nc"
[1] "fluxCO2_model_v2023_r100_200812.nc"
[1] "fluxCO2_model_v2023_r100_200901.nc"
[1] "fluxCO2_model_v2023_r100_200902.nc"
[1] "fluxCO2_model_v2023_r100_200903.nc"
[1] "fluxCO2_model_v2023_r100_200904.nc"
[1] "fluxCO2_model_v2023_r100_200905.nc"
[1] "fluxCO2_model_v2023_r100_200906.nc"
[1] "fluxCO2_model_v2023_r100_200907.nc"
[1] "fluxCO2_model_v2023_r100_200908.nc"
[1] "fluxCO2_model_v2023_r100_200909.nc"
[1] "fluxCO2_model_v2023_r100_200910.nc"
[1] "fluxCO2_model_v2023_r100_200911.nc"
[1] "fluxCO2_model_v2023_r100_200912.nc"
[1] "fluxCO2_model_v2023_r100_201001.nc"
[1] "fluxCO2_model_v2023_r100_201002.nc"
[1] "fluxCO2_model_v2023_r100_201003.nc"
[1] "fluxCO2_model_v2023_r100_201004.nc"
[1] "fluxCO2_model_v2023_r100_201005.nc"
[1] "fluxCO2_model_v2023_r100_201006.nc"
[1] "fluxCO2_model_v2023_r100_201007.nc"
[1] "fluxCO2_model_v2023_r100_201008.nc"
[1] "fluxCO2_model_v2023_r100_201009.nc"
[1] "fluxCO2_model_v2023_r100_201010.nc"
[1] "fluxCO2_model_v2023_r100_201011.nc"
[1] "fluxCO2_model_v2023_r100_201012.nc"
[1] "fluxCO2_model_v2023_r100_201101.nc"
[1] "fluxCO2_model_v2023_r100_201102.nc"
[1] "fluxCO2_model_v2023_r100_201103.nc"
[1] "fluxCO2_model_v2023_r100_201104.nc"
[1] "fluxCO2_model_v2023_r100_201105.nc"
[1] "fluxCO2_model_v2023_r100_201106.nc"
[1] "fluxCO2_model_v2023_r100_201107.nc"
[1] "fluxCO2_model_v2023_r100_201108.nc"
[1] "fluxCO2_model_v2023_r100_201109.nc"
[1] "fluxCO2_model_v2023_r100_201110.nc"
[1] "fluxCO2_model_v2023_r100_201111.nc"
[1] "fluxCO2_model_v2023_r100_201112.nc"
[1] "fluxCO2_model_v2023_r100_201201.nc"
[1] "fluxCO2_model_v2023_r100_201202.nc"
[1] "fluxCO2_model_v2023_r100_201203.nc"
[1] "fluxCO2_model_v2023_r100_201204.nc"
[1] "fluxCO2_model_v2023_r100_201205.nc"
[1] "fluxCO2_model_v2023_r100_201206.nc"
[1] "fluxCO2_model_v2023_r100_201207.nc"
[1] "fluxCO2_model_v2023_r100_201208.nc"
[1] "fluxCO2_model_v2023_r100_201209.nc"
[1] "fluxCO2_model_v2023_r100_201210.nc"
[1] "fluxCO2_model_v2023_r100_201211.nc"
[1] "fluxCO2_model_v2023_r100_201212.nc"
[1] "fluxCO2_model_v2023_r100_201301.nc"
[1] "fluxCO2_model_v2023_r100_201302.nc"
[1] "fluxCO2_model_v2023_r100_201303.nc"
[1] "fluxCO2_model_v2023_r100_201304.nc"
[1] "fluxCO2_model_v2023_r100_201305.nc"
[1] "fluxCO2_model_v2023_r100_201306.nc"
[1] "fluxCO2_model_v2023_r100_201307.nc"
[1] "fluxCO2_model_v2023_r100_201308.nc"
[1] "fluxCO2_model_v2023_r100_201309.nc"
[1] "fluxCO2_model_v2023_r100_201310.nc"
[1] "fluxCO2_model_v2023_r100_201311.nc"
[1] "fluxCO2_model_v2023_r100_201312.nc"
[1] "fluxCO2_model_v2023_r100_201401.nc"
[1] "fluxCO2_model_v2023_r100_201402.nc"
[1] "fluxCO2_model_v2023_r100_201403.nc"
[1] "fluxCO2_model_v2023_r100_201404.nc"
[1] "fluxCO2_model_v2023_r100_201405.nc"
[1] "fluxCO2_model_v2023_r100_201406.nc"
[1] "fluxCO2_model_v2023_r100_201407.nc"
[1] "fluxCO2_model_v2023_r100_201408.nc"
[1] "fluxCO2_model_v2023_r100_201409.nc"
[1] "fluxCO2_model_v2023_r100_201410.nc"
[1] "fluxCO2_model_v2023_r100_201411.nc"
[1] "fluxCO2_model_v2023_r100_201412.nc"
[1] "fluxCO2_model_v2023_r100_201501.nc"
[1] "fluxCO2_model_v2023_r100_201502.nc"
[1] "fluxCO2_model_v2023_r100_201503.nc"
[1] "fluxCO2_model_v2023_r100_201504.nc"
[1] "fluxCO2_model_v2023_r100_201505.nc"
[1] "fluxCO2_model_v2023_r100_201506.nc"
[1] "fluxCO2_model_v2023_r100_201507.nc"
[1] "fluxCO2_model_v2023_r100_201508.nc"
[1] "fluxCO2_model_v2023_r100_201509.nc"
[1] "fluxCO2_model_v2023_r100_201510.nc"
[1] "fluxCO2_model_v2023_r100_201511.nc"
[1] "fluxCO2_model_v2023_r100_201512.nc"
[1] "fluxCO2_model_v2023_r100_201601.nc"
[1] "fluxCO2_model_v2023_r100_201602.nc"
[1] "fluxCO2_model_v2023_r100_201603.nc"
[1] "fluxCO2_model_v2023_r100_201604.nc"
[1] "fluxCO2_model_v2023_r100_201605.nc"
[1] "fluxCO2_model_v2023_r100_201606.nc"
[1] "fluxCO2_model_v2023_r100_201607.nc"
[1] "fluxCO2_model_v2023_r100_201608.nc"
[1] "fluxCO2_model_v2023_r100_201609.nc"
[1] "fluxCO2_model_v2023_r100_201610.nc"
[1] "fluxCO2_model_v2023_r100_201611.nc"
[1] "fluxCO2_model_v2023_r100_201612.nc"
[1] "fluxCO2_model_v2023_r100_201701.nc"
[1] "fluxCO2_model_v2023_r100_201702.nc"
[1] "fluxCO2_model_v2023_r100_201703.nc"
[1] "fluxCO2_model_v2023_r100_201704.nc"
[1] "fluxCO2_model_v2023_r100_201705.nc"
[1] "fluxCO2_model_v2023_r100_201706.nc"
[1] "fluxCO2_model_v2023_r100_201707.nc"
[1] "fluxCO2_model_v2023_r100_201708.nc"
[1] "fluxCO2_model_v2023_r100_201709.nc"
[1] "fluxCO2_model_v2023_r100_201710.nc"
[1] "fluxCO2_model_v2023_r100_201711.nc"
[1] "fluxCO2_model_v2023_r100_201712.nc"
[1] "fluxCO2_model_v2023_r100_201801.nc"
[1] "fluxCO2_model_v2023_r100_201802.nc"
[1] "fluxCO2_model_v2023_r100_201803.nc"
[1] "fluxCO2_model_v2023_r100_201804.nc"
[1] "fluxCO2_model_v2023_r100_201805.nc"
[1] "fluxCO2_model_v2023_r100_201806.nc"
[1] "fluxCO2_model_v2023_r100_201807.nc"
[1] "fluxCO2_model_v2023_r100_201808.nc"
[1] "fluxCO2_model_v2023_r100_201809.nc"
[1] "fluxCO2_model_v2023_r100_201810.nc"
[1] "fluxCO2_model_v2023_r100_201811.nc"
[1] "fluxCO2_model_v2023_r100_201812.nc"
[1] "fluxCO2_model_v2023_r100_201901.nc"
[1] "fluxCO2_model_v2023_r100_201902.nc"
[1] "fluxCO2_model_v2023_r100_201903.nc"
[1] "fluxCO2_model_v2023_r100_201904.nc"
[1] "fluxCO2_model_v2023_r100_201905.nc"
[1] "fluxCO2_model_v2023_r100_201906.nc"
[1] "fluxCO2_model_v2023_r100_201907.nc"
[1] "fluxCO2_model_v2023_r100_201908.nc"
[1] "fluxCO2_model_v2023_r100_201909.nc"
[1] "fluxCO2_model_v2023_r100_201910.nc"
[1] "fluxCO2_model_v2023_r100_201911.nc"
[1] "fluxCO2_model_v2023_r100_201912.nc"
[1] "fluxCO2_model_v2023_r100_202001.nc"
[1] "fluxCO2_model_v2023_r100_202002.nc"
[1] "fluxCO2_model_v2023_r100_202003.nc"
[1] "fluxCO2_model_v2023_r100_202004.nc"
[1] "fluxCO2_model_v2023_r100_202005.nc"
[1] "fluxCO2_model_v2023_r100_202006.nc"
[1] "fluxCO2_model_v2023_r100_202007.nc"
[1] "fluxCO2_model_v2023_r100_202008.nc"
[1] "fluxCO2_model_v2023_r100_202009.nc"
[1] "fluxCO2_model_v2023_r100_202010.nc"
[1] "fluxCO2_model_v2023_r100_202011.nc"
[1] "fluxCO2_model_v2023_r100_202012.nc"
[1] "fluxCO2_model_v2023_r100_202101.nc"
[1] "fluxCO2_model_v2023_r100_202102.nc"
[1] "fluxCO2_model_v2023_r100_202103.nc"
[1] "fluxCO2_model_v2023_r100_202104.nc"
[1] "fluxCO2_model_v2023_r100_202105.nc"
[1] "fluxCO2_model_v2023_r100_202106.nc"
[1] "fluxCO2_model_v2023_r100_202107.nc"
[1] "fluxCO2_model_v2023_r100_202108.nc"
[1] "fluxCO2_model_v2023_r100_202109.nc"
[1] "fluxCO2_model_v2023_r100_202110.nc"
[1] "fluxCO2_model_v2023_r100_202111.nc"
[1] "fluxCO2_model_v2023_r100_202112.nc"
[1] "fluxCO2_model_v2023_r100_202201.nc"
[1] "fluxCO2_model_v2023_r100_202202.nc"
[1] "fluxCO2_model_v2023_r100_202203.nc"
[1] "fluxCO2_model_v2023_r100_202204.nc"
[1] "fluxCO2_model_v2023_r100_202205.nc"
[1] "fluxCO2_model_v2023_r100_202206.nc"
[1] "fluxCO2_model_v2023_r100_202207.nc"
[1] "fluxCO2_model_v2023_r100_202208.nc"
[1] "fluxCO2_model_v2023_r100_202209.nc"
[1] "fluxCO2_model_v2023_r100_202210.nc"
[1] "fluxCO2_model_v2023_r100_202211.nc"
[1] "fluxCO2_model_v2023_r100_202212.nc"
[1] "fluxCO2_model_v2023_r100_202301.nc"
[1] "fluxCO2_model_v2023_r100_202302.nc"
[1] "fluxCO2_model_v2023_r100_202303.nc"
[1] "fluxCO2_model_v2023_r100_202304.nc"
[1] "fluxCO2_model_v2023_r100_202305.nc"
[1] "fluxCO2_model_v2023_r100_202306.nc"
[1] "fluxCO2_model_v2023_r100_202307.nc"
[1] "fluxCO2_model_v2023_r100_202308.nc"
[1] "fluxCO2_model_v2023_r100_202309.nc"
[1] "fluxCO2_model_v2023_r100_202310.nc"
[1] "fluxCO2_model_v2023_r100_202311.nc"
[1] "fluxCO2_model_v2023_r100_202312.nc"
[1] "fluxCO2_model_v2023_r100_202401.nc"
[1] "fluxCO2_model_v2023_r100_202402.nc"
[1] "MLD_r100_198501.nc"
[1] "MLD_r100_198502.nc"
[1] "MLD_r100_198503.nc"
[1] "MLD_r100_198504.nc"
[1] "MLD_r100_198505.nc"
[1] "MLD_r100_198506.nc"
[1] "MLD_r100_198507.nc"
[1] "MLD_r100_198508.nc"
[1] "MLD_r100_198509.nc"
[1] "MLD_r100_198510.nc"
[1] "MLD_r100_198511.nc"
[1] "MLD_r100_198512.nc"
[1] "MLD_r100_198601.nc"
[1] "MLD_r100_198602.nc"
[1] "MLD_r100_198603.nc"
[1] "MLD_r100_198604.nc"
[1] "MLD_r100_198605.nc"
[1] "MLD_r100_198606.nc"
[1] "MLD_r100_198607.nc"
[1] "MLD_r100_198608.nc"
[1] "MLD_r100_198609.nc"
[1] "MLD_r100_198610.nc"
[1] "MLD_r100_198611.nc"
[1] "MLD_r100_198612.nc"
[1] "MLD_r100_198701.nc"
[1] "MLD_r100_198702.nc"
[1] "MLD_r100_198703.nc"
[1] "MLD_r100_198704.nc"
[1] "MLD_r100_198705.nc"
[1] "MLD_r100_198706.nc"
[1] "MLD_r100_198707.nc"
[1] "MLD_r100_198708.nc"
[1] "MLD_r100_198709.nc"
[1] "MLD_r100_198710.nc"
[1] "MLD_r100_198711.nc"
[1] "MLD_r100_198712.nc"
[1] "MLD_r100_198801.nc"
[1] "MLD_r100_198802.nc"
[1] "MLD_r100_198803.nc"
[1] "MLD_r100_198804.nc"
[1] "MLD_r100_198805.nc"
[1] "MLD_r100_198806.nc"
[1] "MLD_r100_198807.nc"
[1] "MLD_r100_198808.nc"
[1] "MLD_r100_198809.nc"
[1] "MLD_r100_198810.nc"
[1] "MLD_r100_198811.nc"
[1] "MLD_r100_198812.nc"
[1] "MLD_r100_198901.nc"
[1] "MLD_r100_198902.nc"
[1] "MLD_r100_198903.nc"
[1] "MLD_r100_198904.nc"
[1] "MLD_r100_198905.nc"
[1] "MLD_r100_198906.nc"
[1] "MLD_r100_198907.nc"
[1] "MLD_r100_198908.nc"
[1] "MLD_r100_198909.nc"
[1] "MLD_r100_198910.nc"
[1] "MLD_r100_198911.nc"
[1] "MLD_r100_198912.nc"
[1] "MLD_r100_199001.nc"
[1] "MLD_r100_199002.nc"
[1] "MLD_r100_199003.nc"
[1] "MLD_r100_199004.nc"
[1] "MLD_r100_199005.nc"
[1] "MLD_r100_199006.nc"
[1] "MLD_r100_199007.nc"
[1] "MLD_r100_199008.nc"
[1] "MLD_r100_199009.nc"
[1] "MLD_r100_199010.nc"
[1] "MLD_r100_199011.nc"
[1] "MLD_r100_199012.nc"
[1] "MLD_r100_199101.nc"
[1] "MLD_r100_199102.nc"
[1] "MLD_r100_199103.nc"
[1] "MLD_r100_199104.nc"
[1] "MLD_r100_199105.nc"
[1] "MLD_r100_199106.nc"
[1] "MLD_r100_199107.nc"
[1] "MLD_r100_199108.nc"
[1] "MLD_r100_199109.nc"
[1] "MLD_r100_199110.nc"
[1] "MLD_r100_199111.nc"
[1] "MLD_r100_199112.nc"
[1] "MLD_r100_199201.nc"
[1] "MLD_r100_199202.nc"
[1] "MLD_r100_199203.nc"
[1] "MLD_r100_199204.nc"
[1] "MLD_r100_199205.nc"
[1] "MLD_r100_199206.nc"
[1] "MLD_r100_199207.nc"
[1] "MLD_r100_199208.nc"
[1] "MLD_r100_199209.nc"
[1] "MLD_r100_199210.nc"
[1] "MLD_r100_199211.nc"
[1] "MLD_r100_199212.nc"
[1] "MLD_r100_199301.nc"
[1] "MLD_r100_199302.nc"
[1] "MLD_r100_199303.nc"
[1] "MLD_r100_199304.nc"
[1] "MLD_r100_199305.nc"
[1] "MLD_r100_199306.nc"
[1] "MLD_r100_199307.nc"
[1] "MLD_r100_199308.nc"
[1] "MLD_r100_199309.nc"
[1] "MLD_r100_199310.nc"
[1] "MLD_r100_199311.nc"
[1] "MLD_r100_199312.nc"
[1] "MLD_r100_199401.nc"
[1] "MLD_r100_199402.nc"
[1] "MLD_r100_199403.nc"
[1] "MLD_r100_199404.nc"
[1] "MLD_r100_199405.nc"
[1] "MLD_r100_199406.nc"
[1] "MLD_r100_199407.nc"
[1] "MLD_r100_199408.nc"
[1] "MLD_r100_199409.nc"
[1] "MLD_r100_199410.nc"
[1] "MLD_r100_199411.nc"
[1] "MLD_r100_199412.nc"
[1] "MLD_r100_199501.nc"
[1] "MLD_r100_199502.nc"
[1] "MLD_r100_199503.nc"
[1] "MLD_r100_199504.nc"
[1] "MLD_r100_199505.nc"
[1] "MLD_r100_199506.nc"
[1] "MLD_r100_199507.nc"
[1] "MLD_r100_199508.nc"
[1] "MLD_r100_199509.nc"
[1] "MLD_r100_199510.nc"
[1] "MLD_r100_199511.nc"
[1] "MLD_r100_199512.nc"
[1] "MLD_r100_199601.nc"
[1] "MLD_r100_199602.nc"
[1] "MLD_r100_199603.nc"
[1] "MLD_r100_199604.nc"
[1] "MLD_r100_199605.nc"
[1] "MLD_r100_199606.nc"
[1] "MLD_r100_199607.nc"
[1] "MLD_r100_199608.nc"
[1] "MLD_r100_199609.nc"
[1] "MLD_r100_199610.nc"
[1] "MLD_r100_199611.nc"
[1] "MLD_r100_199612.nc"
[1] "MLD_r100_199701.nc"
[1] "MLD_r100_199702.nc"
[1] "MLD_r100_199703.nc"
[1] "MLD_r100_199704.nc"
[1] "MLD_r100_199705.nc"
[1] "MLD_r100_199706.nc"
[1] "MLD_r100_199707.nc"
[1] "MLD_r100_199708.nc"
[1] "MLD_r100_199709.nc"
[1] "MLD_r100_199710.nc"
[1] "MLD_r100_199711.nc"
[1] "MLD_r100_199712.nc"
[1] "MLD_r100_199801.nc"
[1] "MLD_r100_199802.nc"
[1] "MLD_r100_199803.nc"
[1] "MLD_r100_199804.nc"
[1] "MLD_r100_199805.nc"
[1] "MLD_r100_199806.nc"
[1] "MLD_r100_199807.nc"
[1] "MLD_r100_199808.nc"
[1] "MLD_r100_199809.nc"
[1] "MLD_r100_199810.nc"
[1] "MLD_r100_199811.nc"
[1] "MLD_r100_199812.nc"
[1] "MLD_r100_199901.nc"
[1] "MLD_r100_199902.nc"
[1] "MLD_r100_199903.nc"
[1] "MLD_r100_199904.nc"
[1] "MLD_r100_199905.nc"
[1] "MLD_r100_199906.nc"
[1] "MLD_r100_199907.nc"
[1] "MLD_r100_199908.nc"
[1] "MLD_r100_199909.nc"
[1] "MLD_r100_199910.nc"
[1] "MLD_r100_199911.nc"
[1] "MLD_r100_199912.nc"
[1] "MLD_r100_200001.nc"
[1] "MLD_r100_200002.nc"
[1] "MLD_r100_200003.nc"
[1] "MLD_r100_200004.nc"
[1] "MLD_r100_200005.nc"
[1] "MLD_r100_200006.nc"
[1] "MLD_r100_200007.nc"
[1] "MLD_r100_200008.nc"
[1] "MLD_r100_200009.nc"
[1] "MLD_r100_200010.nc"
[1] "MLD_r100_200011.nc"
[1] "MLD_r100_200012.nc"
[1] "MLD_r100_200101.nc"
[1] "MLD_r100_200102.nc"
[1] "MLD_r100_200103.nc"
[1] "MLD_r100_200104.nc"
[1] "MLD_r100_200105.nc"
[1] "MLD_r100_200106.nc"
[1] "MLD_r100_200107.nc"
[1] "MLD_r100_200108.nc"
[1] "MLD_r100_200109.nc"
[1] "MLD_r100_200110.nc"
[1] "MLD_r100_200111.nc"
[1] "MLD_r100_200112.nc"
[1] "MLD_r100_200201.nc"
[1] "MLD_r100_200202.nc"
[1] "MLD_r100_200203.nc"
[1] "MLD_r100_200204.nc"
[1] "MLD_r100_200205.nc"
[1] "MLD_r100_200206.nc"
[1] "MLD_r100_200207.nc"
[1] "MLD_r100_200208.nc"
[1] "MLD_r100_200209.nc"
[1] "MLD_r100_200210.nc"
[1] "MLD_r100_200211.nc"
[1] "MLD_r100_200212.nc"
[1] "MLD_r100_200301.nc"
[1] "MLD_r100_200302.nc"
[1] "MLD_r100_200303.nc"
[1] "MLD_r100_200304.nc"
[1] "MLD_r100_200305.nc"
[1] "MLD_r100_200306.nc"
[1] "MLD_r100_200307.nc"
[1] "MLD_r100_200308.nc"
[1] "MLD_r100_200309.nc"
[1] "MLD_r100_200310.nc"
[1] "MLD_r100_200311.nc"
[1] "MLD_r100_200312.nc"
[1] "MLD_r100_200401.nc"
[1] "MLD_r100_200402.nc"
[1] "MLD_r100_200403.nc"
[1] "MLD_r100_200404.nc"
[1] "MLD_r100_200405.nc"
[1] "MLD_r100_200406.nc"
[1] "MLD_r100_200407.nc"
[1] "MLD_r100_200408.nc"
[1] "MLD_r100_200409.nc"
[1] "MLD_r100_200410.nc"
[1] "MLD_r100_200411.nc"
[1] "MLD_r100_200412.nc"
[1] "MLD_r100_200501.nc"
[1] "MLD_r100_200502.nc"
[1] "MLD_r100_200503.nc"
[1] "MLD_r100_200504.nc"
[1] "MLD_r100_200505.nc"
[1] "MLD_r100_200506.nc"
[1] "MLD_r100_200507.nc"
[1] "MLD_r100_200508.nc"
[1] "MLD_r100_200509.nc"
[1] "MLD_r100_200510.nc"
[1] "MLD_r100_200511.nc"
[1] "MLD_r100_200512.nc"
[1] "MLD_r100_200601.nc"
[1] "MLD_r100_200602.nc"
[1] "MLD_r100_200603.nc"
[1] "MLD_r100_200604.nc"
[1] "MLD_r100_200605.nc"
[1] "MLD_r100_200606.nc"
[1] "MLD_r100_200607.nc"
[1] "MLD_r100_200608.nc"
[1] "MLD_r100_200609.nc"
[1] "MLD_r100_200610.nc"
[1] "MLD_r100_200611.nc"
[1] "MLD_r100_200612.nc"
[1] "MLD_r100_200701.nc"
[1] "MLD_r100_200702.nc"
[1] "MLD_r100_200703.nc"
[1] "MLD_r100_200704.nc"
[1] "MLD_r100_200705.nc"
[1] "MLD_r100_200706.nc"
[1] "MLD_r100_200707.nc"
[1] "MLD_r100_200708.nc"
[1] "MLD_r100_200709.nc"
[1] "MLD_r100_200710.nc"
[1] "MLD_r100_200711.nc"
[1] "MLD_r100_200712.nc"
[1] "MLD_r100_200801.nc"
[1] "MLD_r100_200802.nc"
[1] "MLD_r100_200803.nc"
[1] "MLD_r100_200804.nc"
[1] "MLD_r100_200805.nc"
[1] "MLD_r100_200806.nc"
[1] "MLD_r100_200807.nc"
[1] "MLD_r100_200808.nc"
[1] "MLD_r100_200809.nc"
[1] "MLD_r100_200810.nc"
[1] "MLD_r100_200811.nc"
[1] "MLD_r100_200812.nc"
[1] "MLD_r100_200901.nc"
[1] "MLD_r100_200902.nc"
[1] "MLD_r100_200903.nc"
[1] "MLD_r100_200904.nc"
[1] "MLD_r100_200905.nc"
[1] "MLD_r100_200906.nc"
[1] "MLD_r100_200907.nc"
[1] "MLD_r100_200908.nc"
[1] "MLD_r100_200909.nc"
[1] "MLD_r100_200910.nc"
[1] "MLD_r100_200911.nc"
[1] "MLD_r100_200912.nc"
[1] "MLD_r100_201001.nc"
[1] "MLD_r100_201002.nc"
[1] "MLD_r100_201003.nc"
[1] "MLD_r100_201004.nc"
[1] "MLD_r100_201005.nc"
[1] "MLD_r100_201006.nc"
[1] "MLD_r100_201007.nc"
[1] "MLD_r100_201008.nc"
[1] "MLD_r100_201009.nc"
[1] "MLD_r100_201010.nc"
[1] "MLD_r100_201011.nc"
[1] "MLD_r100_201012.nc"
[1] "MLD_r100_201101.nc"
[1] "MLD_r100_201102.nc"
[1] "MLD_r100_201103.nc"
[1] "MLD_r100_201104.nc"
[1] "MLD_r100_201105.nc"
[1] "MLD_r100_201106.nc"
[1] "MLD_r100_201107.nc"
[1] "MLD_r100_201108.nc"
[1] "MLD_r100_201109.nc"
[1] "MLD_r100_201110.nc"
[1] "MLD_r100_201111.nc"
[1] "MLD_r100_201112.nc"
[1] "MLD_r100_201201.nc"
[1] "MLD_r100_201202.nc"
[1] "MLD_r100_201203.nc"
[1] "MLD_r100_201204.nc"
[1] "MLD_r100_201205.nc"
[1] "MLD_r100_201206.nc"
[1] "MLD_r100_201207.nc"
[1] "MLD_r100_201208.nc"
[1] "MLD_r100_201209.nc"
[1] "MLD_r100_201210.nc"
[1] "MLD_r100_201211.nc"
[1] "MLD_r100_201212.nc"
[1] "MLD_r100_201301.nc"
[1] "MLD_r100_201302.nc"
[1] "MLD_r100_201303.nc"
[1] "MLD_r100_201304.nc"
[1] "MLD_r100_201305.nc"
[1] "MLD_r100_201306.nc"
[1] "MLD_r100_201307.nc"
[1] "MLD_r100_201308.nc"
[1] "MLD_r100_201309.nc"
[1] "MLD_r100_201310.nc"
[1] "MLD_r100_201311.nc"
[1] "MLD_r100_201312.nc"
[1] "MLD_r100_201401.nc"
[1] "MLD_r100_201402.nc"
[1] "MLD_r100_201403.nc"
[1] "MLD_r100_201404.nc"
[1] "MLD_r100_201405.nc"
[1] "MLD_r100_201406.nc"
[1] "MLD_r100_201407.nc"
[1] "MLD_r100_201408.nc"
[1] "MLD_r100_201409.nc"
[1] "MLD_r100_201410.nc"
[1] "MLD_r100_201411.nc"
[1] "MLD_r100_201412.nc"
[1] "MLD_r100_201501.nc"
[1] "MLD_r100_201502.nc"
[1] "MLD_r100_201503.nc"
[1] "MLD_r100_201504.nc"
[1] "MLD_r100_201505.nc"
[1] "MLD_r100_201506.nc"
[1] "MLD_r100_201507.nc"
[1] "MLD_r100_201508.nc"
[1] "MLD_r100_201509.nc"
[1] "MLD_r100_201510.nc"
[1] "MLD_r100_201511.nc"
[1] "MLD_r100_201512.nc"
[1] "MLD_r100_201601.nc"
[1] "MLD_r100_201602.nc"
[1] "MLD_r100_201603.nc"
[1] "MLD_r100_201604.nc"
[1] "MLD_r100_201605.nc"
[1] "MLD_r100_201606.nc"
[1] "MLD_r100_201607.nc"
[1] "MLD_r100_201608.nc"
[1] "MLD_r100_201609.nc"
[1] "MLD_r100_201610.nc"
[1] "MLD_r100_201611.nc"
[1] "MLD_r100_201612.nc"
[1] "MLD_r100_201701.nc"
[1] "MLD_r100_201702.nc"
[1] "MLD_r100_201703.nc"
[1] "MLD_r100_201704.nc"
[1] "MLD_r100_201705.nc"
[1] "MLD_r100_201706.nc"
[1] "MLD_r100_201707.nc"
[1] "MLD_r100_201708.nc"
[1] "MLD_r100_201709.nc"
[1] "MLD_r100_201710.nc"
[1] "MLD_r100_201711.nc"
[1] "MLD_r100_201712.nc"
[1] "MLD_r100_201801.nc"
[1] "MLD_r100_201802.nc"
[1] "MLD_r100_201803.nc"
[1] "MLD_r100_201804.nc"
[1] "MLD_r100_201805.nc"
[1] "MLD_r100_201806.nc"
[1] "MLD_r100_201807.nc"
[1] "MLD_r100_201808.nc"
[1] "MLD_r100_201809.nc"
[1] "MLD_r100_201810.nc"
[1] "MLD_r100_201811.nc"
[1] "MLD_r100_201812.nc"
[1] "MLD_r100_201901.nc"
[1] "MLD_r100_201902.nc"
[1] "MLD_r100_201903.nc"
[1] "MLD_r100_201904.nc"
[1] "MLD_r100_201905.nc"
[1] "MLD_r100_201906.nc"
[1] "MLD_r100_201907.nc"
[1] "MLD_r100_201908.nc"
[1] "MLD_r100_201909.nc"
[1] "MLD_r100_201910.nc"
[1] "MLD_r100_201911.nc"
[1] "MLD_r100_201912.nc"
[1] "MLD_r100_202001.nc"
[1] "MLD_r100_202002.nc"
[1] "MLD_r100_202003.nc"
[1] "MLD_r100_202004.nc"
[1] "MLD_r100_202005.nc"
[1] "MLD_r100_202006.nc"
[1] "MLD_r100_202007.nc"
[1] "MLD_r100_202008.nc"
[1] "MLD_r100_202009.nc"
[1] "MLD_r100_202010.nc"
[1] "MLD_r100_202011.nc"
[1] "MLD_r100_202012.nc"
[1] "MLD_r100_202101.nc"
[1] "MLD_r100_202102.nc"
[1] "MLD_r100_202103.nc"
[1] "MLD_r100_202104.nc"
[1] "MLD_r100_202105.nc"
[1] "MLD_r100_202106.nc"
[1] "MLD_r100_202107.nc"
[1] "MLD_r100_202108.nc"
[1] "MLD_r100_202109.nc"
[1] "MLD_r100_202110.nc"
[1] "MLD_r100_202111.nc"
[1] "MLD_r100_202112.nc"
[1] "MLD_r100_202201.nc"
[1] "MLD_r100_202202.nc"
[1] "MLD_r100_202203.nc"
[1] "MLD_r100_202204.nc"
[1] "MLD_r100_202205.nc"
[1] "MLD_r100_202206.nc"
[1] "MLD_r100_202207.nc"
[1] "MLD_r100_202208.nc"
[1] "MLD_r100_202209.nc"
[1] "MLD_r100_202210.nc"
[1] "MLD_r100_202211.nc"
[1] "MLD_r100_202212.nc"
[1] "MLD_r100_202301.nc"
[1] "MLD_r100_202302.nc"
[1] "MLD_r100_202303.nc"
[1] "MLD_r100_202304.nc"
[1] "MLD_r100_202305.nc"
[1] "MLD_r100_202306.nc"
[1] "MLD_r100_202307.nc"
[1] "MLD_r100_202308.nc"
[1] "MLD_r100_202309.nc"
[1] "Sea_Ice_r100_198501.nc"
[1] "Sea_Ice_r100_198502.nc"
[1] "Sea_Ice_r100_198503.nc"
[1] "Sea_Ice_r100_198504.nc"
[1] "Sea_Ice_r100_198505.nc"
[1] "Sea_Ice_r100_198506.nc"
[1] "Sea_Ice_r100_198507.nc"
[1] "Sea_Ice_r100_198508.nc"
[1] "Sea_Ice_r100_198509.nc"
[1] "Sea_Ice_r100_198510.nc"
[1] "Sea_Ice_r100_198511.nc"
[1] "Sea_Ice_r100_198512.nc"
[1] "Sea_Ice_r100_198601.nc"
[1] "Sea_Ice_r100_198602.nc"
[1] "Sea_Ice_r100_198603.nc"
[1] "Sea_Ice_r100_198604.nc"
[1] "Sea_Ice_r100_198605.nc"
[1] "Sea_Ice_r100_198606.nc"
[1] "Sea_Ice_r100_198607.nc"
[1] "Sea_Ice_r100_198608.nc"
[1] "Sea_Ice_r100_198609.nc"
[1] "Sea_Ice_r100_198610.nc"
[1] "Sea_Ice_r100_198611.nc"
[1] "Sea_Ice_r100_198612.nc"
[1] "Sea_Ice_r100_198701.nc"
[1] "Sea_Ice_r100_198702.nc"
[1] "Sea_Ice_r100_198703.nc"
[1] "Sea_Ice_r100_198704.nc"
[1] "Sea_Ice_r100_198705.nc"
[1] "Sea_Ice_r100_198706.nc"
[1] "Sea_Ice_r100_198707.nc"
[1] "Sea_Ice_r100_198708.nc"
[1] "Sea_Ice_r100_198709.nc"
[1] "Sea_Ice_r100_198710.nc"
[1] "Sea_Ice_r100_198711.nc"
[1] "Sea_Ice_r100_198712.nc"
[1] "Sea_Ice_r100_198801.nc"
[1] "Sea_Ice_r100_198802.nc"
[1] "Sea_Ice_r100_198803.nc"
[1] "Sea_Ice_r100_198804.nc"
[1] "Sea_Ice_r100_198805.nc"
[1] "Sea_Ice_r100_198806.nc"
[1] "Sea_Ice_r100_198807.nc"
[1] "Sea_Ice_r100_198808.nc"
[1] "Sea_Ice_r100_198809.nc"
[1] "Sea_Ice_r100_198810.nc"
[1] "Sea_Ice_r100_198811.nc"
[1] "Sea_Ice_r100_198812.nc"
[1] "Sea_Ice_r100_198901.nc"
[1] "Sea_Ice_r100_198902.nc"
[1] "Sea_Ice_r100_198903.nc"
[1] "Sea_Ice_r100_198904.nc"
[1] "Sea_Ice_r100_198905.nc"
[1] "Sea_Ice_r100_198906.nc"
[1] "Sea_Ice_r100_198907.nc"
[1] "Sea_Ice_r100_198908.nc"
[1] "Sea_Ice_r100_198909.nc"
[1] "Sea_Ice_r100_198910.nc"
[1] "Sea_Ice_r100_198911.nc"
[1] "Sea_Ice_r100_198912.nc"
[1] "Sea_Ice_r100_199001.nc"
[1] "Sea_Ice_r100_199002.nc"
[1] "Sea_Ice_r100_199003.nc"
[1] "Sea_Ice_r100_199004.nc"
[1] "Sea_Ice_r100_199005.nc"
[1] "Sea_Ice_r100_199006.nc"
[1] "Sea_Ice_r100_199007.nc"
[1] "Sea_Ice_r100_199008.nc"
[1] "Sea_Ice_r100_199009.nc"
[1] "Sea_Ice_r100_199010.nc"
[1] "Sea_Ice_r100_199011.nc"
[1] "Sea_Ice_r100_199012.nc"
[1] "Sea_Ice_r100_199101.nc"
[1] "Sea_Ice_r100_199102.nc"
[1] "Sea_Ice_r100_199103.nc"
[1] "Sea_Ice_r100_199104.nc"
[1] "Sea_Ice_r100_199105.nc"
[1] "Sea_Ice_r100_199106.nc"
[1] "Sea_Ice_r100_199107.nc"
[1] "Sea_Ice_r100_199108.nc"
[1] "Sea_Ice_r100_199109.nc"
[1] "Sea_Ice_r100_199110.nc"
[1] "Sea_Ice_r100_199111.nc"
[1] "Sea_Ice_r100_199112.nc"
[1] "Sea_Ice_r100_199201.nc"
[1] "Sea_Ice_r100_199202.nc"
[1] "Sea_Ice_r100_199203.nc"
[1] "Sea_Ice_r100_199204.nc"
[1] "Sea_Ice_r100_199205.nc"
[1] "Sea_Ice_r100_199206.nc"
[1] "Sea_Ice_r100_199207.nc"
[1] "Sea_Ice_r100_199208.nc"
[1] "Sea_Ice_r100_199209.nc"
[1] "Sea_Ice_r100_199210.nc"
[1] "Sea_Ice_r100_199211.nc"
[1] "Sea_Ice_r100_199212.nc"
[1] "Sea_Ice_r100_199301.nc"
[1] "Sea_Ice_r100_199302.nc"
[1] "Sea_Ice_r100_199303.nc"
[1] "Sea_Ice_r100_199304.nc"
[1] "Sea_Ice_r100_199305.nc"
[1] "Sea_Ice_r100_199306.nc"
[1] "Sea_Ice_r100_199307.nc"
[1] "Sea_Ice_r100_199308.nc"
[1] "Sea_Ice_r100_199309.nc"
[1] "Sea_Ice_r100_199310.nc"
[1] "Sea_Ice_r100_199311.nc"
[1] "Sea_Ice_r100_199312.nc"
[1] "Sea_Ice_r100_199401.nc"
[1] "Sea_Ice_r100_199402.nc"
[1] "Sea_Ice_r100_199403.nc"
[1] "Sea_Ice_r100_199404.nc"
[1] "Sea_Ice_r100_199405.nc"
[1] "Sea_Ice_r100_199406.nc"
[1] "Sea_Ice_r100_199407.nc"
[1] "Sea_Ice_r100_199408.nc"
[1] "Sea_Ice_r100_199409.nc"
[1] "Sea_Ice_r100_199410.nc"
[1] "Sea_Ice_r100_199411.nc"
[1] "Sea_Ice_r100_199412.nc"
[1] "Sea_Ice_r100_199501.nc"
[1] "Sea_Ice_r100_199502.nc"
[1] "Sea_Ice_r100_199503.nc"
[1] "Sea_Ice_r100_199504.nc"
[1] "Sea_Ice_r100_199505.nc"
[1] "Sea_Ice_r100_199506.nc"
[1] "Sea_Ice_r100_199507.nc"
[1] "Sea_Ice_r100_199508.nc"
[1] "Sea_Ice_r100_199509.nc"
[1] "Sea_Ice_r100_199510.nc"
[1] "Sea_Ice_r100_199511.nc"
[1] "Sea_Ice_r100_199512.nc"
[1] "Sea_Ice_r100_199601.nc"
[1] "Sea_Ice_r100_199602.nc"
[1] "Sea_Ice_r100_199603.nc"
[1] "Sea_Ice_r100_199604.nc"
[1] "Sea_Ice_r100_199605.nc"
[1] "Sea_Ice_r100_199606.nc"
[1] "Sea_Ice_r100_199607.nc"
[1] "Sea_Ice_r100_199608.nc"
[1] "Sea_Ice_r100_199609.nc"
[1] "Sea_Ice_r100_199610.nc"
[1] "Sea_Ice_r100_199611.nc"
[1] "Sea_Ice_r100_199612.nc"
[1] "Sea_Ice_r100_199701.nc"
[1] "Sea_Ice_r100_199702.nc"
[1] "Sea_Ice_r100_199703.nc"
[1] "Sea_Ice_r100_199704.nc"
[1] "Sea_Ice_r100_199705.nc"
[1] "Sea_Ice_r100_199706.nc"
[1] "Sea_Ice_r100_199707.nc"
[1] "Sea_Ice_r100_199708.nc"
[1] "Sea_Ice_r100_199709.nc"
[1] "Sea_Ice_r100_199710.nc"
[1] "Sea_Ice_r100_199711.nc"
[1] "Sea_Ice_r100_199712.nc"
[1] "Sea_Ice_r100_199801.nc"
[1] "Sea_Ice_r100_199802.nc"
[1] "Sea_Ice_r100_199803.nc"
[1] "Sea_Ice_r100_199804.nc"
[1] "Sea_Ice_r100_199805.nc"
[1] "Sea_Ice_r100_199806.nc"
[1] "Sea_Ice_r100_199807.nc"
[1] "Sea_Ice_r100_199808.nc"
[1] "Sea_Ice_r100_199809.nc"
[1] "Sea_Ice_r100_199810.nc"
[1] "Sea_Ice_r100_199811.nc"
[1] "Sea_Ice_r100_199812.nc"
[1] "Sea_Ice_r100_199901.nc"
[1] "Sea_Ice_r100_199902.nc"
[1] "Sea_Ice_r100_199903.nc"
[1] "Sea_Ice_r100_199904.nc"
[1] "Sea_Ice_r100_199905.nc"
[1] "Sea_Ice_r100_199906.nc"
[1] "Sea_Ice_r100_199907.nc"
[1] "Sea_Ice_r100_199908.nc"
[1] "Sea_Ice_r100_199909.nc"
[1] "Sea_Ice_r100_199910.nc"
[1] "Sea_Ice_r100_199911.nc"
[1] "Sea_Ice_r100_199912.nc"
[1] "Sea_Ice_r100_200001.nc"
[1] "Sea_Ice_r100_200002.nc"
[1] "Sea_Ice_r100_200003.nc"
[1] "Sea_Ice_r100_200004.nc"
[1] "Sea_Ice_r100_200005.nc"
[1] "Sea_Ice_r100_200006.nc"
[1] "Sea_Ice_r100_200007.nc"
[1] "Sea_Ice_r100_200008.nc"
[1] "Sea_Ice_r100_200009.nc"
[1] "Sea_Ice_r100_200010.nc"
[1] "Sea_Ice_r100_200011.nc"
[1] "Sea_Ice_r100_200012.nc"
[1] "Sea_Ice_r100_200101.nc"
[1] "Sea_Ice_r100_200102.nc"
[1] "Sea_Ice_r100_200103.nc"
[1] "Sea_Ice_r100_200104.nc"
[1] "Sea_Ice_r100_200105.nc"
[1] "Sea_Ice_r100_200106.nc"
[1] "Sea_Ice_r100_200107.nc"
[1] "Sea_Ice_r100_200108.nc"
[1] "Sea_Ice_r100_200109.nc"
[1] "Sea_Ice_r100_200110.nc"
[1] "Sea_Ice_r100_200111.nc"
[1] "Sea_Ice_r100_200112.nc"
[1] "Sea_Ice_r100_200201.nc"
[1] "Sea_Ice_r100_200202.nc"
[1] "Sea_Ice_r100_200203.nc"
[1] "Sea_Ice_r100_200204.nc"
[1] "Sea_Ice_r100_200205.nc"
[1] "Sea_Ice_r100_200206.nc"
[1] "Sea_Ice_r100_200207.nc"
[1] "Sea_Ice_r100_200208.nc"
[1] "Sea_Ice_r100_200209.nc"
[1] "Sea_Ice_r100_200210.nc"
[1] "Sea_Ice_r100_200211.nc"
[1] "Sea_Ice_r100_200212.nc"
[1] "Sea_Ice_r100_200301.nc"
[1] "Sea_Ice_r100_200302.nc"
[1] "Sea_Ice_r100_200303.nc"
[1] "Sea_Ice_r100_200304.nc"
[1] "Sea_Ice_r100_200305.nc"
[1] "Sea_Ice_r100_200306.nc"
[1] "Sea_Ice_r100_200307.nc"
[1] "Sea_Ice_r100_200308.nc"
[1] "Sea_Ice_r100_200309.nc"
[1] "Sea_Ice_r100_200310.nc"
[1] "Sea_Ice_r100_200311.nc"
[1] "Sea_Ice_r100_200312.nc"
[1] "Sea_Ice_r100_200401.nc"
[1] "Sea_Ice_r100_200402.nc"
[1] "Sea_Ice_r100_200403.nc"
[1] "Sea_Ice_r100_200404.nc"
[1] "Sea_Ice_r100_200405.nc"
[1] "Sea_Ice_r100_200406.nc"
[1] "Sea_Ice_r100_200407.nc"
[1] "Sea_Ice_r100_200408.nc"
[1] "Sea_Ice_r100_200409.nc"
[1] "Sea_Ice_r100_200410.nc"
[1] "Sea_Ice_r100_200411.nc"
[1] "Sea_Ice_r100_200412.nc"
[1] "Sea_Ice_r100_200501.nc"
[1] "Sea_Ice_r100_200502.nc"
[1] "Sea_Ice_r100_200503.nc"
[1] "Sea_Ice_r100_200504.nc"
[1] "Sea_Ice_r100_200505.nc"
[1] "Sea_Ice_r100_200506.nc"
[1] "Sea_Ice_r100_200507.nc"
[1] "Sea_Ice_r100_200508.nc"
[1] "Sea_Ice_r100_200509.nc"
[1] "Sea_Ice_r100_200510.nc"
[1] "Sea_Ice_r100_200511.nc"
[1] "Sea_Ice_r100_200512.nc"
[1] "Sea_Ice_r100_200601.nc"
[1] "Sea_Ice_r100_200602.nc"
[1] "Sea_Ice_r100_200603.nc"
[1] "Sea_Ice_r100_200604.nc"
[1] "Sea_Ice_r100_200605.nc"
[1] "Sea_Ice_r100_200606.nc"
[1] "Sea_Ice_r100_200607.nc"
[1] "Sea_Ice_r100_200608.nc"
[1] "Sea_Ice_r100_200609.nc"
[1] "Sea_Ice_r100_200610.nc"
[1] "Sea_Ice_r100_200611.nc"
[1] "Sea_Ice_r100_200612.nc"
[1] "Sea_Ice_r100_200701.nc"
[1] "Sea_Ice_r100_200702.nc"
[1] "Sea_Ice_r100_200703.nc"
[1] "Sea_Ice_r100_200704.nc"
[1] "Sea_Ice_r100_200705.nc"
[1] "Sea_Ice_r100_200706.nc"
[1] "Sea_Ice_r100_200707.nc"
[1] "Sea_Ice_r100_200708.nc"
[1] "Sea_Ice_r100_200709.nc"
[1] "Sea_Ice_r100_200710.nc"
[1] "Sea_Ice_r100_200711.nc"
[1] "Sea_Ice_r100_200712.nc"
[1] "Sea_Ice_r100_200801.nc"
[1] "Sea_Ice_r100_200802.nc"
[1] "Sea_Ice_r100_200803.nc"
[1] "Sea_Ice_r100_200804.nc"
[1] "Sea_Ice_r100_200805.nc"
[1] "Sea_Ice_r100_200806.nc"
[1] "Sea_Ice_r100_200807.nc"
[1] "Sea_Ice_r100_200808.nc"
[1] "Sea_Ice_r100_200809.nc"
[1] "Sea_Ice_r100_200810.nc"
[1] "Sea_Ice_r100_200811.nc"
[1] "Sea_Ice_r100_200812.nc"
[1] "Sea_Ice_r100_200901.nc"
[1] "Sea_Ice_r100_200902.nc"
[1] "Sea_Ice_r100_200903.nc"
[1] "Sea_Ice_r100_200904.nc"
[1] "Sea_Ice_r100_200905.nc"
[1] "Sea_Ice_r100_200906.nc"
[1] "Sea_Ice_r100_200907.nc"
[1] "Sea_Ice_r100_200908.nc"
[1] "Sea_Ice_r100_200909.nc"
[1] "Sea_Ice_r100_200910.nc"
[1] "Sea_Ice_r100_200911.nc"
[1] "Sea_Ice_r100_200912.nc"
[1] "Sea_Ice_r100_201001.nc"
[1] "Sea_Ice_r100_201002.nc"
[1] "Sea_Ice_r100_201003.nc"
[1] "Sea_Ice_r100_201004.nc"
[1] "Sea_Ice_r100_201005.nc"
[1] "Sea_Ice_r100_201006.nc"
[1] "Sea_Ice_r100_201007.nc"
[1] "Sea_Ice_r100_201008.nc"
[1] "Sea_Ice_r100_201009.nc"
[1] "Sea_Ice_r100_201010.nc"
[1] "Sea_Ice_r100_201011.nc"
[1] "Sea_Ice_r100_201012.nc"
[1] "Sea_Ice_r100_201101.nc"
[1] "Sea_Ice_r100_201102.nc"
[1] "Sea_Ice_r100_201103.nc"
[1] "Sea_Ice_r100_201104.nc"
[1] "Sea_Ice_r100_201105.nc"
[1] "Sea_Ice_r100_201106.nc"
[1] "Sea_Ice_r100_201107.nc"
[1] "Sea_Ice_r100_201108.nc"
[1] "Sea_Ice_r100_201109.nc"
[1] "Sea_Ice_r100_201110.nc"
[1] "Sea_Ice_r100_201111.nc"
[1] "Sea_Ice_r100_201112.nc"
[1] "Sea_Ice_r100_201201.nc"
[1] "Sea_Ice_r100_201202.nc"
[1] "Sea_Ice_r100_201203.nc"
[1] "Sea_Ice_r100_201204.nc"
[1] "Sea_Ice_r100_201205.nc"
[1] "Sea_Ice_r100_201206.nc"
[1] "Sea_Ice_r100_201207.nc"
[1] "Sea_Ice_r100_201208.nc"
[1] "Sea_Ice_r100_201209.nc"
[1] "Sea_Ice_r100_201210.nc"
[1] "Sea_Ice_r100_201211.nc"
[1] "Sea_Ice_r100_201212.nc"
[1] "Sea_Ice_r100_201301.nc"
[1] "Sea_Ice_r100_201302.nc"
[1] "Sea_Ice_r100_201303.nc"
[1] "Sea_Ice_r100_201304.nc"
[1] "Sea_Ice_r100_201305.nc"
[1] "Sea_Ice_r100_201306.nc"
[1] "Sea_Ice_r100_201307.nc"
[1] "Sea_Ice_r100_201308.nc"
[1] "Sea_Ice_r100_201309.nc"
[1] "Sea_Ice_r100_201310.nc"
[1] "Sea_Ice_r100_201311.nc"
[1] "Sea_Ice_r100_201312.nc"
[1] "Sea_Ice_r100_201401.nc"
[1] "Sea_Ice_r100_201402.nc"
[1] "Sea_Ice_r100_201403.nc"
[1] "Sea_Ice_r100_201404.nc"
[1] "Sea_Ice_r100_201405.nc"
[1] "Sea_Ice_r100_201406.nc"
[1] "Sea_Ice_r100_201407.nc"
[1] "Sea_Ice_r100_201408.nc"
[1] "Sea_Ice_r100_201409.nc"
[1] "Sea_Ice_r100_201410.nc"
[1] "Sea_Ice_r100_201411.nc"
[1] "Sea_Ice_r100_201412.nc"
[1] "Sea_Ice_r100_201501.nc"
[1] "Sea_Ice_r100_201502.nc"
[1] "Sea_Ice_r100_201503.nc"
[1] "Sea_Ice_r100_201504.nc"
[1] "Sea_Ice_r100_201505.nc"
[1] "Sea_Ice_r100_201506.nc"
[1] "Sea_Ice_r100_201507.nc"
[1] "Sea_Ice_r100_201508.nc"
[1] "Sea_Ice_r100_201509.nc"
[1] "Sea_Ice_r100_201510.nc"
[1] "Sea_Ice_r100_201511.nc"
[1] "Sea_Ice_r100_201512.nc"
[1] "Sea_Ice_r100_201601.nc"
[1] "Sea_Ice_r100_201602.nc"
[1] "Sea_Ice_r100_201603.nc"
[1] "Sea_Ice_r100_201604.nc"
[1] "Sea_Ice_r100_201605.nc"
[1] "Sea_Ice_r100_201606.nc"
[1] "Sea_Ice_r100_201607.nc"
[1] "Sea_Ice_r100_201608.nc"
[1] "Sea_Ice_r100_201609.nc"
[1] "Sea_Ice_r100_201610.nc"
[1] "Sea_Ice_r100_201611.nc"
[1] "Sea_Ice_r100_201612.nc"
[1] "Sea_Ice_r100_201701.nc"
[1] "Sea_Ice_r100_201702.nc"
[1] "Sea_Ice_r100_201703.nc"
[1] "Sea_Ice_r100_201704.nc"
[1] "Sea_Ice_r100_201705.nc"
[1] "Sea_Ice_r100_201706.nc"
[1] "Sea_Ice_r100_201707.nc"
[1] "Sea_Ice_r100_201708.nc"
[1] "Sea_Ice_r100_201709.nc"
[1] "Sea_Ice_r100_201710.nc"
[1] "Sea_Ice_r100_201711.nc"
[1] "Sea_Ice_r100_201712.nc"
[1] "Sea_Ice_r100_201801.nc"
[1] "Sea_Ice_r100_201802.nc"
[1] "Sea_Ice_r100_201803.nc"
[1] "Sea_Ice_r100_201804.nc"
[1] "Sea_Ice_r100_201805.nc"
[1] "Sea_Ice_r100_201806.nc"
[1] "Sea_Ice_r100_201807.nc"
[1] "Sea_Ice_r100_201808.nc"
[1] "Sea_Ice_r100_201809.nc"
[1] "Sea_Ice_r100_201810.nc"
[1] "Sea_Ice_r100_201811.nc"
[1] "Sea_Ice_r100_201812.nc"
[1] "Sea_Ice_r100_201901.nc"
[1] "Sea_Ice_r100_201902.nc"
[1] "Sea_Ice_r100_201903.nc"
[1] "Sea_Ice_r100_201904.nc"
[1] "Sea_Ice_r100_201905.nc"
[1] "Sea_Ice_r100_201906.nc"
[1] "Sea_Ice_r100_201907.nc"
[1] "Sea_Ice_r100_201908.nc"
[1] "Sea_Ice_r100_201909.nc"
[1] "Sea_Ice_r100_201910.nc"
[1] "Sea_Ice_r100_201911.nc"
[1] "Sea_Ice_r100_201912.nc"
[1] "Sea_Ice_r100_202001.nc"
[1] "Sea_Ice_r100_202002.nc"
[1] "Sea_Ice_r100_202003.nc"
[1] "Sea_Ice_r100_202004.nc"
[1] "Sea_Ice_r100_202005.nc"
[1] "Sea_Ice_r100_202006.nc"
[1] "Sea_Ice_r100_202007.nc"
[1] "Sea_Ice_r100_202008.nc"
[1] "Sea_Ice_r100_202009.nc"
[1] "Sea_Ice_r100_202010.nc"
[1] "Sea_Ice_r100_202011.nc"
[1] "Sea_Ice_r100_202012.nc"
[1] "Sea_Ice_r100_202101.nc"
[1] "Sea_Ice_r100_202102.nc"
[1] "Sea_Ice_r100_202103.nc"
[1] "Sea_Ice_r100_202104.nc"
[1] "Sea_Ice_r100_202105.nc"
[1] "Sea_Ice_r100_202106.nc"
[1] "Sea_Ice_r100_202107.nc"
[1] "Sea_Ice_r100_202108.nc"
[1] "Sea_Ice_r100_202109.nc"
[1] "Sea_Ice_r100_202110.nc"
[1] "Sea_Ice_r100_202111.nc"
[1] "Sea_Ice_r100_202112.nc"
[1] "Sea_Ice_r100_202201.nc"
[1] "Sea_Ice_r100_202202.nc"
[1] "Sea_Ice_r100_202203.nc"
[1] "Sea_Ice_r100_202204.nc"
[1] "Sea_Ice_r100_202205.nc"
[1] "Sea_Ice_r100_202206.nc"
[1] "Sea_Ice_r100_202207.nc"
[1] "Sea_Ice_r100_202208.nc"
[1] "Sea_Ice_r100_202209.nc"
[1] "Sea_Ice_r100_202210.nc"
[1] "Sea_Ice_r100_202211.nc"
[1] "Sea_Ice_r100_202212.nc"
[1] "Sea_Ice_r100_202301.nc"
[1] "Sea_Ice_r100_202302.nc"
[1] "Sea_Ice_r100_202303.nc"
[1] "Sea_Ice_r100_202304.nc"
[1] "Sea_Ice_r100_202305.nc"
[1] "Sea_Ice_r100_202306.nc"
[1] "Sea_Ice_r100_202307.nc"
[1] "Sea_Ice_r100_202308.nc"
[1] "Sea_Ice_r100_202309.nc"
[1] "SSH_r100_198501.nc"
[1] "SSH_r100_198502.nc"
[1] "SSH_r100_198503.nc"
[1] "SSH_r100_198504.nc"
[1] "SSH_r100_198505.nc"
[1] "SSH_r100_198506.nc"
[1] "SSH_r100_198507.nc"
[1] "SSH_r100_198508.nc"
[1] "SSH_r100_198509.nc"
[1] "SSH_r100_198510.nc"
[1] "SSH_r100_198511.nc"
[1] "SSH_r100_198512.nc"
[1] "SSH_r100_198601.nc"
[1] "SSH_r100_198602.nc"
[1] "SSH_r100_198603.nc"
[1] "SSH_r100_198604.nc"
[1] "SSH_r100_198605.nc"
[1] "SSH_r100_198606.nc"
[1] "SSH_r100_198607.nc"
[1] "SSH_r100_198608.nc"
[1] "SSH_r100_198609.nc"
[1] "SSH_r100_198610.nc"
[1] "SSH_r100_198611.nc"
[1] "SSH_r100_198612.nc"
[1] "SSH_r100_198701.nc"
[1] "SSH_r100_198702.nc"
[1] "SSH_r100_198703.nc"
[1] "SSH_r100_198704.nc"
[1] "SSH_r100_198705.nc"
[1] "SSH_r100_198706.nc"
[1] "SSH_r100_198707.nc"
[1] "SSH_r100_198708.nc"
[1] "SSH_r100_198709.nc"
[1] "SSH_r100_198710.nc"
[1] "SSH_r100_198711.nc"
[1] "SSH_r100_198712.nc"
[1] "SSH_r100_198801.nc"
[1] "SSH_r100_198802.nc"
[1] "SSH_r100_198803.nc"
[1] "SSH_r100_198804.nc"
[1] "SSH_r100_198805.nc"
[1] "SSH_r100_198806.nc"
[1] "SSH_r100_198807.nc"
[1] "SSH_r100_198808.nc"
[1] "SSH_r100_198809.nc"
[1] "SSH_r100_198810.nc"
[1] "SSH_r100_198811.nc"
[1] "SSH_r100_198812.nc"
[1] "SSH_r100_198901.nc"
[1] "SSH_r100_198902.nc"
[1] "SSH_r100_198903.nc"
[1] "SSH_r100_198904.nc"
[1] "SSH_r100_198905.nc"
[1] "SSH_r100_198906.nc"
[1] "SSH_r100_198907.nc"
[1] "SSH_r100_198908.nc"
[1] "SSH_r100_198909.nc"
[1] "SSH_r100_198910.nc"
[1] "SSH_r100_198911.nc"
[1] "SSH_r100_198912.nc"
[1] "SSH_r100_199001.nc"
[1] "SSH_r100_199002.nc"
[1] "SSH_r100_199003.nc"
[1] "SSH_r100_199004.nc"
[1] "SSH_r100_199005.nc"
[1] "SSH_r100_199006.nc"
[1] "SSH_r100_199007.nc"
[1] "SSH_r100_199008.nc"
[1] "SSH_r100_199009.nc"
[1] "SSH_r100_199010.nc"
[1] "SSH_r100_199011.nc"
[1] "SSH_r100_199012.nc"
[1] "SSH_r100_199101.nc"
[1] "SSH_r100_199102.nc"
[1] "SSH_r100_199103.nc"
[1] "SSH_r100_199104.nc"
[1] "SSH_r100_199105.nc"
[1] "SSH_r100_199106.nc"
[1] "SSH_r100_199107.nc"
[1] "SSH_r100_199108.nc"
[1] "SSH_r100_199109.nc"
[1] "SSH_r100_199110.nc"
[1] "SSH_r100_199111.nc"
[1] "SSH_r100_199112.nc"
[1] "SSH_r100_199201.nc"
[1] "SSH_r100_199202.nc"
[1] "SSH_r100_199203.nc"
[1] "SSH_r100_199204.nc"
[1] "SSH_r100_199205.nc"
[1] "SSH_r100_199206.nc"
[1] "SSH_r100_199207.nc"
[1] "SSH_r100_199208.nc"
[1] "SSH_r100_199209.nc"
[1] "SSH_r100_199210.nc"
[1] "SSH_r100_199211.nc"
[1] "SSH_r100_199212.nc"
[1] "SSH_r100_199301.nc"
[1] "SSH_r100_199302.nc"
[1] "SSH_r100_199303.nc"
[1] "SSH_r100_199304.nc"
[1] "SSH_r100_199305.nc"
[1] "SSH_r100_199306.nc"
[1] "SSH_r100_199307.nc"
[1] "SSH_r100_199308.nc"
[1] "SSH_r100_199309.nc"
[1] "SSH_r100_199310.nc"
[1] "SSH_r100_199311.nc"
[1] "SSH_r100_199312.nc"
[1] "SSH_r100_199401.nc"
[1] "SSH_r100_199402.nc"
[1] "SSH_r100_199403.nc"
[1] "SSH_r100_199404.nc"
[1] "SSH_r100_199405.nc"
[1] "SSH_r100_199406.nc"
[1] "SSH_r100_199407.nc"
[1] "SSH_r100_199408.nc"
[1] "SSH_r100_199409.nc"
[1] "SSH_r100_199410.nc"
[1] "SSH_r100_199411.nc"
[1] "SSH_r100_199412.nc"
[1] "SSH_r100_199501.nc"
[1] "SSH_r100_199502.nc"
[1] "SSH_r100_199503.nc"
[1] "SSH_r100_199504.nc"
[1] "SSH_r100_199505.nc"
[1] "SSH_r100_199506.nc"
[1] "SSH_r100_199507.nc"
[1] "SSH_r100_199508.nc"
[1] "SSH_r100_199509.nc"
[1] "SSH_r100_199510.nc"
[1] "SSH_r100_199511.nc"
[1] "SSH_r100_199512.nc"
[1] "SSH_r100_199601.nc"
[1] "SSH_r100_199602.nc"
[1] "SSH_r100_199603.nc"
[1] "SSH_r100_199604.nc"
[1] "SSH_r100_199605.nc"
[1] "SSH_r100_199606.nc"
[1] "SSH_r100_199607.nc"
[1] "SSH_r100_199608.nc"
[1] "SSH_r100_199609.nc"
[1] "SSH_r100_199610.nc"
[1] "SSH_r100_199611.nc"
[1] "SSH_r100_199612.nc"
[1] "SSH_r100_199701.nc"
[1] "SSH_r100_199702.nc"
[1] "SSH_r100_199703.nc"
[1] "SSH_r100_199704.nc"
[1] "SSH_r100_199705.nc"
[1] "SSH_r100_199706.nc"
[1] "SSH_r100_199707.nc"
[1] "SSH_r100_199708.nc"
[1] "SSH_r100_199709.nc"
[1] "SSH_r100_199710.nc"
[1] "SSH_r100_199711.nc"
[1] "SSH_r100_199712.nc"
[1] "SSH_r100_199801.nc"
[1] "SSH_r100_199802.nc"
[1] "SSH_r100_199803.nc"
[1] "SSH_r100_199804.nc"
[1] "SSH_r100_199805.nc"
[1] "SSH_r100_199806.nc"
[1] "SSH_r100_199807.nc"
[1] "SSH_r100_199808.nc"
[1] "SSH_r100_199809.nc"
[1] "SSH_r100_199810.nc"
[1] "SSH_r100_199811.nc"
[1] "SSH_r100_199812.nc"
[1] "SSH_r100_199901.nc"
[1] "SSH_r100_199902.nc"
[1] "SSH_r100_199903.nc"
[1] "SSH_r100_199904.nc"
[1] "SSH_r100_199905.nc"
[1] "SSH_r100_199906.nc"
[1] "SSH_r100_199907.nc"
[1] "SSH_r100_199908.nc"
[1] "SSH_r100_199909.nc"
[1] "SSH_r100_199910.nc"
[1] "SSH_r100_199911.nc"
[1] "SSH_r100_199912.nc"
[1] "SSH_r100_200001.nc"
[1] "SSH_r100_200002.nc"
[1] "SSH_r100_200003.nc"
[1] "SSH_r100_200004.nc"
[1] "SSH_r100_200005.nc"
[1] "SSH_r100_200006.nc"
[1] "SSH_r100_200007.nc"
[1] "SSH_r100_200008.nc"
[1] "SSH_r100_200009.nc"
[1] "SSH_r100_200010.nc"
[1] "SSH_r100_200011.nc"
[1] "SSH_r100_200012.nc"
[1] "SSH_r100_200101.nc"
[1] "SSH_r100_200102.nc"
[1] "SSH_r100_200103.nc"
[1] "SSH_r100_200104.nc"
[1] "SSH_r100_200105.nc"
[1] "SSH_r100_200106.nc"
[1] "SSH_r100_200107.nc"
[1] "SSH_r100_200108.nc"
[1] "SSH_r100_200109.nc"
[1] "SSH_r100_200110.nc"
[1] "SSH_r100_200111.nc"
[1] "SSH_r100_200112.nc"
[1] "SSH_r100_200201.nc"
[1] "SSH_r100_200202.nc"
[1] "SSH_r100_200203.nc"
[1] "SSH_r100_200204.nc"
[1] "SSH_r100_200205.nc"
[1] "SSH_r100_200206.nc"
[1] "SSH_r100_200207.nc"
[1] "SSH_r100_200208.nc"
[1] "SSH_r100_200209.nc"
[1] "SSH_r100_200210.nc"
[1] "SSH_r100_200211.nc"
[1] "SSH_r100_200212.nc"
[1] "SSH_r100_200301.nc"
[1] "SSH_r100_200302.nc"
[1] "SSH_r100_200303.nc"
[1] "SSH_r100_200304.nc"
[1] "SSH_r100_200305.nc"
[1] "SSH_r100_200306.nc"
[1] "SSH_r100_200307.nc"
[1] "SSH_r100_200308.nc"
[1] "SSH_r100_200309.nc"
[1] "SSH_r100_200310.nc"
[1] "SSH_r100_200311.nc"
[1] "SSH_r100_200312.nc"
[1] "SSH_r100_200401.nc"
[1] "SSH_r100_200402.nc"
[1] "SSH_r100_200403.nc"
[1] "SSH_r100_200404.nc"
[1] "SSH_r100_200405.nc"
[1] "SSH_r100_200406.nc"
[1] "SSH_r100_200407.nc"
[1] "SSH_r100_200408.nc"
[1] "SSH_r100_200409.nc"
[1] "SSH_r100_200410.nc"
[1] "SSH_r100_200411.nc"
[1] "SSH_r100_200412.nc"
[1] "SSH_r100_200501.nc"
[1] "SSH_r100_200502.nc"
[1] "SSH_r100_200503.nc"
[1] "SSH_r100_200504.nc"
[1] "SSH_r100_200505.nc"
[1] "SSH_r100_200506.nc"
[1] "SSH_r100_200507.nc"
[1] "SSH_r100_200508.nc"
[1] "SSH_r100_200509.nc"
[1] "SSH_r100_200510.nc"
[1] "SSH_r100_200511.nc"
[1] "SSH_r100_200512.nc"
[1] "SSH_r100_200601.nc"
[1] "SSH_r100_200602.nc"
[1] "SSH_r100_200603.nc"
[1] "SSH_r100_200604.nc"
[1] "SSH_r100_200605.nc"
[1] "SSH_r100_200606.nc"
[1] "SSH_r100_200607.nc"
[1] "SSH_r100_200608.nc"
[1] "SSH_r100_200609.nc"
[1] "SSH_r100_200610.nc"
[1] "SSH_r100_200611.nc"
[1] "SSH_r100_200612.nc"
[1] "SSH_r100_200701.nc"
[1] "SSH_r100_200702.nc"
[1] "SSH_r100_200703.nc"
[1] "SSH_r100_200704.nc"
[1] "SSH_r100_200705.nc"
[1] "SSH_r100_200706.nc"
[1] "SSH_r100_200707.nc"
[1] "SSH_r100_200708.nc"
[1] "SSH_r100_200709.nc"
[1] "SSH_r100_200710.nc"
[1] "SSH_r100_200711.nc"
[1] "SSH_r100_200712.nc"
[1] "SSH_r100_200801.nc"
[1] "SSH_r100_200802.nc"
[1] "SSH_r100_200803.nc"
[1] "SSH_r100_200804.nc"
[1] "SSH_r100_200805.nc"
[1] "SSH_r100_200806.nc"
[1] "SSH_r100_200807.nc"
[1] "SSH_r100_200808.nc"
[1] "SSH_r100_200809.nc"
[1] "SSH_r100_200810.nc"
[1] "SSH_r100_200811.nc"
[1] "SSH_r100_200812.nc"
[1] "SSH_r100_200901.nc"
[1] "SSH_r100_200902.nc"
[1] "SSH_r100_200903.nc"
[1] "SSH_r100_200904.nc"
[1] "SSH_r100_200905.nc"
[1] "SSH_r100_200906.nc"
[1] "SSH_r100_200907.nc"
[1] "SSH_r100_200908.nc"
[1] "SSH_r100_200909.nc"
[1] "SSH_r100_200910.nc"
[1] "SSH_r100_200911.nc"
[1] "SSH_r100_200912.nc"
[1] "SSH_r100_201001.nc"
[1] "SSH_r100_201002.nc"
[1] "SSH_r100_201003.nc"
[1] "SSH_r100_201004.nc"
[1] "SSH_r100_201005.nc"
[1] "SSH_r100_201006.nc"
[1] "SSH_r100_201007.nc"
[1] "SSH_r100_201008.nc"
[1] "SSH_r100_201009.nc"
[1] "SSH_r100_201010.nc"
[1] "SSH_r100_201011.nc"
[1] "SSH_r100_201012.nc"
[1] "SSH_r100_201101.nc"
[1] "SSH_r100_201102.nc"
[1] "SSH_r100_201103.nc"
[1] "SSH_r100_201104.nc"
[1] "SSH_r100_201105.nc"
[1] "SSH_r100_201106.nc"
[1] "SSH_r100_201107.nc"
[1] "SSH_r100_201108.nc"
[1] "SSH_r100_201109.nc"
[1] "SSH_r100_201110.nc"
[1] "SSH_r100_201111.nc"
[1] "SSH_r100_201112.nc"
[1] "SSH_r100_201201.nc"
[1] "SSH_r100_201202.nc"
[1] "SSH_r100_201203.nc"
[1] "SSH_r100_201204.nc"
[1] "SSH_r100_201205.nc"
[1] "SSH_r100_201206.nc"
[1] "SSH_r100_201207.nc"
[1] "SSH_r100_201208.nc"
[1] "SSH_r100_201209.nc"
[1] "SSH_r100_201210.nc"
[1] "SSH_r100_201211.nc"
[1] "SSH_r100_201212.nc"
[1] "SSH_r100_201301.nc"
[1] "SSH_r100_201302.nc"
[1] "SSH_r100_201303.nc"
[1] "SSH_r100_201304.nc"
[1] "SSH_r100_201305.nc"
[1] "SSH_r100_201306.nc"
[1] "SSH_r100_201307.nc"
[1] "SSH_r100_201308.nc"
[1] "SSH_r100_201309.nc"
[1] "SSH_r100_201310.nc"
[1] "SSH_r100_201311.nc"
[1] "SSH_r100_201312.nc"
[1] "SSH_r100_201401.nc"
[1] "SSH_r100_201402.nc"
[1] "SSH_r100_201403.nc"
[1] "SSH_r100_201404.nc"
[1] "SSH_r100_201405.nc"
[1] "SSH_r100_201406.nc"
[1] "SSH_r100_201407.nc"
[1] "SSH_r100_201408.nc"
[1] "SSH_r100_201409.nc"
[1] "SSH_r100_201410.nc"
[1] "SSH_r100_201411.nc"
[1] "SSH_r100_201412.nc"
[1] "SSH_r100_201501.nc"
[1] "SSH_r100_201502.nc"
[1] "SSH_r100_201503.nc"
[1] "SSH_r100_201504.nc"
[1] "SSH_r100_201505.nc"
[1] "SSH_r100_201506.nc"
[1] "SSH_r100_201507.nc"
[1] "SSH_r100_201508.nc"
[1] "SSH_r100_201509.nc"
[1] "SSH_r100_201510.nc"
[1] "SSH_r100_201511.nc"
[1] "SSH_r100_201512.nc"
[1] "SSH_r100_201601.nc"
[1] "SSH_r100_201602.nc"
[1] "SSH_r100_201603.nc"
[1] "SSH_r100_201604.nc"
[1] "SSH_r100_201605.nc"
[1] "SSH_r100_201606.nc"
[1] "SSH_r100_201607.nc"
[1] "SSH_r100_201608.nc"
[1] "SSH_r100_201609.nc"
[1] "SSH_r100_201610.nc"
[1] "SSH_r100_201611.nc"
[1] "SSH_r100_201612.nc"
[1] "SSH_r100_201701.nc"
[1] "SSH_r100_201702.nc"
[1] "SSH_r100_201703.nc"
[1] "SSH_r100_201704.nc"
[1] "SSH_r100_201705.nc"
[1] "SSH_r100_201706.nc"
[1] "SSH_r100_201707.nc"
[1] "SSH_r100_201708.nc"
[1] "SSH_r100_201709.nc"
[1] "SSH_r100_201710.nc"
[1] "SSH_r100_201711.nc"
[1] "SSH_r100_201712.nc"
[1] "SSH_r100_201801.nc"
[1] "SSH_r100_201802.nc"
[1] "SSH_r100_201803.nc"
[1] "SSH_r100_201804.nc"
[1] "SSH_r100_201805.nc"
[1] "SSH_r100_201806.nc"
[1] "SSH_r100_201807.nc"
[1] "SSH_r100_201808.nc"
[1] "SSH_r100_201809.nc"
[1] "SSH_r100_201810.nc"
[1] "SSH_r100_201811.nc"
[1] "SSH_r100_201812.nc"
[1] "SSH_r100_201901.nc"
[1] "SSH_r100_201902.nc"
[1] "SSH_r100_201903.nc"
[1] "SSH_r100_201904.nc"
[1] "SSH_r100_201905.nc"
[1] "SSH_r100_201906.nc"
[1] "SSH_r100_201907.nc"
[1] "SSH_r100_201908.nc"
[1] "SSH_r100_201909.nc"
[1] "SSH_r100_201910.nc"
[1] "SSH_r100_201911.nc"
[1] "SSH_r100_201912.nc"
[1] "SSH_r100_202001.nc"
[1] "SSH_r100_202002.nc"
[1] "SSH_r100_202003.nc"
[1] "SSH_r100_202004.nc"
[1] "SSH_r100_202005.nc"
[1] "SSH_r100_202006.nc"
[1] "SSH_r100_202007.nc"
[1] "SSH_r100_202008.nc"
[1] "SSH_r100_202009.nc"
[1] "SSH_r100_202010.nc"
[1] "SSH_r100_202011.nc"
[1] "SSH_r100_202012.nc"
[1] "SSH_r100_202101.nc"
[1] "SSH_r100_202102.nc"
[1] "SSH_r100_202103.nc"
[1] "SSH_r100_202104.nc"
[1] "SSH_r100_202105.nc"
[1] "SSH_r100_202106.nc"
[1] "SSH_r100_202107.nc"
[1] "SSH_r100_202108.nc"
[1] "SSH_r100_202109.nc"
[1] "SSH_r100_202110.nc"
[1] "SSH_r100_202111.nc"
[1] "SSH_r100_202112.nc"
[1] "SSH_r100_202201.nc"
[1] "SSH_r100_202202.nc"
[1] "SSH_r100_202203.nc"
[1] "SSH_r100_202204.nc"
[1] "SSH_r100_202205.nc"
[1] "SSH_r100_202206.nc"
[1] "SSH_r100_202207.nc"
[1] "SSH_r100_202208.nc"
[1] "SSH_r100_202209.nc"
[1] "SSH_r100_202210.nc"
[1] "SSH_r100_202211.nc"
[1] "SSH_r100_202212.nc"
[1] "SSH_r100_202301.nc"
[1] "SSH_r100_202302.nc"
[1] "SSH_r100_202303.nc"
[1] "SSH_r100_202304.nc"
[1] "SSH_r100_202305.nc"
[1] "SSH_r100_202306.nc"
[1] "SSH_r100_202307.nc"
[1] "SSH_r100_202308.nc"
[1] "SSH_r100_202309.nc"
[1] "SSH_r100_202310.nc"
[1] "SSH_r100_202311.nc"
[1] "SSH_r100_202312.nc"
[1] "SSH_r100_202401.nc"
[1] "SSH_r100_202402.nc"
[1] "SSS_r100_198501.nc"
[1] "SSS_r100_198502.nc"
[1] "SSS_r100_198503.nc"
[1] "SSS_r100_198504.nc"
[1] "SSS_r100_198505.nc"
[1] "SSS_r100_198506.nc"
[1] "SSS_r100_198507.nc"
[1] "SSS_r100_198508.nc"
[1] "SSS_r100_198509.nc"
[1] "SSS_r100_198510.nc"
[1] "SSS_r100_198511.nc"
[1] "SSS_r100_198512.nc"
[1] "SSS_r100_198601.nc"
[1] "SSS_r100_198602.nc"
[1] "SSS_r100_198603.nc"
[1] "SSS_r100_198604.nc"
[1] "SSS_r100_198605.nc"
[1] "SSS_r100_198606.nc"
[1] "SSS_r100_198607.nc"
[1] "SSS_r100_198608.nc"
[1] "SSS_r100_198609.nc"
[1] "SSS_r100_198610.nc"
[1] "SSS_r100_198611.nc"
[1] "SSS_r100_198612.nc"
[1] "SSS_r100_198701.nc"
[1] "SSS_r100_198702.nc"
[1] "SSS_r100_198703.nc"
[1] "SSS_r100_198704.nc"
[1] "SSS_r100_198705.nc"
[1] "SSS_r100_198706.nc"
[1] "SSS_r100_198707.nc"
[1] "SSS_r100_198708.nc"
[1] "SSS_r100_198709.nc"
[1] "SSS_r100_198710.nc"
[1] "SSS_r100_198711.nc"
[1] "SSS_r100_198712.nc"
[1] "SSS_r100_198801.nc"
[1] "SSS_r100_198802.nc"
[1] "SSS_r100_198803.nc"
[1] "SSS_r100_198804.nc"
[1] "SSS_r100_198805.nc"
[1] "SSS_r100_198806.nc"
[1] "SSS_r100_198807.nc"
[1] "SSS_r100_198808.nc"
[1] "SSS_r100_198809.nc"
[1] "SSS_r100_198810.nc"
[1] "SSS_r100_198811.nc"
[1] "SSS_r100_198812.nc"
[1] "SSS_r100_198901.nc"
[1] "SSS_r100_198902.nc"
[1] "SSS_r100_198903.nc"
[1] "SSS_r100_198904.nc"
[1] "SSS_r100_198905.nc"
[1] "SSS_r100_198906.nc"
[1] "SSS_r100_198907.nc"
[1] "SSS_r100_198908.nc"
[1] "SSS_r100_198909.nc"
[1] "SSS_r100_198910.nc"
[1] "SSS_r100_198911.nc"
[1] "SSS_r100_198912.nc"
[1] "SSS_r100_199001.nc"
[1] "SSS_r100_199002.nc"
[1] "SSS_r100_199003.nc"
[1] "SSS_r100_199004.nc"
[1] "SSS_r100_199005.nc"
[1] "SSS_r100_199006.nc"
[1] "SSS_r100_199007.nc"
[1] "SSS_r100_199008.nc"
[1] "SSS_r100_199009.nc"
[1] "SSS_r100_199010.nc"
[1] "SSS_r100_199011.nc"
[1] "SSS_r100_199012.nc"
[1] "SSS_r100_199101.nc"
[1] "SSS_r100_199102.nc"
[1] "SSS_r100_199103.nc"
[1] "SSS_r100_199104.nc"
[1] "SSS_r100_199105.nc"
[1] "SSS_r100_199106.nc"
[1] "SSS_r100_199107.nc"
[1] "SSS_r100_199108.nc"
[1] "SSS_r100_199109.nc"
[1] "SSS_r100_199110.nc"
[1] "SSS_r100_199111.nc"
[1] "SSS_r100_199112.nc"
[1] "SSS_r100_199201.nc"
[1] "SSS_r100_199202.nc"
[1] "SSS_r100_199203.nc"
[1] "SSS_r100_199204.nc"
[1] "SSS_r100_199205.nc"
[1] "SSS_r100_199206.nc"
[1] "SSS_r100_199207.nc"
[1] "SSS_r100_199208.nc"
[1] "SSS_r100_199209.nc"
[1] "SSS_r100_199210.nc"
[1] "SSS_r100_199211.nc"
[1] "SSS_r100_199212.nc"
[1] "SSS_r100_199301.nc"
[1] "SSS_r100_199302.nc"
[1] "SSS_r100_199303.nc"
[1] "SSS_r100_199304.nc"
[1] "SSS_r100_199305.nc"
[1] "SSS_r100_199306.nc"
[1] "SSS_r100_199307.nc"
[1] "SSS_r100_199308.nc"
[1] "SSS_r100_199309.nc"
[1] "SSS_r100_199310.nc"
[1] "SSS_r100_199311.nc"
[1] "SSS_r100_199312.nc"
[1] "SSS_r100_199401.nc"
[1] "SSS_r100_199402.nc"
[1] "SSS_r100_199403.nc"
[1] "SSS_r100_199404.nc"
[1] "SSS_r100_199405.nc"
[1] "SSS_r100_199406.nc"
[1] "SSS_r100_199407.nc"
[1] "SSS_r100_199408.nc"
[1] "SSS_r100_199409.nc"
[1] "SSS_r100_199410.nc"
[1] "SSS_r100_199411.nc"
[1] "SSS_r100_199412.nc"
[1] "SSS_r100_199501.nc"
[1] "SSS_r100_199502.nc"
[1] "SSS_r100_199503.nc"
[1] "SSS_r100_199504.nc"
[1] "SSS_r100_199505.nc"
[1] "SSS_r100_199506.nc"
[1] "SSS_r100_199507.nc"
[1] "SSS_r100_199508.nc"
[1] "SSS_r100_199509.nc"
[1] "SSS_r100_199510.nc"
[1] "SSS_r100_199511.nc"
[1] "SSS_r100_199512.nc"
[1] "SSS_r100_199601.nc"
[1] "SSS_r100_199602.nc"
[1] "SSS_r100_199603.nc"
[1] "SSS_r100_199604.nc"
[1] "SSS_r100_199605.nc"
[1] "SSS_r100_199606.nc"
[1] "SSS_r100_199607.nc"
[1] "SSS_r100_199608.nc"
[1] "SSS_r100_199609.nc"
[1] "SSS_r100_199610.nc"
[1] "SSS_r100_199611.nc"
[1] "SSS_r100_199612.nc"
[1] "SSS_r100_199701.nc"
[1] "SSS_r100_199702.nc"
[1] "SSS_r100_199703.nc"
[1] "SSS_r100_199704.nc"
[1] "SSS_r100_199705.nc"
[1] "SSS_r100_199706.nc"
[1] "SSS_r100_199707.nc"
[1] "SSS_r100_199708.nc"
[1] "SSS_r100_199709.nc"
[1] "SSS_r100_199710.nc"
[1] "SSS_r100_199711.nc"
[1] "SSS_r100_199712.nc"
[1] "SSS_r100_199801.nc"
[1] "SSS_r100_199802.nc"
[1] "SSS_r100_199803.nc"
[1] "SSS_r100_199804.nc"
[1] "SSS_r100_199805.nc"
[1] "SSS_r100_199806.nc"
[1] "SSS_r100_199807.nc"
[1] "SSS_r100_199808.nc"
[1] "SSS_r100_199809.nc"
[1] "SSS_r100_199810.nc"
[1] "SSS_r100_199811.nc"
[1] "SSS_r100_199812.nc"
[1] "SSS_r100_199901.nc"
[1] "SSS_r100_199902.nc"
[1] "SSS_r100_199903.nc"
[1] "SSS_r100_199904.nc"
[1] "SSS_r100_199905.nc"
[1] "SSS_r100_199906.nc"
[1] "SSS_r100_199907.nc"
[1] "SSS_r100_199908.nc"
[1] "SSS_r100_199909.nc"
[1] "SSS_r100_199910.nc"
[1] "SSS_r100_199911.nc"
[1] "SSS_r100_199912.nc"
[1] "SSS_r100_200001.nc"
[1] "SSS_r100_200002.nc"
[1] "SSS_r100_200003.nc"
[1] "SSS_r100_200004.nc"
[1] "SSS_r100_200005.nc"
[1] "SSS_r100_200006.nc"
[1] "SSS_r100_200007.nc"
[1] "SSS_r100_200008.nc"
[1] "SSS_r100_200009.nc"
[1] "SSS_r100_200010.nc"
[1] "SSS_r100_200011.nc"
[1] "SSS_r100_200012.nc"
[1] "SSS_r100_200101.nc"
[1] "SSS_r100_200102.nc"
[1] "SSS_r100_200103.nc"
[1] "SSS_r100_200104.nc"
[1] "SSS_r100_200105.nc"
[1] "SSS_r100_200106.nc"
[1] "SSS_r100_200107.nc"
[1] "SSS_r100_200108.nc"
[1] "SSS_r100_200109.nc"
[1] "SSS_r100_200110.nc"
[1] "SSS_r100_200111.nc"
[1] "SSS_r100_200112.nc"
[1] "SSS_r100_200201.nc"
[1] "SSS_r100_200202.nc"
[1] "SSS_r100_200203.nc"
[1] "SSS_r100_200204.nc"
[1] "SSS_r100_200205.nc"
[1] "SSS_r100_200206.nc"
[1] "SSS_r100_200207.nc"
[1] "SSS_r100_200208.nc"
[1] "SSS_r100_200209.nc"
[1] "SSS_r100_200210.nc"
[1] "SSS_r100_200211.nc"
[1] "SSS_r100_200212.nc"
[1] "SSS_r100_200301.nc"
[1] "SSS_r100_200302.nc"
[1] "SSS_r100_200303.nc"
[1] "SSS_r100_200304.nc"
[1] "SSS_r100_200305.nc"
[1] "SSS_r100_200306.nc"
[1] "SSS_r100_200307.nc"
[1] "SSS_r100_200308.nc"
[1] "SSS_r100_200309.nc"
[1] "SSS_r100_200310.nc"
[1] "SSS_r100_200311.nc"
[1] "SSS_r100_200312.nc"
[1] "SSS_r100_200401.nc"
[1] "SSS_r100_200402.nc"
[1] "SSS_r100_200403.nc"
[1] "SSS_r100_200404.nc"
[1] "SSS_r100_200405.nc"
[1] "SSS_r100_200406.nc"
[1] "SSS_r100_200407.nc"
[1] "SSS_r100_200408.nc"
[1] "SSS_r100_200409.nc"
[1] "SSS_r100_200410.nc"
[1] "SSS_r100_200411.nc"
[1] "SSS_r100_200412.nc"
[1] "SSS_r100_200501.nc"
[1] "SSS_r100_200502.nc"
[1] "SSS_r100_200503.nc"
[1] "SSS_r100_200504.nc"
[1] "SSS_r100_200505.nc"
[1] "SSS_r100_200506.nc"
[1] "SSS_r100_200507.nc"
[1] "SSS_r100_200508.nc"
[1] "SSS_r100_200509.nc"
[1] "SSS_r100_200510.nc"
[1] "SSS_r100_200511.nc"
[1] "SSS_r100_200512.nc"
[1] "SSS_r100_200601.nc"
[1] "SSS_r100_200602.nc"
[1] "SSS_r100_200603.nc"
[1] "SSS_r100_200604.nc"
[1] "SSS_r100_200605.nc"
[1] "SSS_r100_200606.nc"
[1] "SSS_r100_200607.nc"
[1] "SSS_r100_200608.nc"
[1] "SSS_r100_200609.nc"
[1] "SSS_r100_200610.nc"
[1] "SSS_r100_200611.nc"
[1] "SSS_r100_200612.nc"
[1] "SSS_r100_200701.nc"
[1] "SSS_r100_200702.nc"
[1] "SSS_r100_200703.nc"
[1] "SSS_r100_200704.nc"
[1] "SSS_r100_200705.nc"
[1] "SSS_r100_200706.nc"
[1] "SSS_r100_200707.nc"
[1] "SSS_r100_200708.nc"
[1] "SSS_r100_200709.nc"
[1] "SSS_r100_200710.nc"
[1] "SSS_r100_200711.nc"
[1] "SSS_r100_200712.nc"
[1] "SSS_r100_200801.nc"
[1] "SSS_r100_200802.nc"
[1] "SSS_r100_200803.nc"
[1] "SSS_r100_200804.nc"
[1] "SSS_r100_200805.nc"
[1] "SSS_r100_200806.nc"
[1] "SSS_r100_200807.nc"
[1] "SSS_r100_200808.nc"
[1] "SSS_r100_200809.nc"
[1] "SSS_r100_200810.nc"
[1] "SSS_r100_200811.nc"
[1] "SSS_r100_200812.nc"
[1] "SSS_r100_200901.nc"
[1] "SSS_r100_200902.nc"
[1] "SSS_r100_200903.nc"
[1] "SSS_r100_200904.nc"
[1] "SSS_r100_200905.nc"
[1] "SSS_r100_200906.nc"
[1] "SSS_r100_200907.nc"
[1] "SSS_r100_200908.nc"
[1] "SSS_r100_200909.nc"
[1] "SSS_r100_200910.nc"
[1] "SSS_r100_200911.nc"
[1] "SSS_r100_200912.nc"
[1] "SSS_r100_201001.nc"
[1] "SSS_r100_201002.nc"
[1] "SSS_r100_201003.nc"
[1] "SSS_r100_201004.nc"
[1] "SSS_r100_201005.nc"
[1] "SSS_r100_201006.nc"
[1] "SSS_r100_201007.nc"
[1] "SSS_r100_201008.nc"
[1] "SSS_r100_201009.nc"
[1] "SSS_r100_201010.nc"
[1] "SSS_r100_201011.nc"
[1] "SSS_r100_201012.nc"
[1] "SSS_r100_201101.nc"
[1] "SSS_r100_201102.nc"
[1] "SSS_r100_201103.nc"
[1] "SSS_r100_201104.nc"
[1] "SSS_r100_201105.nc"
[1] "SSS_r100_201106.nc"
[1] "SSS_r100_201107.nc"
[1] "SSS_r100_201108.nc"
[1] "SSS_r100_201109.nc"
[1] "SSS_r100_201110.nc"
[1] "SSS_r100_201111.nc"
[1] "SSS_r100_201112.nc"
[1] "SSS_r100_201201.nc"
[1] "SSS_r100_201202.nc"
[1] "SSS_r100_201203.nc"
[1] "SSS_r100_201204.nc"
[1] "SSS_r100_201205.nc"
[1] "SSS_r100_201206.nc"
[1] "SSS_r100_201207.nc"
[1] "SSS_r100_201208.nc"
[1] "SSS_r100_201209.nc"
[1] "SSS_r100_201210.nc"
[1] "SSS_r100_201211.nc"
[1] "SSS_r100_201212.nc"
[1] "SSS_r100_201301.nc"
[1] "SSS_r100_201302.nc"
[1] "SSS_r100_201303.nc"
[1] "SSS_r100_201304.nc"
[1] "SSS_r100_201305.nc"
[1] "SSS_r100_201306.nc"
[1] "SSS_r100_201307.nc"
[1] "SSS_r100_201308.nc"
[1] "SSS_r100_201309.nc"
[1] "SSS_r100_201310.nc"
[1] "SSS_r100_201311.nc"
[1] "SSS_r100_201312.nc"
[1] "SSS_r100_201401.nc"
[1] "SSS_r100_201402.nc"
[1] "SSS_r100_201403.nc"
[1] "SSS_r100_201404.nc"
[1] "SSS_r100_201405.nc"
[1] "SSS_r100_201406.nc"
[1] "SSS_r100_201407.nc"
[1] "SSS_r100_201408.nc"
[1] "SSS_r100_201409.nc"
[1] "SSS_r100_201410.nc"
[1] "SSS_r100_201411.nc"
[1] "SSS_r100_201412.nc"
[1] "SSS_r100_201501.nc"
[1] "SSS_r100_201502.nc"
[1] "SSS_r100_201503.nc"
[1] "SSS_r100_201504.nc"
[1] "SSS_r100_201505.nc"
[1] "SSS_r100_201506.nc"
[1] "SSS_r100_201507.nc"
[1] "SSS_r100_201508.nc"
[1] "SSS_r100_201509.nc"
[1] "SSS_r100_201510.nc"
[1] "SSS_r100_201511.nc"
[1] "SSS_r100_201512.nc"
[1] "SSS_r100_201601.nc"
[1] "SSS_r100_201602.nc"
[1] "SSS_r100_201603.nc"
[1] "SSS_r100_201604.nc"
[1] "SSS_r100_201605.nc"
[1] "SSS_r100_201606.nc"
[1] "SSS_r100_201607.nc"
[1] "SSS_r100_201608.nc"
[1] "SSS_r100_201609.nc"
[1] "SSS_r100_201610.nc"
[1] "SSS_r100_201611.nc"
[1] "SSS_r100_201612.nc"
[1] "SSS_r100_201701.nc"
[1] "SSS_r100_201702.nc"
[1] "SSS_r100_201703.nc"
[1] "SSS_r100_201704.nc"
[1] "SSS_r100_201705.nc"
[1] "SSS_r100_201706.nc"
[1] "SSS_r100_201707.nc"
[1] "SSS_r100_201708.nc"
[1] "SSS_r100_201709.nc"
[1] "SSS_r100_201710.nc"
[1] "SSS_r100_201711.nc"
[1] "SSS_r100_201712.nc"
[1] "SSS_r100_201801.nc"
[1] "SSS_r100_201802.nc"
[1] "SSS_r100_201803.nc"
[1] "SSS_r100_201804.nc"
[1] "SSS_r100_201805.nc"
[1] "SSS_r100_201806.nc"
[1] "SSS_r100_201807.nc"
[1] "SSS_r100_201808.nc"
[1] "SSS_r100_201809.nc"
[1] "SSS_r100_201810.nc"
[1] "SSS_r100_201811.nc"
[1] "SSS_r100_201812.nc"
[1] "SSS_r100_201901.nc"
[1] "SSS_r100_201902.nc"
[1] "SSS_r100_201903.nc"
[1] "SSS_r100_201904.nc"
[1] "SSS_r100_201905.nc"
[1] "SSS_r100_201906.nc"
[1] "SSS_r100_201907.nc"
[1] "SSS_r100_201908.nc"
[1] "SSS_r100_201909.nc"
[1] "SSS_r100_201910.nc"
[1] "SSS_r100_201911.nc"
[1] "SSS_r100_201912.nc"
[1] "SSS_r100_202001.nc"
[1] "SSS_r100_202002.nc"
[1] "SSS_r100_202003.nc"
[1] "SSS_r100_202004.nc"
[1] "SSS_r100_202005.nc"
[1] "SSS_r100_202006.nc"
[1] "SSS_r100_202007.nc"
[1] "SSS_r100_202008.nc"
[1] "SSS_r100_202009.nc"
[1] "SSS_r100_202010.nc"
[1] "SSS_r100_202011.nc"
[1] "SSS_r100_202012.nc"
[1] "SSS_r100_202101.nc"
[1] "SSS_r100_202102.nc"
[1] "SSS_r100_202103.nc"
[1] "SSS_r100_202104.nc"
[1] "SSS_r100_202105.nc"
[1] "SSS_r100_202106.nc"
[1] "SSS_r100_202107.nc"
[1] "SSS_r100_202108.nc"
[1] "SSS_r100_202109.nc"
[1] "SSS_r100_202110.nc"
[1] "SSS_r100_202111.nc"
[1] "SSS_r100_202112.nc"
[1] "SSS_r100_202201.nc"
[1] "SSS_r100_202202.nc"
[1] "SSS_r100_202203.nc"
[1] "SSS_r100_202204.nc"
[1] "SSS_r100_202205.nc"
[1] "SSS_r100_202206.nc"
[1] "SSS_r100_202207.nc"
[1] "SSS_r100_202208.nc"
[1] "SSS_r100_202209.nc"
[1] "SSS_r100_202210.nc"
[1] "SSS_r100_202211.nc"
[1] "SSS_r100_202212.nc"
[1] "SSS_r100_202301.nc"
[1] "SSS_r100_202302.nc"
[1] "SSS_r100_202303.nc"
[1] "SSS_r100_202304.nc"
[1] "SSS_r100_202305.nc"
[1] "SSS_r100_202306.nc"
[1] "SSS_r100_202307.nc"
[1] "SSS_r100_202308.nc"
[1] "SSS_r100_202309.nc"
[1] "SSS_r100_202310.nc"
[1] "SSS_r100_202311.nc"
[1] "SSS_r100_202312.nc"
[1] "SSS_r100_202401.nc"
[1] "SSS_r100_202402.nc"
[1] "SST_r100_198501.nc"
[1] "SST_r100_198502.nc"
[1] "SST_r100_198503.nc"
[1] "SST_r100_198504.nc"
[1] "SST_r100_198505.nc"
[1] "SST_r100_198506.nc"
[1] "SST_r100_198507.nc"
[1] "SST_r100_198508.nc"
[1] "SST_r100_198509.nc"
[1] "SST_r100_198510.nc"
[1] "SST_r100_198511.nc"
[1] "SST_r100_198512.nc"
[1] "SST_r100_198601.nc"
[1] "SST_r100_198602.nc"
[1] "SST_r100_198603.nc"
[1] "SST_r100_198604.nc"
[1] "SST_r100_198605.nc"
[1] "SST_r100_198606.nc"
[1] "SST_r100_198607.nc"
[1] "SST_r100_198608.nc"
[1] "SST_r100_198609.nc"
[1] "SST_r100_198610.nc"
[1] "SST_r100_198611.nc"
[1] "SST_r100_198612.nc"
[1] "SST_r100_198701.nc"
[1] "SST_r100_198702.nc"
[1] "SST_r100_198703.nc"
[1] "SST_r100_198704.nc"
[1] "SST_r100_198705.nc"
[1] "SST_r100_198706.nc"
[1] "SST_r100_198707.nc"
[1] "SST_r100_198708.nc"
[1] "SST_r100_198709.nc"
[1] "SST_r100_198710.nc"
[1] "SST_r100_198711.nc"
[1] "SST_r100_198712.nc"
[1] "SST_r100_198801.nc"
[1] "SST_r100_198802.nc"
[1] "SST_r100_198803.nc"
[1] "SST_r100_198804.nc"
[1] "SST_r100_198805.nc"
[1] "SST_r100_198806.nc"
[1] "SST_r100_198807.nc"
[1] "SST_r100_198808.nc"
[1] "SST_r100_198809.nc"
[1] "SST_r100_198810.nc"
[1] "SST_r100_198811.nc"
[1] "SST_r100_198812.nc"
[1] "SST_r100_198901.nc"
[1] "SST_r100_198902.nc"
[1] "SST_r100_198903.nc"
[1] "SST_r100_198904.nc"
[1] "SST_r100_198905.nc"
[1] "SST_r100_198906.nc"
[1] "SST_r100_198907.nc"
[1] "SST_r100_198908.nc"
[1] "SST_r100_198909.nc"
[1] "SST_r100_198910.nc"
[1] "SST_r100_198911.nc"
[1] "SST_r100_198912.nc"
[1] "SST_r100_199001.nc"
[1] "SST_r100_199002.nc"
[1] "SST_r100_199003.nc"
[1] "SST_r100_199004.nc"
[1] "SST_r100_199005.nc"
[1] "SST_r100_199006.nc"
[1] "SST_r100_199007.nc"
[1] "SST_r100_199008.nc"
[1] "SST_r100_199009.nc"
[1] "SST_r100_199010.nc"
[1] "SST_r100_199011.nc"
[1] "SST_r100_199012.nc"
[1] "SST_r100_199101.nc"
[1] "SST_r100_199102.nc"
[1] "SST_r100_199103.nc"
[1] "SST_r100_199104.nc"
[1] "SST_r100_199105.nc"
[1] "SST_r100_199106.nc"
[1] "SST_r100_199107.nc"
[1] "SST_r100_199108.nc"
[1] "SST_r100_199109.nc"
[1] "SST_r100_199110.nc"
[1] "SST_r100_199111.nc"
[1] "SST_r100_199112.nc"
[1] "SST_r100_199201.nc"
[1] "SST_r100_199202.nc"
[1] "SST_r100_199203.nc"
[1] "SST_r100_199204.nc"
[1] "SST_r100_199205.nc"
[1] "SST_r100_199206.nc"
[1] "SST_r100_199207.nc"
[1] "SST_r100_199208.nc"
[1] "SST_r100_199209.nc"
[1] "SST_r100_199210.nc"
[1] "SST_r100_199211.nc"
[1] "SST_r100_199212.nc"
[1] "SST_r100_199301.nc"
[1] "SST_r100_199302.nc"
[1] "SST_r100_199303.nc"
[1] "SST_r100_199304.nc"
[1] "SST_r100_199305.nc"
[1] "SST_r100_199306.nc"
[1] "SST_r100_199307.nc"
[1] "SST_r100_199308.nc"
[1] "SST_r100_199309.nc"
[1] "SST_r100_199310.nc"
[1] "SST_r100_199311.nc"
[1] "SST_r100_199312.nc"
[1] "SST_r100_199401.nc"
[1] "SST_r100_199402.nc"
[1] "SST_r100_199403.nc"
[1] "SST_r100_199404.nc"
[1] "SST_r100_199405.nc"
[1] "SST_r100_199406.nc"
[1] "SST_r100_199407.nc"
[1] "SST_r100_199408.nc"
[1] "SST_r100_199409.nc"
[1] "SST_r100_199410.nc"
[1] "SST_r100_199411.nc"
[1] "SST_r100_199412.nc"
[1] "SST_r100_199501.nc"
[1] "SST_r100_199502.nc"
[1] "SST_r100_199503.nc"
[1] "SST_r100_199504.nc"
[1] "SST_r100_199505.nc"
[1] "SST_r100_199506.nc"
[1] "SST_r100_199507.nc"
[1] "SST_r100_199508.nc"
[1] "SST_r100_199509.nc"
[1] "SST_r100_199510.nc"
[1] "SST_r100_199511.nc"
[1] "SST_r100_199512.nc"
[1] "SST_r100_199601.nc"
[1] "SST_r100_199602.nc"
[1] "SST_r100_199603.nc"
[1] "SST_r100_199604.nc"
[1] "SST_r100_199605.nc"
[1] "SST_r100_199606.nc"
[1] "SST_r100_199607.nc"
[1] "SST_r100_199608.nc"
[1] "SST_r100_199609.nc"
[1] "SST_r100_199610.nc"
[1] "SST_r100_199611.nc"
[1] "SST_r100_199612.nc"
[1] "SST_r100_199701.nc"
[1] "SST_r100_199702.nc"
[1] "SST_r100_199703.nc"
[1] "SST_r100_199704.nc"
[1] "SST_r100_199705.nc"
[1] "SST_r100_199706.nc"
[1] "SST_r100_199707.nc"
[1] "SST_r100_199708.nc"
[1] "SST_r100_199709.nc"
[1] "SST_r100_199710.nc"
[1] "SST_r100_199711.nc"
[1] "SST_r100_199712.nc"
[1] "SST_r100_199801.nc"
[1] "SST_r100_199802.nc"
[1] "SST_r100_199803.nc"
[1] "SST_r100_199804.nc"
[1] "SST_r100_199805.nc"
[1] "SST_r100_199806.nc"
[1] "SST_r100_199807.nc"
[1] "SST_r100_199808.nc"
[1] "SST_r100_199809.nc"
[1] "SST_r100_199810.nc"
[1] "SST_r100_199811.nc"
[1] "SST_r100_199812.nc"
[1] "SST_r100_199901.nc"
[1] "SST_r100_199902.nc"
[1] "SST_r100_199903.nc"
[1] "SST_r100_199904.nc"
[1] "SST_r100_199905.nc"
[1] "SST_r100_199906.nc"
[1] "SST_r100_199907.nc"
[1] "SST_r100_199908.nc"
[1] "SST_r100_199909.nc"
[1] "SST_r100_199910.nc"
[1] "SST_r100_199911.nc"
[1] "SST_r100_199912.nc"
[1] "SST_r100_200001.nc"
[1] "SST_r100_200002.nc"
[1] "SST_r100_200003.nc"
[1] "SST_r100_200004.nc"
[1] "SST_r100_200005.nc"
[1] "SST_r100_200006.nc"
[1] "SST_r100_200007.nc"
[1] "SST_r100_200008.nc"
[1] "SST_r100_200009.nc"
[1] "SST_r100_200010.nc"
[1] "SST_r100_200011.nc"
[1] "SST_r100_200012.nc"
[1] "SST_r100_200101.nc"
[1] "SST_r100_200102.nc"
[1] "SST_r100_200103.nc"
[1] "SST_r100_200104.nc"
[1] "SST_r100_200105.nc"
[1] "SST_r100_200106.nc"
[1] "SST_r100_200107.nc"
[1] "SST_r100_200108.nc"
[1] "SST_r100_200109.nc"
[1] "SST_r100_200110.nc"
[1] "SST_r100_200111.nc"
[1] "SST_r100_200112.nc"
[1] "SST_r100_200201.nc"
[1] "SST_r100_200202.nc"
[1] "SST_r100_200203.nc"
[1] "SST_r100_200204.nc"
[1] "SST_r100_200205.nc"
[1] "SST_r100_200206.nc"
[1] "SST_r100_200207.nc"
[1] "SST_r100_200208.nc"
[1] "SST_r100_200209.nc"
[1] "SST_r100_200210.nc"
[1] "SST_r100_200211.nc"
[1] "SST_r100_200212.nc"
[1] "SST_r100_200301.nc"
[1] "SST_r100_200302.nc"
[1] "SST_r100_200303.nc"
[1] "SST_r100_200304.nc"
[1] "SST_r100_200305.nc"
[1] "SST_r100_200306.nc"
[1] "SST_r100_200307.nc"
[1] "SST_r100_200308.nc"
[1] "SST_r100_200309.nc"
[1] "SST_r100_200310.nc"
[1] "SST_r100_200311.nc"
[1] "SST_r100_200312.nc"
[1] "SST_r100_200401.nc"
[1] "SST_r100_200402.nc"
[1] "SST_r100_200403.nc"
[1] "SST_r100_200404.nc"
[1] "SST_r100_200405.nc"
[1] "SST_r100_200406.nc"
[1] "SST_r100_200407.nc"
[1] "SST_r100_200408.nc"
[1] "SST_r100_200409.nc"
[1] "SST_r100_200410.nc"
[1] "SST_r100_200411.nc"
[1] "SST_r100_200412.nc"
[1] "SST_r100_200501.nc"
[1] "SST_r100_200502.nc"
[1] "SST_r100_200503.nc"
[1] "SST_r100_200504.nc"
[1] "SST_r100_200505.nc"
[1] "SST_r100_200506.nc"
[1] "SST_r100_200507.nc"
[1] "SST_r100_200508.nc"
[1] "SST_r100_200509.nc"
[1] "SST_r100_200510.nc"
[1] "SST_r100_200511.nc"
[1] "SST_r100_200512.nc"
[1] "SST_r100_200601.nc"
[1] "SST_r100_200602.nc"
[1] "SST_r100_200603.nc"
[1] "SST_r100_200604.nc"
[1] "SST_r100_200605.nc"
[1] "SST_r100_200606.nc"
[1] "SST_r100_200607.nc"
[1] "SST_r100_200608.nc"
[1] "SST_r100_200609.nc"
[1] "SST_r100_200610.nc"
[1] "SST_r100_200611.nc"
[1] "SST_r100_200612.nc"
[1] "SST_r100_200701.nc"
[1] "SST_r100_200702.nc"
[1] "SST_r100_200703.nc"
[1] "SST_r100_200704.nc"
[1] "SST_r100_200705.nc"
[1] "SST_r100_200706.nc"
[1] "SST_r100_200707.nc"
[1] "SST_r100_200708.nc"
[1] "SST_r100_200709.nc"
[1] "SST_r100_200710.nc"
[1] "SST_r100_200711.nc"
[1] "SST_r100_200712.nc"
[1] "SST_r100_200801.nc"
[1] "SST_r100_200802.nc"
[1] "SST_r100_200803.nc"
[1] "SST_r100_200804.nc"
[1] "SST_r100_200805.nc"
[1] "SST_r100_200806.nc"
[1] "SST_r100_200807.nc"
[1] "SST_r100_200808.nc"
[1] "SST_r100_200809.nc"
[1] "SST_r100_200810.nc"
[1] "SST_r100_200811.nc"
[1] "SST_r100_200812.nc"
[1] "SST_r100_200901.nc"
[1] "SST_r100_200902.nc"
[1] "SST_r100_200903.nc"
[1] "SST_r100_200904.nc"
[1] "SST_r100_200905.nc"
[1] "SST_r100_200906.nc"
[1] "SST_r100_200907.nc"
[1] "SST_r100_200908.nc"
[1] "SST_r100_200909.nc"
[1] "SST_r100_200910.nc"
[1] "SST_r100_200911.nc"
[1] "SST_r100_200912.nc"
[1] "SST_r100_201001.nc"
[1] "SST_r100_201002.nc"
[1] "SST_r100_201003.nc"
[1] "SST_r100_201004.nc"
[1] "SST_r100_201005.nc"
[1] "SST_r100_201006.nc"
[1] "SST_r100_201007.nc"
[1] "SST_r100_201008.nc"
[1] "SST_r100_201009.nc"
[1] "SST_r100_201010.nc"
[1] "SST_r100_201011.nc"
[1] "SST_r100_201012.nc"
[1] "SST_r100_201101.nc"
[1] "SST_r100_201102.nc"
[1] "SST_r100_201103.nc"
[1] "SST_r100_201104.nc"
[1] "SST_r100_201105.nc"
[1] "SST_r100_201106.nc"
[1] "SST_r100_201107.nc"
[1] "SST_r100_201108.nc"
[1] "SST_r100_201109.nc"
[1] "SST_r100_201110.nc"
[1] "SST_r100_201111.nc"
[1] "SST_r100_201112.nc"
[1] "SST_r100_201201.nc"
[1] "SST_r100_201202.nc"
[1] "SST_r100_201203.nc"
[1] "SST_r100_201204.nc"
[1] "SST_r100_201205.nc"
[1] "SST_r100_201206.nc"
[1] "SST_r100_201207.nc"
[1] "SST_r100_201208.nc"
[1] "SST_r100_201209.nc"
[1] "SST_r100_201210.nc"
[1] "SST_r100_201211.nc"
[1] "SST_r100_201212.nc"
[1] "SST_r100_201301.nc"
[1] "SST_r100_201302.nc"
[1] "SST_r100_201303.nc"
[1] "SST_r100_201304.nc"
[1] "SST_r100_201305.nc"
[1] "SST_r100_201306.nc"
[1] "SST_r100_201307.nc"
[1] "SST_r100_201308.nc"
[1] "SST_r100_201309.nc"
[1] "SST_r100_201310.nc"
[1] "SST_r100_201311.nc"
[1] "SST_r100_201312.nc"
[1] "SST_r100_201401.nc"
[1] "SST_r100_201402.nc"
[1] "SST_r100_201403.nc"
[1] "SST_r100_201404.nc"
[1] "SST_r100_201405.nc"
[1] "SST_r100_201406.nc"
[1] "SST_r100_201407.nc"
[1] "SST_r100_201408.nc"
[1] "SST_r100_201409.nc"
[1] "SST_r100_201410.nc"
[1] "SST_r100_201411.nc"
[1] "SST_r100_201412.nc"
[1] "SST_r100_201501.nc"
[1] "SST_r100_201502.nc"
[1] "SST_r100_201503.nc"
[1] "SST_r100_201504.nc"
[1] "SST_r100_201505.nc"
[1] "SST_r100_201506.nc"
[1] "SST_r100_201507.nc"
[1] "SST_r100_201508.nc"
[1] "SST_r100_201509.nc"
[1] "SST_r100_201510.nc"
[1] "SST_r100_201511.nc"
[1] "SST_r100_201512.nc"
[1] "SST_r100_201601.nc"
[1] "SST_r100_201602.nc"
[1] "SST_r100_201603.nc"
[1] "SST_r100_201604.nc"
[1] "SST_r100_201605.nc"
[1] "SST_r100_201606.nc"
[1] "SST_r100_201607.nc"
[1] "SST_r100_201608.nc"
[1] "SST_r100_201609.nc"
[1] "SST_r100_201610.nc"
[1] "SST_r100_201611.nc"
[1] "SST_r100_201612.nc"
[1] "SST_r100_201701.nc"
[1] "SST_r100_201702.nc"
[1] "SST_r100_201703.nc"
[1] "SST_r100_201704.nc"
[1] "SST_r100_201705.nc"
[1] "SST_r100_201706.nc"
[1] "SST_r100_201707.nc"
[1] "SST_r100_201708.nc"
[1] "SST_r100_201709.nc"
[1] "SST_r100_201710.nc"
[1] "SST_r100_201711.nc"
[1] "SST_r100_201712.nc"
[1] "SST_r100_201801.nc"
[1] "SST_r100_201802.nc"
[1] "SST_r100_201803.nc"
[1] "SST_r100_201804.nc"
[1] "SST_r100_201805.nc"
[1] "SST_r100_201806.nc"
[1] "SST_r100_201807.nc"
[1] "SST_r100_201808.nc"
[1] "SST_r100_201809.nc"
[1] "SST_r100_201810.nc"
[1] "SST_r100_201811.nc"
[1] "SST_r100_201812.nc"
[1] "SST_r100_201901.nc"
[1] "SST_r100_201902.nc"
[1] "SST_r100_201903.nc"
[1] "SST_r100_201904.nc"
[1] "SST_r100_201905.nc"
[1] "SST_r100_201906.nc"
[1] "SST_r100_201907.nc"
[1] "SST_r100_201908.nc"
[1] "SST_r100_201909.nc"
[1] "SST_r100_201910.nc"
[1] "SST_r100_201911.nc"
[1] "SST_r100_201912.nc"
[1] "SST_r100_202001.nc"
[1] "SST_r100_202002.nc"
[1] "SST_r100_202003.nc"
[1] "SST_r100_202004.nc"
[1] "SST_r100_202005.nc"
[1] "SST_r100_202006.nc"
[1] "SST_r100_202007.nc"
[1] "SST_r100_202008.nc"
[1] "SST_r100_202009.nc"
[1] "SST_r100_202010.nc"
[1] "SST_r100_202011.nc"
[1] "SST_r100_202012.nc"
[1] "SST_r100_202101.nc"
[1] "SST_r100_202102.nc"
[1] "SST_r100_202103.nc"
[1] "SST_r100_202104.nc"
[1] "SST_r100_202105.nc"
[1] "SST_r100_202106.nc"
[1] "SST_r100_202107.nc"
[1] "SST_r100_202108.nc"
[1] "SST_r100_202109.nc"
[1] "SST_r100_202110.nc"
[1] "SST_r100_202111.nc"
[1] "SST_r100_202112.nc"
[1] "SST_r100_202201.nc"
[1] "SST_r100_202202.nc"
[1] "SST_r100_202203.nc"
[1] "SST_r100_202204.nc"
[1] "SST_r100_202205.nc"
[1] "SST_r100_202206.nc"
[1] "SST_r100_202207.nc"
[1] "SST_r100_202208.nc"
[1] "SST_r100_202209.nc"
[1] "SST_r100_202210.nc"
[1] "SST_r100_202211.nc"
[1] "SST_r100_202212.nc"
[1] "SST_r100_202301.nc"
[1] "SST_r100_202302.nc"
[1] "SST_r100_202303.nc"
[1] "SST_r100_202304.nc"
[1] "SST_r100_202305.nc"
[1] "SST_r100_202306.nc"
[1] "SST_r100_202307.nc"
[1] "SST_r100_202308.nc"
[1] "SST_r100_202309.nc"
[1] "SST_SI_r100_202310.nc"
[1] "SST_SI_r100_202311.nc"
[1] "SST_SI_r100_202312.nc"
[1] "SST_SI_r100_202401.nc"
[1] "SST_SI_r100_202402.nc"
[1] "xCO2_r100_198501.nc"
[1] "xCO2_r100_198502.nc"
[1] "xCO2_r100_198503.nc"
[1] "xCO2_r100_198504.nc"
[1] "xCO2_r100_198505.nc"
[1] "xCO2_r100_198506.nc"
[1] "xCO2_r100_198507.nc"
[1] "xCO2_r100_198508.nc"
[1] "xCO2_r100_198509.nc"
[1] "xCO2_r100_198510.nc"
[1] "xCO2_r100_198511.nc"
[1] "xCO2_r100_198512.nc"
[1] "xCO2_r100_198601.nc"
[1] "xCO2_r100_198602.nc"
[1] "xCO2_r100_198603.nc"
[1] "xCO2_r100_198604.nc"
[1] "xCO2_r100_198605.nc"
[1] "xCO2_r100_198606.nc"
[1] "xCO2_r100_198607.nc"
[1] "xCO2_r100_198608.nc"
[1] "xCO2_r100_198609.nc"
[1] "xCO2_r100_198610.nc"
[1] "xCO2_r100_198611.nc"
[1] "xCO2_r100_198612.nc"
[1] "xCO2_r100_198701.nc"
[1] "xCO2_r100_198702.nc"
[1] "xCO2_r100_198703.nc"
[1] "xCO2_r100_198704.nc"
[1] "xCO2_r100_198705.nc"
[1] "xCO2_r100_198706.nc"
[1] "xCO2_r100_198707.nc"
[1] "xCO2_r100_198708.nc"
[1] "xCO2_r100_198709.nc"
[1] "xCO2_r100_198710.nc"
[1] "xCO2_r100_198711.nc"
[1] "xCO2_r100_198712.nc"
[1] "xCO2_r100_198801.nc"
[1] "xCO2_r100_198802.nc"
[1] "xCO2_r100_198803.nc"
[1] "xCO2_r100_198804.nc"
[1] "xCO2_r100_198805.nc"
[1] "xCO2_r100_198806.nc"
[1] "xCO2_r100_198807.nc"
[1] "xCO2_r100_198808.nc"
[1] "xCO2_r100_198809.nc"
[1] "xCO2_r100_198810.nc"
[1] "xCO2_r100_198811.nc"
[1] "xCO2_r100_198812.nc"
[1] "xCO2_r100_198901.nc"
[1] "xCO2_r100_198902.nc"
[1] "xCO2_r100_198903.nc"
[1] "xCO2_r100_198904.nc"
[1] "xCO2_r100_198905.nc"
[1] "xCO2_r100_198906.nc"
[1] "xCO2_r100_198907.nc"
[1] "xCO2_r100_198908.nc"
[1] "xCO2_r100_198909.nc"
[1] "xCO2_r100_198910.nc"
[1] "xCO2_r100_198911.nc"
[1] "xCO2_r100_198912.nc"
[1] "xCO2_r100_199001.nc"
[1] "xCO2_r100_199002.nc"
[1] "xCO2_r100_199003.nc"
[1] "xCO2_r100_199004.nc"
[1] "xCO2_r100_199005.nc"
[1] "xCO2_r100_199006.nc"
[1] "xCO2_r100_199007.nc"
[1] "xCO2_r100_199008.nc"
[1] "xCO2_r100_199009.nc"
[1] "xCO2_r100_199010.nc"
[1] "xCO2_r100_199011.nc"
[1] "xCO2_r100_199012.nc"
[1] "xCO2_r100_199101.nc"
[1] "xCO2_r100_199102.nc"
[1] "xCO2_r100_199103.nc"
[1] "xCO2_r100_199104.nc"
[1] "xCO2_r100_199105.nc"
[1] "xCO2_r100_199106.nc"
[1] "xCO2_r100_199107.nc"
[1] "xCO2_r100_199108.nc"
[1] "xCO2_r100_199109.nc"
[1] "xCO2_r100_199110.nc"
[1] "xCO2_r100_199111.nc"
[1] "xCO2_r100_199112.nc"
[1] "xCO2_r100_199201.nc"
[1] "xCO2_r100_199202.nc"
[1] "xCO2_r100_199203.nc"
[1] "xCO2_r100_199204.nc"
[1] "xCO2_r100_199205.nc"
[1] "xCO2_r100_199206.nc"
[1] "xCO2_r100_199207.nc"
[1] "xCO2_r100_199208.nc"
[1] "xCO2_r100_199209.nc"
[1] "xCO2_r100_199210.nc"
[1] "xCO2_r100_199211.nc"
[1] "xCO2_r100_199212.nc"
[1] "xCO2_r100_199301.nc"
[1] "xCO2_r100_199302.nc"
[1] "xCO2_r100_199303.nc"
[1] "xCO2_r100_199304.nc"
[1] "xCO2_r100_199305.nc"
[1] "xCO2_r100_199306.nc"
[1] "xCO2_r100_199307.nc"
[1] "xCO2_r100_199308.nc"
[1] "xCO2_r100_199309.nc"
[1] "xCO2_r100_199310.nc"
[1] "xCO2_r100_199311.nc"
[1] "xCO2_r100_199312.nc"
[1] "xCO2_r100_199401.nc"
[1] "xCO2_r100_199402.nc"
[1] "xCO2_r100_199403.nc"
[1] "xCO2_r100_199404.nc"
[1] "xCO2_r100_199405.nc"
[1] "xCO2_r100_199406.nc"
[1] "xCO2_r100_199407.nc"
[1] "xCO2_r100_199408.nc"
[1] "xCO2_r100_199409.nc"
[1] "xCO2_r100_199410.nc"
[1] "xCO2_r100_199411.nc"
[1] "xCO2_r100_199412.nc"
[1] "xCO2_r100_199501.nc"
[1] "xCO2_r100_199502.nc"
[1] "xCO2_r100_199503.nc"
[1] "xCO2_r100_199504.nc"
[1] "xCO2_r100_199505.nc"
[1] "xCO2_r100_199506.nc"
[1] "xCO2_r100_199507.nc"
[1] "xCO2_r100_199508.nc"
[1] "xCO2_r100_199509.nc"
[1] "xCO2_r100_199510.nc"
[1] "xCO2_r100_199511.nc"
[1] "xCO2_r100_199512.nc"
[1] "xCO2_r100_199601.nc"
[1] "xCO2_r100_199602.nc"
[1] "xCO2_r100_199603.nc"
[1] "xCO2_r100_199604.nc"
[1] "xCO2_r100_199605.nc"
[1] "xCO2_r100_199606.nc"
[1] "xCO2_r100_199607.nc"
[1] "xCO2_r100_199608.nc"
[1] "xCO2_r100_199609.nc"
[1] "xCO2_r100_199610.nc"
[1] "xCO2_r100_199611.nc"
[1] "xCO2_r100_199612.nc"
[1] "xCO2_r100_199701.nc"
[1] "xCO2_r100_199702.nc"
[1] "xCO2_r100_199703.nc"
[1] "xCO2_r100_199704.nc"
[1] "xCO2_r100_199705.nc"
[1] "xCO2_r100_199706.nc"
[1] "xCO2_r100_199707.nc"
[1] "xCO2_r100_199708.nc"
[1] "xCO2_r100_199709.nc"
[1] "xCO2_r100_199710.nc"
[1] "xCO2_r100_199711.nc"
[1] "xCO2_r100_199712.nc"
[1] "xCO2_r100_199801.nc"
[1] "xCO2_r100_199802.nc"
[1] "xCO2_r100_199803.nc"
[1] "xCO2_r100_199804.nc"
[1] "xCO2_r100_199805.nc"
[1] "xCO2_r100_199806.nc"
[1] "xCO2_r100_199807.nc"
[1] "xCO2_r100_199808.nc"
[1] "xCO2_r100_199809.nc"
[1] "xCO2_r100_199810.nc"
[1] "xCO2_r100_199811.nc"
[1] "xCO2_r100_199812.nc"
[1] "xCO2_r100_199901.nc"
[1] "xCO2_r100_199902.nc"
[1] "xCO2_r100_199903.nc"
[1] "xCO2_r100_199904.nc"
[1] "xCO2_r100_199905.nc"
[1] "xCO2_r100_199906.nc"
[1] "xCO2_r100_199907.nc"
[1] "xCO2_r100_199908.nc"
[1] "xCO2_r100_199909.nc"
[1] "xCO2_r100_199910.nc"
[1] "xCO2_r100_199911.nc"
[1] "xCO2_r100_199912.nc"
[1] "xCO2_r100_200001.nc"
[1] "xCO2_r100_200002.nc"
[1] "xCO2_r100_200003.nc"
[1] "xCO2_r100_200004.nc"
[1] "xCO2_r100_200005.nc"
[1] "xCO2_r100_200006.nc"
[1] "xCO2_r100_200007.nc"
[1] "xCO2_r100_200008.nc"
[1] "xCO2_r100_200009.nc"
[1] "xCO2_r100_200010.nc"
[1] "xCO2_r100_200011.nc"
[1] "xCO2_r100_200012.nc"
[1] "xCO2_r100_200101.nc"
[1] "xCO2_r100_200102.nc"
[1] "xCO2_r100_200103.nc"
[1] "xCO2_r100_200104.nc"
[1] "xCO2_r100_200105.nc"
[1] "xCO2_r100_200106.nc"
[1] "xCO2_r100_200107.nc"
[1] "xCO2_r100_200108.nc"
[1] "xCO2_r100_200109.nc"
[1] "xCO2_r100_200110.nc"
[1] "xCO2_r100_200111.nc"
[1] "xCO2_r100_200112.nc"
[1] "xCO2_r100_200201.nc"
[1] "xCO2_r100_200202.nc"
[1] "xCO2_r100_200203.nc"
[1] "xCO2_r100_200204.nc"
[1] "xCO2_r100_200205.nc"
[1] "xCO2_r100_200206.nc"
[1] "xCO2_r100_200207.nc"
[1] "xCO2_r100_200208.nc"
[1] "xCO2_r100_200209.nc"
[1] "xCO2_r100_200210.nc"
[1] "xCO2_r100_200211.nc"
[1] "xCO2_r100_200212.nc"
[1] "xCO2_r100_200301.nc"
[1] "xCO2_r100_200302.nc"
[1] "xCO2_r100_200303.nc"
[1] "xCO2_r100_200304.nc"
[1] "xCO2_r100_200305.nc"
[1] "xCO2_r100_200306.nc"
[1] "xCO2_r100_200307.nc"
[1] "xCO2_r100_200308.nc"
[1] "xCO2_r100_200309.nc"
[1] "xCO2_r100_200310.nc"
[1] "xCO2_r100_200311.nc"
[1] "xCO2_r100_200312.nc"
[1] "xCO2_r100_200401.nc"
[1] "xCO2_r100_200402.nc"
[1] "xCO2_r100_200403.nc"
[1] "xCO2_r100_200404.nc"
[1] "xCO2_r100_200405.nc"
[1] "xCO2_r100_200406.nc"
[1] "xCO2_r100_200407.nc"
[1] "xCO2_r100_200408.nc"
[1] "xCO2_r100_200409.nc"
[1] "xCO2_r100_200410.nc"
[1] "xCO2_r100_200411.nc"
[1] "xCO2_r100_200412.nc"
[1] "xCO2_r100_200501.nc"
[1] "xCO2_r100_200502.nc"
[1] "xCO2_r100_200503.nc"
[1] "xCO2_r100_200504.nc"
[1] "xCO2_r100_200505.nc"
[1] "xCO2_r100_200506.nc"
[1] "xCO2_r100_200507.nc"
[1] "xCO2_r100_200508.nc"
[1] "xCO2_r100_200509.nc"
[1] "xCO2_r100_200510.nc"
[1] "xCO2_r100_200511.nc"
[1] "xCO2_r100_200512.nc"
[1] "xCO2_r100_200601.nc"
[1] "xCO2_r100_200602.nc"
[1] "xCO2_r100_200603.nc"
[1] "xCO2_r100_200604.nc"
[1] "xCO2_r100_200605.nc"
[1] "xCO2_r100_200606.nc"
[1] "xCO2_r100_200607.nc"
[1] "xCO2_r100_200608.nc"
[1] "xCO2_r100_200609.nc"
[1] "xCO2_r100_200610.nc"
[1] "xCO2_r100_200611.nc"
[1] "xCO2_r100_200612.nc"
[1] "xCO2_r100_200701.nc"
[1] "xCO2_r100_200702.nc"
[1] "xCO2_r100_200703.nc"
[1] "xCO2_r100_200704.nc"
[1] "xCO2_r100_200705.nc"
[1] "xCO2_r100_200706.nc"
[1] "xCO2_r100_200707.nc"
[1] "xCO2_r100_200708.nc"
[1] "xCO2_r100_200709.nc"
[1] "xCO2_r100_200710.nc"
[1] "xCO2_r100_200711.nc"
[1] "xCO2_r100_200712.nc"
[1] "xCO2_r100_200801.nc"
[1] "xCO2_r100_200802.nc"
[1] "xCO2_r100_200803.nc"
[1] "xCO2_r100_200804.nc"
[1] "xCO2_r100_200805.nc"
[1] "xCO2_r100_200806.nc"
[1] "xCO2_r100_200807.nc"
[1] "xCO2_r100_200808.nc"
[1] "xCO2_r100_200809.nc"
[1] "xCO2_r100_200810.nc"
[1] "xCO2_r100_200811.nc"
[1] "xCO2_r100_200812.nc"
[1] "xCO2_r100_200901.nc"
[1] "xCO2_r100_200902.nc"
[1] "xCO2_r100_200903.nc"
[1] "xCO2_r100_200904.nc"
[1] "xCO2_r100_200905.nc"
[1] "xCO2_r100_200906.nc"
[1] "xCO2_r100_200907.nc"
[1] "xCO2_r100_200908.nc"
[1] "xCO2_r100_200909.nc"
[1] "xCO2_r100_200910.nc"
[1] "xCO2_r100_200911.nc"
[1] "xCO2_r100_200912.nc"
[1] "xCO2_r100_201001.nc"
[1] "xCO2_r100_201002.nc"
[1] "xCO2_r100_201003.nc"
[1] "xCO2_r100_201004.nc"
[1] "xCO2_r100_201005.nc"
[1] "xCO2_r100_201006.nc"
[1] "xCO2_r100_201007.nc"
[1] "xCO2_r100_201008.nc"
[1] "xCO2_r100_201009.nc"
[1] "xCO2_r100_201010.nc"
[1] "xCO2_r100_201011.nc"
[1] "xCO2_r100_201012.nc"
[1] "xCO2_r100_201101.nc"
[1] "xCO2_r100_201102.nc"
[1] "xCO2_r100_201103.nc"
[1] "xCO2_r100_201104.nc"
[1] "xCO2_r100_201105.nc"
[1] "xCO2_r100_201106.nc"
[1] "xCO2_r100_201107.nc"
[1] "xCO2_r100_201108.nc"
[1] "xCO2_r100_201109.nc"
[1] "xCO2_r100_201110.nc"
[1] "xCO2_r100_201111.nc"
[1] "xCO2_r100_201112.nc"
[1] "xCO2_r100_201201.nc"
[1] "xCO2_r100_201202.nc"
[1] "xCO2_r100_201203.nc"
[1] "xCO2_r100_201204.nc"
[1] "xCO2_r100_201205.nc"
[1] "xCO2_r100_201206.nc"
[1] "xCO2_r100_201207.nc"
[1] "xCO2_r100_201208.nc"
[1] "xCO2_r100_201209.nc"
[1] "xCO2_r100_201210.nc"
[1] "xCO2_r100_201211.nc"
[1] "xCO2_r100_201212.nc"
[1] "xCO2_r100_201301.nc"
[1] "xCO2_r100_201302.nc"
[1] "xCO2_r100_201303.nc"
[1] "xCO2_r100_201304.nc"
[1] "xCO2_r100_201305.nc"
[1] "xCO2_r100_201306.nc"
[1] "xCO2_r100_201307.nc"
[1] "xCO2_r100_201308.nc"
[1] "xCO2_r100_201309.nc"
[1] "xCO2_r100_201310.nc"
[1] "xCO2_r100_201311.nc"
[1] "xCO2_r100_201312.nc"
[1] "xCO2_r100_201401.nc"
[1] "xCO2_r100_201402.nc"
[1] "xCO2_r100_201403.nc"
[1] "xCO2_r100_201404.nc"
[1] "xCO2_r100_201405.nc"
[1] "xCO2_r100_201406.nc"
[1] "xCO2_r100_201407.nc"
[1] "xCO2_r100_201408.nc"
[1] "xCO2_r100_201409.nc"
[1] "xCO2_r100_201410.nc"
[1] "xCO2_r100_201411.nc"
[1] "xCO2_r100_201412.nc"
[1] "xCO2_r100_201501.nc"
[1] "xCO2_r100_201502.nc"
[1] "xCO2_r100_201503.nc"
[1] "xCO2_r100_201504.nc"
[1] "xCO2_r100_201505.nc"
[1] "xCO2_r100_201506.nc"
[1] "xCO2_r100_201507.nc"
[1] "xCO2_r100_201508.nc"
[1] "xCO2_r100_201509.nc"
[1] "xCO2_r100_201510.nc"
[1] "xCO2_r100_201511.nc"
[1] "xCO2_r100_201512.nc"
[1] "xCO2_r100_201601.nc"
[1] "xCO2_r100_201602.nc"
[1] "xCO2_r100_201603.nc"
[1] "xCO2_r100_201604.nc"
[1] "xCO2_r100_201605.nc"
[1] "xCO2_r100_201606.nc"
[1] "xCO2_r100_201607.nc"
[1] "xCO2_r100_201608.nc"
[1] "xCO2_r100_201609.nc"
[1] "xCO2_r100_201610.nc"
[1] "xCO2_r100_201611.nc"
[1] "xCO2_r100_201612.nc"
[1] "xCO2_r100_201701.nc"
[1] "xCO2_r100_201702.nc"
[1] "xCO2_r100_201703.nc"
[1] "xCO2_r100_201704.nc"
[1] "xCO2_r100_201705.nc"
[1] "xCO2_r100_201706.nc"
[1] "xCO2_r100_201707.nc"
[1] "xCO2_r100_201708.nc"
[1] "xCO2_r100_201709.nc"
[1] "xCO2_r100_201710.nc"
[1] "xCO2_r100_201711.nc"
[1] "xCO2_r100_201712.nc"
[1] "xCO2_r100_201801.nc"
[1] "xCO2_r100_201802.nc"
[1] "xCO2_r100_201803.nc"
[1] "xCO2_r100_201804.nc"
[1] "xCO2_r100_201805.nc"
[1] "xCO2_r100_201806.nc"
[1] "xCO2_r100_201807.nc"
[1] "xCO2_r100_201808.nc"
[1] "xCO2_r100_201809.nc"
[1] "xCO2_r100_201810.nc"
[1] "xCO2_r100_201811.nc"
[1] "xCO2_r100_201812.nc"
[1] "xCO2_r100_201901.nc"
[1] "xCO2_r100_201902.nc"
[1] "xCO2_r100_201903.nc"
[1] "xCO2_r100_201904.nc"
[1] "xCO2_r100_201905.nc"
[1] "xCO2_r100_201906.nc"
[1] "xCO2_r100_201907.nc"
[1] "xCO2_r100_201908.nc"
[1] "xCO2_r100_201909.nc"
[1] "xCO2_r100_201910.nc"
[1] "xCO2_r100_201911.nc"
[1] "xCO2_r100_201912.nc"
[1] "xCO2_r100_202001.nc"
[1] "xCO2_r100_202002.nc"
[1] "xCO2_r100_202003.nc"
[1] "xCO2_r100_202004.nc"
[1] "xCO2_r100_202005.nc"
[1] "xCO2_r100_202006.nc"
[1] "xCO2_r100_202007.nc"
[1] "xCO2_r100_202008.nc"
[1] "xCO2_r100_202009.nc"
[1] "xCO2_r100_202010.nc"
[1] "xCO2_r100_202011.nc"
[1] "xCO2_r100_202012.nc"
[1] "xCO2_r100_202101.nc"
[1] "xCO2_r100_202102.nc"
[1] "xCO2_r100_202103.nc"
[1] "xCO2_r100_202104.nc"
[1] "xCO2_r100_202105.nc"
[1] "xCO2_r100_202106.nc"
[1] "xCO2_r100_202107.nc"
[1] "xCO2_r100_202108.nc"
[1] "xCO2_r100_202109.nc"
[1] "xCO2_r100_202110.nc"
[1] "xCO2_r100_202111.nc"
[1] "xCO2_r100_202112.nc"
[1] "xCO2_r100_202201.nc"
[1] "xCO2_r100_202202.nc"
[1] "xCO2_r100_202203.nc"
[1] "xCO2_r100_202204.nc"
[1] "xCO2_r100_202205.nc"
[1] "xCO2_r100_202206.nc"
[1] "xCO2_r100_202207.nc"
[1] "xCO2_r100_202208.nc"
[1] "xCO2_r100_202209.nc"
[1] "xCO2_r100_202210.nc"
[1] "xCO2_r100_202211.nc"
[1] "xCO2_r100_202212.nc"
[1] "xCO2_r100_202301.nc"
[1] "xCO2_r100_202302.nc"
[1] "xCO2_r100_202303.nc"
[1] "xCO2_r100_202304.nc"
[1] "xCO2_r100_202305.nc"
[1] "xCO2_r100_202306.nc"
[1] "xCO2_r100_202307.nc"
[1] "xCO2_r100_202308.nc"
[1] "xCO2_r100_202309.nc"
[1] "xCO2_r100_202310.nc"
[1] "xCO2_r100_202311.nc"
[1] "xCO2_r100_202312.nc"
[1] "xCO2_r100_202401.nc"
[1] "xCO2_r100_202402.nc"
rm(i_pco2_product_var,
   nc, var_name,
   i_file_name, file_names,
   i_name, CMEMS_files_var,
   CMEMS_files)
# rm(pco2_product)

pco2_product <-
  pco2_product %>%
  rename(chl = CHL,
         mld = MLD,
         sfco2 = CO2,
         fgco2 = fCO2_mean,
         salinity = SSS,
         temperature = SST,
         fice = SI_fraction)

pco2_product <-
  pco2_product %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

pco2_product <-
  pco2_product %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon),
         fgco2 = -fgco2,
         chl = log10(chl),
         mld = log10(mld))

pco2_product <-
  pco2_product %>% 
  filter(year <= 2023)
names <- c("CO2_fluxes", "CO2_fugacity")

for (i_name in names) {
  
  # i_name <- names[2]
  
  CMEMS_files <- list.files(path = paste0(path_CMEMS, i_name, "/"),
                            full.names = TRUE)
  
  # i_CMEMS_files <- CMEMS_files[2]
  
  i_pco2_product <-
    read_stars(CMEMS_files,
               make_units = FALSE,
               ignore_bounds = TRUE,
               quiet = TRUE)
  
  if (exists("pco2_product")) {
    pco2_product <-
      c(pco2_product,
                i_pco2_product)
  }
  
  if (!exists("pco2_product")) {
    pco2_product <- i_pco2_product
  }
  
}

rm(CMEMS_files, i_pco2_product, i_name, names)
# rm(pco2_product)

pco2_product <- pco2_product %>%
  as_tibble()


pco2_product <-
  pco2_product %>%
  rename(lon = x,
         lat = y,
         sfco2 = fuCO2_mean,
         fgco2 = fCO2_mean) %>% 
  select(-contains("_std")) %>% 
  units::drop_units()

pco2_product <-
  pco2_product %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

pco2_product <-
  pco2_product %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon),
         fgco2 = -fgco2)

pco2_product <-
  pco2_product %>% 
  filter(year <= 2023)
pCO2_product_preprocessing <-
  knitr::knit_expand(file = here::here("analysis/child/pCO2_product_preprocessing.Rmd"))

Preprocessing

Load masks

biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

super_biomes <-
  read_rds(here::here("data/super_biomes.rds"))

super_biome_mask <-
  read_rds(here::here("data/super_biome_mask.rds"))

Define labels and breaks

labels_breaks <- function(i_name) {
  
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "sol") {
    i_legend_title <- "CO<sub>2</sub> solubility<br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "kw") {
    i_legend_title <- "K<sub>w</sub><br>(m yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub><br>(µatm)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub><br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub><br>(PgC yr<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST<br>(°C)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a)<br>(lg(mg m<sup>-3</sup>))"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "mld") {
    i_legend_title <- "lg(MLD)<br>(lg(m))"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub><br>(unit?)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind <br>(m sec<sup>-1</sup>)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH <br>(m)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice <br>(%)"
    # i_breaks <- c(-Inf, seq(0, 80, 10), Inf)
    # i_contour_level <- 50
    # i_contour_level_abs <- 2200
  }
  
  all_labels_breaks <- lst(i_legend_title,
                           # i_breaks,
                           # i_contour_level,
                           # i_contour_level_abs
                           )
  
  return(all_labels_breaks)
  
}


# labels_breaks("fgco2")

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title
  )

Analysis settings

name_quadratic_fit <- c("atm_co2", "atm_fco2", "spco2", "sfco2")

start_year <- 1990

name_divergent <- c("dco2", "fgco2", "fgco2_hov", "fgco2_int")

Data preprocessing

pco2_product <-
  pco2_product %>%
  filter(year >= start_year)
pco2_product <-
  full_join(pco2_product,
            biome_mask)

# set all values outside biome mask to NA

pco2_product <-
  pco2_product %>%
  mutate(across(-c(lat, lon, time, area, year, month, biome), 
                ~ if_else(is.na(biome), NA, .)))

Compuations

# apply coarse grid

pco2_product_coarse <-
  m_grid_horizontal_coarse(pco2_product)

pco2_product_coarse <-
  pco2_product_coarse %>%
  select(-c(lon, lat, time, biome)) %>%
  group_by(year, month, lon_grid, lat_grid) %>%
  summarise(across(-area,
                   ~ weighted.mean(., area))) %>%
  ungroup() %>%
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_coarse <-
  pco2_product_coarse %>%
  pivot_longer(-c(year, month, lon, lat)) %>% 
  drop_na() %>%
  pivot_wider()

# compute annual means

pco2_product_coarse_annual <-
  pco2_product_coarse %>%
  select(-month) %>% 
  group_by(year, lon, lat) %>%
  summarise(across(where(is.numeric),
                   ~ mean(.))) %>%
  ungroup()

pco2_product_coarse_annual <-
  pco2_product_coarse_annual %>% 
  pivot_longer(-c(year, lon, lat))

## compute monthly means

pco2_product_coarse_monthly <-
  pco2_product_coarse %>%
  group_by(year, month, lon, lat) %>%
  summarise(across(where(is.numeric),
                   ~ mean(.))) %>%
  ungroup()

pco2_product_coarse_monthly <-
  pco2_product_coarse_monthly %>% 
  pivot_longer(-c(year, month, lon, lat))
pco2_product_monthly_global <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  select(-c(lon, lat, year, month, biome)) %>% 
  group_by(time) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_monthly_biome <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  select(-c(lon, lat, year, month)) %>% 
  group_by(time, biome) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()


pco2_product_monthly_biome_super <-
  pco2_product %>%
  filter(!is.na(fgco2)) %>% 
  mutate(
    biome = case_when(
      str_detect(biome, "NA-") ~ "North Atlantic",
      str_detect(biome, "NP-") ~ "North Pacific",
      str_detect(biome, "SO-") ~ "Southern Ocean",
      TRUE ~ "other"
    )
  ) %>%
  filter(biome != "other") %>%
  select(-c(lon, lat, year, month)) %>%
  group_by(time, biome) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup()

pco2_product_monthly <-
  bind_rows(pco2_product_monthly_global %>%
              mutate(biome = "Global"),
            pco2_product_monthly_biome,
            pco2_product_monthly_biome_super)

rm(
  pco2_product_monthly_global,
  pco2_product_monthly_biome,
  pco2_product_monthly_biome_super
)


pco2_product_monthly <-
  pco2_product_monthly %>% 
  filter(!is.na(biome))

pco2_product_monthly <-
  pco2_product_monthly %>%
  rename(fgco2_int = fgco2)

pco2_product_monthly <-
  pco2_product_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

pco2_product_monthly <-
  pco2_product_monthly %>%
  pivot_longer(-c(time, year, month, biome))

Absolute values

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product. Hovmoeller plots are first presented as annual means, and than as monthly means.

Annual means

pco2_product_hovmoeller_monthly_annual <-
  pco2_product %>%
  select(-c(lon, time, month, biome)) %>%
  group_by(year, lat) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2) %>% 
  filter(fgco2_hov != 0)

pco2_product_hovmoeller_monthly_annual <-
  pco2_product_hovmoeller_monthly_annual %>%
  pivot_longer(-c(year, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly_annual %>%
  filter(!(name %in% name_divergent)) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
a1c2e14 jens-daniel-mueller 2024-03-24

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
5c1676b jens-daniel-mueller 2024-03-24
a1c2e14 jens-daniel-mueller 2024-03-24

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_hovmoeller_monthly_annual %>%
  filter(name %in% name_divergent) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = value)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual means",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Monthly means

pco2_product_hovmoeller_monthly <-
  pco2_product %>%
  select(-c(lon, time, biome)) %>%
  group_by(year, month, lat) %>%
  summarise(across(-c(fgco2, area),
                   ~ weighted.mean(., area, na.rm = TRUE)),
            across(fgco2,
                   ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>%
  ungroup() %>%
  rename(fgco2_hov = fgco2) %>% 
  filter(fgco2_hov != 0)


pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat)) %>% 
  drop_na()

pco2_product_hovmoeller_monthly <-
  pco2_product_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

pco2_product_hovmoeller_monthly %>%
  filter(!(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
a1c2e14 jens-daniel-mueller 2024-03-24

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
5c1676b jens-daniel-mueller 2024-03-24
a1c2e14 jens-daniel-mueller 2024-03-24

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_hovmoeller_monthly %>%
  filter(name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = value)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      labs(title = "Monthly means",
           y = "Latitude") +
      coord_cartesian(expand = 0) +
      theme(axis.title.x = element_blank())
  )
[[1]]

pCO2productanalysis_2023 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "CMEMS",
    year_anom = 2023
  )

2023 anomalies

Detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for , which are approximated with quadratic fits.

The regression models are fitted to all data since , except 2023.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat)
  # df <- pco2_product_coarse_annual
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year != 2023,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_year_anom <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_lm_year_anom
    )
  
  rm(df_lm_year_anom)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year != 2023,
           name %in% name_quadratic_fit) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_year_anom <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_quadratic_year_anom
    )
  
  rm(df_quadratic_year_anom)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  df_regression <-
    df_regression %>% 
    arrange(year)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}

Maps

The following maps show the absolute state of each variable in 2023 as provided through the pCO2 product, the change in that variable from 1990 to 2023, as well es the anomalies in 2023. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 absolute

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual %>%
  drop_na() %>% 
  anomaly_determination(lon, lat)

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual_regression %>%
  drop_na()

pco2_product_coarse_annual_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Annual mean", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
c9d994c jens-daniel-mueller 2024-04-04
a1c2e14 jens-daniel-mueller 2024-03-24

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
c9d994c jens-daniel-mueller 2024-04-04
5c1676b jens-daniel-mueller 2024-03-24
a1c2e14 jens-daniel-mueller 2024-03-24

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_annual_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = paste("Annual mean", 2023)) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

2023 anomaly

pco2_product_coarse_annual_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(2023,"anomaly")) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_annual_regression %>%
  write_csv(paste0("../data/","CMEMS","_","2023","_anomaly_map_annual.csv"))

Monthly means

2023 absolute

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly %>%
  drop_na() %>% 
  anomaly_determination(lon, lat, month)

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly_regression %>% 
  drop_na()


pco2_product_coarse_monthly_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
c9d994c jens-daniel-mueller 2024-04-04
a1c2e14 jens-daniel-mueller 2024-03-24

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
c9d994c jens-daniel-mueller 2024-04-04
5c1676b jens-daniel-mueller 2024-03-24
a1c2e14 jens-daniel-mueller 2024-03-24

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2023)) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

2023 anomaly

pco2_product_coarse_monthly_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(2023, "anomaly")) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 2023) %>%
  write_csv(paste0("../data/","CMEMS","_","2023","_anomaly_map_monthly.csv"))

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of the linear/quadratic fits.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

2023 annual anomalies

pco2_product_hovmoeller_monthly_annual_regression <-
  pco2_product_hovmoeller_monthly_annual %>%
  anomaly_determination(lat) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_annual_regression %>%
  # filter(name == "mld") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

2023 monthly anomalies

pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly_regression %>%
  mutate(decimal = year + (month - 1) / 12)
  
pco2_product_hovmoeller_monthly_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_hovmoeller_monthly_regression %>%
  write_csv(paste0("../data/","CMEMS","_","2023","_anomaly_hovmoeller_monthly.csv"))

Three years prior 2023

pco2_product_hovmoeller_monthly_regression %>%
  filter(between(year, 2023-2, 2023)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

Regional means and integrals

The following plots show regionally averaged (or integrated) values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

2023 absolute values

Global

fig.height <- pco2_product_monthly %>% 
  distinct(name) %>% 
  nrow()

fig.height <- (fig.height + 2) * 0.1
pco2_product_monthly %>%
  filter(biome %in% "Global") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Selected biomes

pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[4]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[5]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Super biomes

pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected super biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

2023 anomalies

Global

pco2_product_monthly_detrended <-
  full_join(pco2_product_monthly,
            pco2_product_monthly_regression %>% select(-c(value, resid, time))) %>%
  mutate(resid = value - fit)

pco2_product_monthly_detrended %>% 
  filter(biome %in% "Global") %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Global") +
  facet_wrap(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    strip.position = "left",
    ncol = 2
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Selected biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Super biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2023-1, 2023)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2023-1, 2023)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2023-1, 2023)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]

2023 anomaly correlation

The following plots aim to unravel the correlation between regionally integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot integrated fluxes separately for each region. Secondly, we normalize the monthly anomalies to the spread (expressed as standard deviation) of the residuals from the fit.

Annual anomalies

Absolute

pco2_product_annual_regression %>%
  filter(biome == "Global") %>%
  select(-c(value, fit)) %>% 
  pivot_wider(values_from = resid) %>% 
  pivot_longer(-c(year, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(!between(year, 2023-1, 2023)),
             aes(fill = year),
             shape = 21) +
  geom_smooth(
    data = . %>% filter(!between(year, 2023-1, 2023)),
    method = "lm",
    se = FALSE,
    fullrange = TRUE,
    aes(col = paste("Regression fit\nexcl.", 2023))
  ) +
  scale_color_grey() +
  scale_fill_grayC()+
  new_scale_fill() +
  geom_point(data = . %>% filter(between(year, 2023-1, 2023)),
             aes(fill = as.factor(year)),
             shape = 21, size = 2)  +
  scale_fill_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Monthly anomalies

Absolute

pco2_product_monthly_detrended_anomaly <-
  pco2_product_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


pco2_product_monthly_detrended_anomaly %>%
  filter(biome == "Global") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year != 2023),
             aes(col = paste(min(year), max(year), sep = "-")),
             alpha = 0.2) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    aes(col = paste(min(year), max(year), sep = "-")),
    method = "lm",
    se = FALSE,
    fullrange = TRUE
  )  +
  scale_color_grey(name = "") +
  new_scale_color() +
  geom_path(data = . %>% filter(year == 2023),
            aes(col = as.factor(month), group = 1))  +
  geom_point(data = . %>% filter(year == 2023),
             aes(fill =  as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_color_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2023)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly_detrended_anomaly %>%
  filter(!(biome %in% c(super_biomes, "Global"))) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  filter(biome %in% super_biomes) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free_x") +
      labs(
        title = "Super biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  write_csv(paste0(
    "../data/",
    "CMEMS","_","2023",
    "_biome_monthly_detrended_anomaly.csv"
  ))

Relative to spread

pco2_product_monthly_detrended_anomaly_spread <-
  pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year != 2023) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value, na.rm = TRUE)) %>%
  ungroup()



pco2_product_monthly_detrended_anomaly_relative <-
  full_join(
    pco2_product_monthly_detrended_anomaly_spread,
    pco2_product_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

pco2_product_monthly_detrended_anomaly_relative <-
  pco2_product_monthly_detrended_anomaly_relative %>%
  mutate(value = value / spread) %>%
  select(-spread) %>%
  pivot_wider() %>%
  pivot_longer(-c(month, biome, year, fgco2_int))



pco2_product_monthly_detrended_anomaly_relative %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      facet_wrap( ~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pCO2productanalysis_2016 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "CMEMS",
    year_anom = 2016
  )

2016 anomalies

Detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for , which are approximated with quadratic fits.

The regression models are fitted to all data since , except 2016.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat)
  # df <- pco2_product_coarse_annual
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year != 2016,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_year_anom <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2016) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2016),
      df %>%
        filter(year == 2016,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_lm_year_anom
    )
  
  rm(df_lm_year_anom)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year != 2016,
           name %in% name_quadratic_fit) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_year_anom <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2016 + `I(year^2)` * 2016 ^ 2) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 2016),
      df %>%
        filter(year == 2016,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_quadratic_year_anom
    )
  
  rm(df_quadratic_year_anom)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  df_regression <-
    df_regression %>% 
    arrange(year)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}

Maps

The following maps show the absolute state of each variable in 2016 as provided through the pCO2 product, the change in that variable from 1990 to 2016, as well es the anomalies in 2016. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2015.

Maps are first presented as annual means, and than as monthly means. Note that the 2016 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2016 absolute

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual %>%
  drop_na() %>% 
  anomaly_determination(lon, lat)

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual_regression %>%
  drop_na()

pco2_product_coarse_annual_regression %>%
  filter(year == 2016,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Annual mean", 2016)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_annual_regression %>%
  filter(year == 2016,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = paste("Annual mean", 2016)) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

2016 anomaly

pco2_product_coarse_annual_regression %>%
  filter(year == 2016) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(2016,"anomaly")) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_annual_regression %>%
  write_csv(paste0("../data/","CMEMS","_","2016","_anomaly_map_annual.csv"))

Monthly means

2016 absolute

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly %>%
  drop_na() %>% 
  anomaly_determination(lon, lat, month)

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly_regression %>% 
  drop_na()


pco2_product_coarse_monthly_regression %>%
  filter(year == 2016,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2016)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 2016,
         name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 2016)) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

2016 anomaly

pco2_product_coarse_monthly_regression %>%
  filter(year == 2016) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(2016, "anomaly")) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 2016) %>%
  write_csv(paste0("../data/","CMEMS","_","2016","_anomaly_map_monthly.csv"))

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of the linear/quadratic fits.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

2016 annual anomalies

pco2_product_hovmoeller_monthly_annual_regression <-
  pco2_product_hovmoeller_monthly_annual %>%
  anomaly_determination(lat) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_annual_regression %>%
  # filter(name == "mld") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

2016 monthly anomalies

pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly_regression %>%
  mutate(decimal = year + (month - 1) / 12)
  
pco2_product_hovmoeller_monthly_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_hovmoeller_monthly_regression %>%
  write_csv(paste0("../data/","CMEMS","_","2016","_anomaly_hovmoeller_monthly.csv"))

Three years prior 2016

pco2_product_hovmoeller_monthly_regression %>%
  filter(between(year, 2016-2, 2016)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

Regional means and integrals

The following plots show regionally averaged (or integrated) values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

2016 absolute values

Global

fig.height <- pco2_product_monthly %>% 
  distinct(name) %>% 
  nrow()

fig.height <- (fig.height + 2) * 0.1
pco2_product_monthly %>%
  filter(biome %in% "Global") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Selected biomes

pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2016-1, 2016)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[4]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[5]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Super biomes

pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected super biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2016-1, 2016)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

2016 anomalies

Global

pco2_product_monthly_detrended <-
  full_join(pco2_product_monthly,
            pco2_product_monthly_regression %>% select(-c(value, resid, time))) %>%
  mutate(resid = value - fit)

pco2_product_monthly_detrended %>% 
  filter(biome %in% "Global") %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Global") +
  facet_wrap(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    strip.position = "left",
    ncol = 2
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Selected biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2016-1, 2016)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Super biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 2016-1, 2016)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 2016-1, 2016)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 2016-1, 2016)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]

2016 anomaly correlation

The following plots aim to unravel the correlation between regionally integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot integrated fluxes separately for each region. Secondly, we normalize the monthly anomalies to the spread (expressed as standard deviation) of the residuals from the fit.

Annual anomalies

Absolute

pco2_product_annual_regression %>%
  filter(biome == "Global") %>%
  select(-c(value, fit)) %>% 
  pivot_wider(values_from = resid) %>% 
  pivot_longer(-c(year, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(!between(year, 2016-1, 2016)),
             aes(fill = year),
             shape = 21) +
  geom_smooth(
    data = . %>% filter(!between(year, 2016-1, 2016)),
    method = "lm",
    se = FALSE,
    fullrange = TRUE,
    aes(col = paste("Regression fit\nexcl.", 2016))
  ) +
  scale_color_grey() +
  scale_fill_grayC()+
  new_scale_fill() +
  geom_point(data = . %>% filter(between(year, 2016-1, 2016)),
             aes(fill = as.factor(year)),
             shape = 21, size = 2)  +
  scale_fill_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Monthly anomalies

Absolute

pco2_product_monthly_detrended_anomaly <-
  pco2_product_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


pco2_product_monthly_detrended_anomaly %>%
  filter(biome == "Global") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year != 2016),
             aes(col = paste(min(year), max(year), sep = "-")),
             alpha = 0.2) +
  geom_smooth(
    data = . %>% filter(year != 2016),
    aes(col = paste(min(year), max(year), sep = "-")),
    method = "lm",
    se = FALSE,
    fullrange = TRUE
  )  +
  scale_color_grey(name = "") +
  new_scale_color() +
  geom_path(data = . %>% filter(year == 2016),
            aes(col = as.factor(month), group = 1))  +
  geom_point(data = . %>% filter(year == 2016),
             aes(fill =  as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_color_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2016)) +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 2016)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly_detrended_anomaly %>%
  filter(!(biome %in% c(super_biomes, "Global"))) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2016),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2016),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  filter(biome %in% super_biomes) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2016),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2016),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free_x") +
      labs(
        title = "Super biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  write_csv(paste0(
    "../data/",
    "CMEMS","_","2016",
    "_biome_monthly_detrended_anomaly.csv"
  ))

Relative to spread

pco2_product_monthly_detrended_anomaly_spread <-
  pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year != 2016) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value, na.rm = TRUE)) %>%
  ungroup()



pco2_product_monthly_detrended_anomaly_relative <-
  full_join(
    pco2_product_monthly_detrended_anomaly_spread,
    pco2_product_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

pco2_product_monthly_detrended_anomaly_relative <-
  pco2_product_monthly_detrended_anomaly_relative %>%
  mutate(value = value / spread) %>%
  select(-spread) %>%
  pivot_wider() %>%
  pivot_longer(-c(month, biome, year, fgco2_int))



pco2_product_monthly_detrended_anomaly_relative %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2016),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2016),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2016),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2016)
      ) +
      facet_wrap( ~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pCO2productanalysis_1998 <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_analysis.Rmd"),
    product_name = "CMEMS",
    year_anom = 1998
  )

1998 anomalies

Detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for , which are approximated with quadratic fits.

The regression models are fitted to all data since , except 1998.

anomaly_determination <- function(df,...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat)
  # df <- pco2_product_coarse_annual
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year != 1998,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_year_anom <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 1998) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 1998),
      df %>%
        filter(year == 1998,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_lm_year_anom
    )
  
  rm(df_lm_year_anom)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year != 1998,
           name %in% name_quadratic_fit) %>%
    nest(data = -c(name, !!!group_by)) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_year_anom <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, !!!group_by, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 1998 + `I(year^2)` * 1998 ^ 2) %>%
        select(name, !!!group_by, fit) %>%
        mutate(year = 1998),
      df %>%
        filter(year == 1998,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, !!!group_by, year, value, fit = .fitted, resid = .resid),
      df_quadratic_year_anom
    )
  
  rm(df_quadratic_year_anom)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  df_regression <-
    df_regression %>% 
    arrange(year)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}

Maps

The following maps show the absolute state of each variable in 1998 as provided through the pCO2 product, the change in that variable from 1990 to 1998, as well es the anomalies in 1998. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 1997.

Maps are first presented as annual means, and than as monthly means. Note that the 1998 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

1998 absolute

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual %>%
  drop_na() %>% 
  anomaly_determination(lon, lat)

pco2_product_coarse_annual_regression <-
  pco2_product_coarse_annual_regression %>%
  drop_na()

pco2_product_coarse_annual_regression %>%
  filter(year == 1998,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Annual mean", 1998)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_annual_regression %>%
  filter(year == 1998,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = paste("Annual mean", 1998)) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

1998 anomaly

pco2_product_coarse_annual_regression %>%
  filter(year == 1998) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  paste(1998,"anomaly")) +
         scale_fill_divergent(
           name = labels_breaks(.x %>% distinct(name))) +
         theme(legend.title = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_annual_regression %>%
  write_csv(paste0("../data/","CMEMS","_","1998","_anomaly_map_annual.csv"))

Monthly means

1998 absolute

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly %>%
  drop_na() %>% 
  anomaly_determination(lon, lat, month)

pco2_product_coarse_monthly_regression <-
  pco2_product_coarse_monthly_regression %>% 
  drop_na()


pco2_product_coarse_monthly_regression %>%
  filter(year == 1998,
         !(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 1998)) +
      scale_fill_viridis_c(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 1998,
         name %in% name_divergent) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title = paste("Monthly means", 1998)) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

1998 anomaly

pco2_product_coarse_monthly_regression %>%
  filter(year == 1998) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = paste(1998, "anomaly")) +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      facet_wrap( ~ month, ncol = 2)
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_coarse_monthly_regression %>%
  filter(year == 1998) %>%
  write_csv(paste0("../data/","CMEMS","_","1998","_anomaly_map_monthly.csv"))

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of the linear/quadratic fits.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

1998 annual anomalies

pco2_product_hovmoeller_monthly_annual_regression <-
  pco2_product_hovmoeller_monthly_annual %>%
  anomaly_determination(lat) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_annual_regression %>%
  # filter(name == "mld") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

1998 monthly anomalies

pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  anomaly_determination(lat, month) %>% 
  filter(!is.na(resid))

  
pco2_product_hovmoeller_monthly_regression <-
  pco2_product_hovmoeller_monthly_regression %>%
  mutate(decimal = year + (month - 1) / 12)
  
pco2_product_hovmoeller_monthly_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

pco2_product_hovmoeller_monthly_regression %>%
  write_csv(paste0("../data/","CMEMS","_","1998","_anomaly_hovmoeller_monthly.csv"))

Three years prior 1998

pco2_product_hovmoeller_monthly_regression %>%
  filter(between(year, 1998-2, 1998)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(name = labels_breaks(.x %>% distinct(name))) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
89becff jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


[[8]]

Regional means and integrals

The following plots show regionally averaged (or integrated) values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

1998 absolute values

Global

fig.height <- pco2_product_monthly %>% 
  distinct(name) %>% 
  nrow()

fig.height <- (fig.height + 2) * 0.1
pco2_product_monthly %>%
  filter(biome %in% "Global") %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Global") +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Selected biomes

pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 1998-1, 1998)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[4]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[5]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Super biomes

pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values | Selected super biomes") +
  facet_grid(name ~ biome,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             switch = "y") +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 1998-1, 1998)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = paste("Absolute values |", .x$biome)) +
  facet_wrap(name ~ .,
             scales = "free_y",
             labeller = labeller(name = x_axis_labels),
             strip.position = "left",
             ncol = 2) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.title = element_blank(),
    axis.title.y = element_blank()
  )
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[3]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

1998 anomalies

Global

pco2_product_monthly_detrended <-
  full_join(pco2_product_monthly,
            pco2_product_monthly_regression %>% select(-c(value, resid, time))) %>%
  mutate(resid = value - fit)

pco2_product_monthly_detrended %>% 
  filter(biome %in% "Global") %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Global") +
  facet_wrap(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    strip.position = "left",
    ncol = 2
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Selected biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 1998-1, 1998)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]


[[4]]


[[5]]

Super biomes

pco2_product_monthly_detrended %>% 
  filter(biome %in% super_biomes) %>%
  ggplot(aes(month, resid, group = as.factor(year))) +
  geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(between(year, 1998-1, 1998)),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Anomalies from predicted monthly mean | Selected super biomes") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

pco2_product_monthly_detrended %>%
  filter(biome %in% super_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, resid, group = as.factor(year))) +
      geom_path(data = . %>% filter(!between(year, 1998-1, 1998)),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(between(year, 1998-1, 1998)),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = paste("Anomalies from predicted monthly mean |", .x$biome)) +
      facet_wrap(
        name ~ .,
        scales = "free_y",
        labeller = labeller(name = x_axis_labels),
        strip.position = "left",
        ncol = 2
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]


[[2]]


[[3]]

1998 anomaly correlation

The following plots aim to unravel the correlation between regionally integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot integrated fluxes separately for each region. Secondly, we normalize the monthly anomalies to the spread (expressed as standard deviation) of the residuals from the fit.

Annual anomalies

Absolute

pco2_product_annual_regression %>%
  filter(biome == "Global") %>%
  select(-c(value, fit)) %>% 
  pivot_wider(values_from = resid) %>% 
  pivot_longer(-c(year, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(!between(year, 1998-1, 1998)),
             aes(fill = year),
             shape = 21) +
  geom_smooth(
    data = . %>% filter(!between(year, 1998-1, 1998)),
    method = "lm",
    se = FALSE,
    fullrange = TRUE,
    aes(col = paste("Regression fit\nexcl.", 1998))
  ) +
  scale_color_grey() +
  scale_fill_grayC()+
  new_scale_fill() +
  geom_point(data = . %>% filter(between(year, 1998-1, 1998)),
             aes(fill = as.factor(year)),
             shape = 21, size = 2)  +
  scale_fill_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

Monthly anomalies

Absolute

pco2_product_monthly_detrended_anomaly <-
  pco2_product_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


pco2_product_monthly_detrended_anomaly %>%
  filter(biome == "Global") %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  ggplot(aes(value, fgco2_int)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year != 1998),
             aes(col = paste(min(year), max(year), sep = "-")),
             alpha = 0.2) +
  geom_smooth(
    data = . %>% filter(year != 1998),
    aes(col = paste(min(year), max(year), sep = "-")),
    method = "lm",
    se = FALSE,
    fullrange = TRUE
  )  +
  scale_color_grey(name = "") +
  new_scale_color() +
  geom_path(data = . %>% filter(year == 1998),
            aes(col = as.factor(month), group = 1))  +
  geom_point(data = . %>% filter(year == 1998),
             aes(fill =  as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_color_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 1998)) +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                          order = 1),
                     name = paste("Month\nof", 1998)) +
  labs(title = "Globally integrated fluxes",
       y = labels_breaks("fgco2_int")$i_legend_title) +
  facet_wrap(
    ~ name,
    scales = "free_x",
    labeller = labeller(name = x_axis_labels),
    strip.position = "bottom",
    ncol = 2
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.y = element_markdown(),
    axis.title.x = element_blank()
  )

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11
pco2_product_monthly_detrended_anomaly %>%
  filter(!(biome %in% c(super_biomes, "Global"))) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 1998),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 1998),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free") +
      labs(
        title = "Biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  filter(biome %in% super_biomes) %>%
  pivot_longer(-c(year, month, biome, fgco2_int))  %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 1998),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 1998),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      facet_wrap( ~ biome, ncol = 3, scales = "free_x") +
      labs(
        title = "Super biome integrated fluxes",
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]

pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  write_csv(paste0(
    "../data/",
    "CMEMS","_","1998",
    "_biome_monthly_detrended_anomaly.csv"
  ))

Relative to spread

pco2_product_monthly_detrended_anomaly_spread <-
  pco2_product_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year != 1998) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value, na.rm = TRUE)) %>%
  ungroup()



pco2_product_monthly_detrended_anomaly_relative <-
  full_join(
    pco2_product_monthly_detrended_anomaly_spread,
    pco2_product_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

pco2_product_monthly_detrended_anomaly_relative <-
  pco2_product_monthly_detrended_anomaly_relative %>%
  mutate(value = value / spread) %>%
  select(-spread) %>%
  pivot_wider() %>%
  pivot_longer(-c(month, biome, year, fgco2_int))



pco2_product_monthly_detrended_anomaly_relative %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 1998),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 1998),
                aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 1998),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 1998)
      ) +
      facet_wrap( ~ biome, ncol = 3) +
      coord_fixed() +
      labs(
        title = "Biome integrated fluxes normalized to spread",
        y = str_split_i(labels_breaks("fgco2_int")$i_legend_title, "<br>", i = 1),
        x = str_split_i(labels_breaks(.x %>% distinct(name))$i_legend_title, "<br>", i = 1)
      ) +
      theme(axis.title.x = element_markdown(),
            axis.title.y = element_markdown())
  )
[[1]]

Version Author Date
dfcf790 jens-daniel-mueller 2024-04-11
139bc97 jens-daniel-mueller 2024-04-11
2321242 jens-daniel-mueller 2024-04-11

[[2]]


[[3]]


[[4]]


[[5]]


[[6]]


[[7]]


sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] ggtext_0.1.2        broom_1.0.5         khroma_1.9.0       
 [4] ggnewscale_0.4.8    ncdf4_1.19          lubridate_1.9.0    
 [7] timechange_0.1.1    stars_0.6-0         abind_1.4-5        
[10] terra_1.7-65        sf_1.0-9            rnaturalearth_0.1.0
[13] geomtextpath_0.1.1  colorspace_2.0-3    marelac_2.1.10     
[16] shape_1.4.6         ggforce_0.4.1       metR_0.13.0        
[19] scico_1.3.1         patchwork_1.1.2     collapse_1.8.9     
[22] forcats_0.5.2       stringr_1.5.0       dplyr_1.1.3        
[25] purrr_1.0.2         readr_2.1.3         tidyr_1.3.0        
[28] tibble_3.2.1        ggplot2_3.4.4       tidyverse_1.3.2    
[31] workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] readxl_1.4.1            backports_1.4.1         systemfonts_1.0.4      
  [4] lwgeom_0.2-10           sp_1.5-1                splines_4.2.2          
  [7] digest_0.6.30           htmltools_0.5.3         ncmeta_0.3.5           
 [10] fansi_1.0.3             magrittr_2.0.3          checkmate_2.1.0        
 [13] memoise_2.0.1           googlesheets4_1.0.1     tzdb_0.3.0             
 [16] modelr_0.1.10           vroom_1.6.0             rvest_1.0.3            
 [19] textshaping_0.3.6       haven_2.5.1             xfun_0.35              
 [22] callr_3.7.3             crayon_1.5.2            jsonlite_1.8.3         
 [25] glue_1.6.2              polyclip_1.10-4         gtable_0.3.1           
 [28] gargle_1.2.1            scales_1.2.1            DBI_1.1.3              
 [31] Rcpp_1.0.11             viridisLite_0.4.1       gridtext_0.1.5         
 [34] units_0.8-0             bit_4.0.5               proxy_0.4-27           
 [37] httr_1.4.4              seacarb_3.3.1           RColorBrewer_1.1-3     
 [40] ellipsis_0.3.2          pkgconfig_2.0.3         farver_2.1.1           
 [43] sass_0.4.4              dbplyr_2.2.1            utf8_1.2.2             
 [46] here_1.0.1              tidyselect_1.2.0        labeling_0.4.2         
 [49] rlang_1.1.1             later_1.3.0             munsell_0.5.0          
 [52] cellranger_1.1.0        tools_4.2.2             cachem_1.0.6           
 [55] cli_3.6.1               generics_0.1.3          evaluate_0.18          
 [58] fastmap_1.1.0           yaml_2.3.6              oce_1.7-10             
 [61] processx_3.8.0          knitr_1.41              bit64_4.0.5            
 [64] fs_1.5.2                RNetCDF_2.6-1           nlme_3.1-160           
 [67] whisker_0.4             xml2_1.3.3              compiler_4.2.2         
 [70] rstudioapi_0.15.0       e1071_1.7-12            reprex_2.0.2           
 [73] tweenr_2.0.2            bslib_0.4.1             stringi_1.7.8          
 [76] highr_0.9               ps_1.7.2                lattice_0.20-45        
 [79] Matrix_1.5-3            classInt_0.4-8          commonmark_1.8.1       
 [82] markdown_1.4            vctrs_0.6.4             pillar_1.9.0           
 [85] lifecycle_1.0.3         jquerylib_0.1.4         gsw_1.1-1              
 [88] data.table_1.14.6       httpuv_1.6.6            R6_2.5.1               
 [91] promises_1.2.0.1        KernSmooth_2.23-20      codetools_0.2-18       
 [94] MASS_7.3-58.1           assertthat_0.2.1        rprojroot_2.0.3        
 [97] withr_2.5.0             SolveSAPHE_2.1.0        mgcv_1.8-41            
[100] parallel_4.2.2          hms_1.1.2               grid_4.2.2             
[103] rnaturalearthdata_0.1.0 class_7.3-20            rmarkdown_2.18         
[106] googledrive_2.0.0       git2r_0.30.1            getPass_0.2-2