Last updated: 2024-03-14

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version cd9c317. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  code/Workflowr_project_managment.R

Unstaged changes:
    Modified:   .gitignore
    Modified:   analysis/_site.yml
    Deleted:    analysis/about.Rmd
    Deleted:    analysis/license.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pCO2_products.Rmd) and HTML (docs/pCO2_products.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd cd9c317 jens-daniel-mueller 2024-03-14 test ploty
html baf5167 jens-daniel-mueller 2024-03-14 Build site.
Rmd 9a3f8ad jens-daniel-mueller 2024-03-14 monthly normalized anomaly correlation
html 5ae6c32 jens-daniel-mueller 2024-03-14 Build site.
Rmd 1276f69 jens-daniel-mueller 2024-03-14 monthly anomalies correlation analysis
html 4eb2ea7 jens-daniel-mueller 2024-03-14 Build site.
Rmd bb515a7 jens-daniel-mueller 2024-03-14 monthly biome anomalies
html f1a1ba8 jens-daniel-mueller 2024-03-13 Build site.
Rmd 6f28173 jens-daniel-mueller 2024-03-13 monthly anomaly maps
html a91341f jens-daniel-mueller 2024-03-13 Build site.
Rmd 39cd191 jens-daniel-mueller 2024-03-13 plot hovmoeller monthly detrended
html 86b52e9 jens-daniel-mueller 2024-03-13 Build site.
Rmd 124f734 jens-daniel-mueller 2024-03-13 plot hovmoeller, remove arctic
html 1e3279c jens-daniel-mueller 2024-03-12 Build site.
Rmd 391fd6d jens-daniel-mueller 2024-03-12 anomaly detection with function
html ff205b8 jens-daniel-mueller 2024-03-12 Build site.
Rmd 19f4d49 jens-daniel-mueller 2024-03-12 anomaly detection with function
html e760672 jens-daniel-mueller 2024-03-12 Build site.
Rmd 89d4670 jens-daniel-mueller 2024-03-12 2023 anomaly maps
html caeb7f1 jens-daniel-mueller 2024-03-12 Build site.
Rmd eda9384 jens-daniel-mueller 2024-03-12 2023 anomaly maps
html b6c0bec jens-daniel-mueller 2024-03-12 Build site.
Rmd 51cf086 jens-daniel-mueller 2024-03-12 quadratic and linear regression model added
html 3f69dc8 jens-daniel-mueller 2024-03-12 Build site.
Rmd 8c60127 jens-daniel-mueller 2024-03-12 quadratic regression model added
html 0473a50 jens-daniel-mueller 2024-03-12 Build site.
Rmd cab2d84 jens-daniel-mueller 2024-03-12 regression trends in annual and monthly means
html f3b86fa jens-daniel-mueller 2024-03-12 Build site.
Rmd d0a504d jens-daniel-mueller 2024-03-12 biome seasonality plots
html 3f11106 jens-daniel-mueller 2024-03-12 Build site.
Rmd 65f52e0 jens-daniel-mueller 2024-03-12 all climatology and anomaly maps
html cfe3967 jens-daniel-mueller 2024-03-11 Build site.
Rmd a67e799 jens-daniel-mueller 2024-03-11 regional analysis for SOM-FFN started
html 45a623c jens-daniel-mueller 2024-03-11 Build site.
Rmd f4af74f jens-daniel-mueller 2024-03-11 started pCO2 products analysis

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")

Read data

path_pCO2_products <-
  "/nfs/kryo/work/datasets/gridded/ocean/2d/observation/pco2/"

path_reccap2 <-
  "/nfs/kryo/work/datasets/gridded/ocean/interior/reccap2/"
print("RECCAP2_region_masks_all_v20221025.nc")
[1] "RECCAP2_region_masks_all_v20221025.nc"
region_masks_all <-
  read_ncdf(
    paste(
      path_reccap2,
      "supplementary/RECCAP2_region_masks_all_v20221025.nc",
      sep = ""
    )
  ) %>%
  as_tibble()
library(ncdf4)
nc <-
  nc_open(paste0(
    path_pCO2_products,
    "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
  ))

print(nc)
print("VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc")
[1] "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
SOM_FFN <-
  read_ncdf(
    paste0(
      path_pCO2_products,
      "VLIZ-SOM_FFN/VLIZ-SOM_FFN_vBAMS2024.nc"
    ),
    var = c("dco2", "atm_co2", "sol", "kw", "spco2_smoothed", "fgco2_smoothed"),
    make_units = FALSE
  )

SOM_FFN <- SOM_FFN %>%
  as_tibble()

SOM_FFN <-
  SOM_FFN %>%
  rename(spco2 = spco2_smoothed, fgco2 = fgco2_smoothed)

SOM_FFN <-
  SOM_FFN %>%
  mutate(across(dco2:fgco2, ~ replace(., . >= 1e+19, NA)))

SOM_FFN <-
  SOM_FFN %>%
  mutate(area = earth_surf(lat, lon),
         year = year(time),
         month = month(time))

SOM_FFN <-
  SOM_FFN %>% 
  mutate(lon = if_else(lon < 20, lon + 360, lon))

Analysis settings

key_biomes <- c("global",
                "NA-SPSS",
                "NA-STPS",
                "NP-SPSS",
                "PEQU-E",
                "SO-SPSS")

name_quadratic_fit <- c("atm_co2", "spco2")

start_year <- 1990

name_divergent <- c("dco2", "fgco2")

Anomaly detection

For the detection of anomalies at any point in time and space, we fit regression models and compare the fitted to the actual value.

We use linear regression models for all parameters, except for `, which are approximated with quadratic fits.

The regression models are fitted to data from the period `, and extrapolated to 2023.

anomaly_determination <- function(df) {
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year <= 2022,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -name) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_2023 <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023) %>%
        select(name, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, year, value, fit = .fitted, resid = .resid),
      df_lm_2023
    )
  
  rm(df_lm_2023)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year <= 2022,
           name %in% name_quadratic_fit) %>%
    nest(data = -name) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_2023 <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
        select(name, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, year, value, fit = .fitted, resid = .resid),
      df_quadratic_2023
    )
  
  rm(df_quadratic_2023)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}
# my_sum <- function(df, col_to_sum,...) {
# 
#     col_to_sum <- enquo(col_to_sum)
#     group_by <- quos(...)
# 
#     df %>%
#         group_by(!!!group_by) %>%
#         summarise(total_sum = sum(!!col_to_sum)) %>% 
#         ungroup()
# }
# 
# transactions %>% my_sum(amount, accountid, month)

anomaly_determination <- function(df) {
  
  # Linear regression models
  
  df_lm <-
    df %>%
    filter(year <= 2022,
           !(name %in% name_quadratic_fit)) %>%
    nest(data = -name) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year, data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_lm_2023 <-
    full_join(
      df_lm %>%
        unnest(tidied) %>%
        select(name, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023) %>%
        select(name, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               !(name %in% name_quadratic_fit))
    ) %>%
    mutate(resid = value - fit)
  
  
  df_lm <-
    bind_rows(
      df_lm %>%
        unnest(augmented) %>%
        select(name, year, value, fit = .fitted, resid = .resid),
      df_lm_2023
    )
  
  rm(df_lm_2023)
  
  # Quadratic regression models
  
  df_quadratic <-
    df %>%
    filter(year <= 2022,
           name %in% name_quadratic_fit) %>%
    nest(data = -name) %>%
    mutate(
      fit = map(data, ~ lm(value ~ year + I(year ^ 2), data = .x)),
      tidied = map(fit, tidy),
      augmented = map(fit, augment)
    )
  
  
  df_quadratic_2023 <-
    full_join(
      df_quadratic %>%
        unnest(tidied) %>%
        select(name, term, estimate) %>%
        pivot_wider(names_from = term,
                    values_from = estimate) %>%
        mutate(fit = `(Intercept)` + year * 2023 + `I(year^2)` * 2023 ^ 2) %>%
        select(name, fit) %>%
        mutate(year = 2023),
      df %>%
        filter(year == 2023,
               name %in% name_quadratic_fit)
    ) %>%
    mutate(resid = value - fit)
  
  
  df_quadratic <-
    bind_rows(
      df_quadratic %>%
        unnest(augmented) %>%
        select(name, year, value, fit = .fitted, resid = .resid),
      df_quadratic_2023
    )
  
  rm(df_quadratic_2023)
  
  # Join linear and quadratic regression results
  
  df_regression <-
    bind_rows(df_lm,
              df_quadratic)
  
  rm(df_lm,
     df_quadratic)
  
  
  return(df_regression)
  
}

Biome mask

region_masks_all <-
  region_masks_all %>%
  mutate(lon = if_else(lon < 20, lon + 360, lon))

land_mask <- region_masks_all %>%
  filter(seamask == 0) %>% 
  select(lon, lat)

map <- ggplot(land_mask,
              aes(lon, lat)) +
  geom_tile(fill = "grey80") +
  scale_y_continuous(breaks = seq(-60,60,30)) +
  scale_x_continuous(breaks = seq(0,360,60)) +
  coord_quickmap(expand = 0, ylim = c(-80, 80)) +
  theme(axis.title = element_blank(),
        axis.text = element_blank(),
        axis.ticks = element_blank())
  
region_masks_all <- region_masks_all %>%
  filter(seamask == 1) %>% 
  select(lon, lat, atlantic:southern) %>% 
  pivot_longer(atlantic:southern,
               names_to = "region",
               values_to = "biome") %>%
  mutate(biome = as.character(biome))

region_masks_all <- region_masks_all %>%
  filter(biome != "0")

region_masks_all <- region_masks_all %>%
  mutate(biome = paste(region, biome, sep = "_"))

region_masks_all <- region_masks_all  %>% 
  mutate(biome = case_when(
    biome == "atlantic_1" ~ "NA-SPSS",
    biome == "atlantic_2" ~ "NA-STSS",
    biome == "atlantic_3" ~ "NA-STPS",
    biome == "atlantic_4" ~ "AEQU",
    biome == "atlantic_5" ~ "SA-STPS",
    # biome == "atlantic_6" ~ "MED",
    biome == "pacific_1" ~ "NP-SPSS",
    biome == "pacific_2" ~ "NP-STSS",
    biome == "pacific_3" ~ "NP-STPS",
    biome == "pacific_4" ~ "PEQU-W",
    biome == "pacific_5" ~ "PEQU-E",
    biome == "pacific_6" ~ "SP-STSS",
    biome == "indian_1" ~ "Arabian Sea",
    biome == "indian_2" ~ "Bay of Bengal",
    biome == "indian_3" ~ "Equatorial Indian",
    biome == "indian_4" ~ "Southern Indian",
    # biome == "arctic_1" ~ "ARCTIC-ICE",
    # biome == "arctic_2" ~ "NP-ICE",
    # biome == "arctic_3" ~ "NA-ICE",
    # biome == "arctic_4" ~ "Barents",
    # str_detect(biome, "arctic") ~ "Arctic",
    biome == "southern_1" ~ "SO-STSS",
    biome == "southern_2" ~ "SO-SPSS",
    # biome == "southern_3" ~ "SO-ICE",
    TRUE ~ "other"
  ))

region_masks_all <-
  region_masks_all %>%
  filter(biome != "other")


map +
  geom_tile(data = region_masks_all,
            aes(lon, lat, fill = region)) +
  labs(title = "Considered ocean regions") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
a91341f jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
3f11106 jens-daniel-mueller 2024-03-12
region_masks_all %>%
  group_split(region) %>%
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = biome)) +
         labs(title = paste("Region:", .x$region)) +
         scale_fill_okabeito())
[[1]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
a91341f jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
3f11106 jens-daniel-mueller 2024-03-12

[[2]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
3f11106 jens-daniel-mueller 2024-03-12

[[3]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
f3b86fa jens-daniel-mueller 2024-03-12

[[4]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
a91341f jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
f3b86fa jens-daniel-mueller 2024-03-12
map +
  geom_tile(data = region_masks_all %>% filter(biome %in% key_biomes),
            aes(lon, lat, fill = biome)) +
  labs(title = "Selected biomes to highlight") +
  scale_fill_muted() +
  theme(legend.title = element_blank())

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13
86b52e9 jens-daniel-mueller 2024-03-13
caeb7f1 jens-daniel-mueller 2024-03-12
f3b86fa jens-daniel-mueller 2024-03-12
region_masks_all <-
  region_masks_all %>%
  select(-region)

Preprocessing

SOM_FFN <-
  SOM_FFN %>%
  filter(year >= start_year)
SOM_FFN <-
  full_join(SOM_FFN,
            region_masks_all)

# set all values outside biome mask to NA

SOM_FFN <-
  SOM_FFN %>%
  mutate(across(dco2:fgco2, ~ if_else(is.na(biome), NA, .)))

# map +
#   geom_tile(data = SOM_FFN %>% filter(time == max(time),
#                                       !is.na(fgco2)),
#             aes(lon, lat))

Maps

The following maps show the absolute state of each variable in 2023 as provided through the pCO2 product, the change in that variable from 1990 to 2023, as well es the anomalies in 2023. Changes and anomalies are determined based on the predicted value of a linear regression model fit to the data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

SOM_FFN_annual_mean_maps <-
  SOM_FFN %>%
  drop_na() %>% 
  group_by(year, lon, lat) %>%
  summarise(across(dco2:fgco2,
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_climatology <-
  SOM_FFN_annual_mean_maps %>%
  drop_na() %>% 
  filter(year <= 2022) %>%
  group_by(lon, lat) %>%
  summarise(across(dco2:fgco2,
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_2023_anomaly <-
  bind_rows(
    SOM_FFN_climatology %>% mutate(reference = "climatology"),
    SOM_FFN_annual_mean_maps %>%
      filter(year == 2023) %>%
      select(-year) %>% 
      mutate(reference = "2023")
  )

SOM_FFN_2023_anomaly <-
  SOM_FFN_2023_anomaly %>%
  pivot_longer(-c(lon, lat, reference)) %>%
  pivot_wider(names_from = reference,
              values_from = value) %>%
  mutate(anomaly = `2023` - climatology)

SOM_FFN_2023_anomaly %>%
  filter(!(name %in% name_divergent)) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = climatology)) +
      labs(title = "Climatology") +
      scale_fill_viridis_c()
  )

SOM_FFN_2023_anomaly %>%
  filter(name %in% name_divergent) %>% 
  group_split(name) %>%
  # head(2) %>%
  map(~ map +
        geom_tile(data = .x,
                  aes(lon, lat, fill = climatology)) +
        labs(title = "Climatology") +
        scale_fill_divergent(.x$name))
SOM_FFN_coarse <-
  m_grid_horizontal_coarse(SOM_FFN)

SOM_FFN_coarse <-
  SOM_FFN_coarse %>%
  group_by(year, month, lon_grid, lat_grid) %>%
  summarise(across(dco2:fgco2,
                   ~ weighted.mean(., area))) %>%
  ungroup() %>%
  rename(lon = lon_grid, lat = lat_grid) %>%
  drop_na()

Annual means

2023 absolute

SOM_FFN_coarse_annual <-
  SOM_FFN_coarse %>%
  group_by(year, lon, lat) %>%
  summarise(across(dco2:fgco2,
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_coarse_annual <-
  SOM_FFN_coarse_annual %>% 
  pivot_longer(-c(year:lat))

SOM_FFN_coarse_annual_regression <-
  SOM_FFN_coarse_annual %>%
  group_by(lon, lat) %>%
  nest() %>%
  mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  select(-data) %>%
  unnest(anomalies) %>%
  ungroup()
  

SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = "Annual mean 2023") +
         scale_fill_viridis_c(name = .x$name))
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13
SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = "Annual mean 2023") +
         scale_fill_divergent(name = .x$name))
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

Change 1990 - 2023

SOM_FFN_coarse_annual_regression %>%
  filter(year %in% c(min(year), max(year))) %>%
  select(-c(value, resid)) %>% 
  pivot_wider(names_from = year,
              values_from = fit) %>% 
  mutate(change = `2023` - `1990`) %>% 
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = change)) +
         labs(title =  "Change 1990-2023") +
         scale_fill_divergent(name = .x$name))
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[5]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[6]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

2023 anomaly

SOM_FFN_coarse_annual_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title =  "2023 anomaly") +
         scale_fill_divergent(name = .x$name))
[[1]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13

[[2]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

[[4]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13

[[5]]

Version Author Date
f1a1ba8 jens-daniel-mueller 2024-03-13

[[6]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14
f1a1ba8 jens-daniel-mueller 2024-03-13

Monthly means

2023 absolute

SOM_FFN_coarse_monthly <-
  SOM_FFN_coarse %>%
  group_by(year, month, lon, lat) %>%
  summarise(across(dco2:fgco2,
                   ~ mean(.))) %>%
  ungroup()

SOM_FFN_coarse_monthly <-
  SOM_FFN_coarse_monthly %>% 
  pivot_longer(-c(year:lat))

SOM_FFN_coarse_monthly_regression <-
  SOM_FFN_coarse_monthly %>%
  group_by(lon, lat, month) %>%
  nest() %>%
  mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  select(-data) %>%
  unnest(anomalies) %>%
  ungroup()
  

SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023,
         !(name %in% name_divergent)) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = "Monthly means 2023") +
         scale_fill_viridis_c(name = .x$name) +
         facet_wrap(~ month, ncol = 2))
  
SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023,
         name %in% name_divergent) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = value)) +
         labs(title = "Monthly means 2023") +
         scale_fill_divergent(name = .x$name) +
         facet_wrap(~ month, ncol = 2))

Change 1990 - 2023

SOM_FFN_coarse_monthly_regression %>%
  filter(year %in% c(min(year), max(year))) %>%
  select(-c(value, resid)) %>% 
  pivot_wider(names_from = year,
              values_from = fit) %>% 
  mutate(change = `2023` - `1990`) %>% 
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = change)) +
         labs(title = "Change 1990-2023") +
         scale_fill_divergent(name = .x$name) +
         facet_wrap(~ month, ncol = 2))

2023 anomaly

SOM_FFN_coarse_monthly_regression %>%
  filter(year == 2023) %>%
  group_split(name) %>% 
  # head(1) %>%
  map( ~ map +
         geom_tile(data = .x,
                   aes(lon, lat, fill = resid)) +
         labs(title = "2023 anomaly") +
         scale_fill_divergent(name = .x$name) +
         facet_wrap(~ month, ncol = 2))

Hovmoeller plots

The following Hovmoeller plots show the value of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are first presented as annual means, and than as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Annual means

Absolute

SOM_FFN_hovmoeller_monthly_annual <-
  SOM_FFN %>%
  group_by(year, lat) %>%
  summarise(across(dco2:spco2, 
                   ~weighted.mean(., area, na.rm = TRUE)),
            across(fgco2, 
                   ~sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>% 
  ungroup() %>% 
  drop_na()

SOM_FFN_hovmoeller_monthly_annual <-
  SOM_FFN_hovmoeller_monthly_annual %>%
  pivot_longer(-c(year, lat))

library(plotly)
SOM_FFN_hovmoeller_monthly_annual %>%
  group_split(name) %>%
  head(1) %>%
  map(~ ggplotly(ggplot(data = .x,
                  aes(year, lat, fill = value)) +
        geom_raster() +
        scale_fill_viridis_c(.x$name) +
        coord_cartesian(expand = 0) +
        labs(title = "Annual means",
             y = "Latitude") +
        theme(axis.title.x = element_blank())))
[[1]]

Anomalies

SOM_FFN_hovmoeller_monthly_annual_regression <-
  SOM_FFN_hovmoeller_monthly_annual %>%
  group_by(lat) %>%
  nest() %>%
  mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  select(-data) %>%
  unnest(anomalies) %>%
  ungroup()

  
SOM_FFN_hovmoeller_monthly_annual_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(year, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(.x$name) +
      coord_cartesian(expand = 0) +
      labs(title = "Annual mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[6]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

Monthly means

Absolute

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN %>%
  group_by(year, month, lat) %>%
  summarise(
    across(dco2:spco2,
           ~ weighted.mean(., area, na.rm = TRUE)),
    across(fgco2,
           ~ sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)
  ) %>%
  ungroup() %>%
  drop_na()

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN_hovmoeller_monthly %>%
  pivot_longer(-c(year, month, lat))

SOM_FFN_hovmoeller_monthly <-
  SOM_FFN_hovmoeller_monthly %>% 
  mutate(decimal = year + (month-1) / 12)

SOM_FFN_hovmoeller_monthly %>%
  group_split(name) %>%
  # head(1) %>%
  map(~ ggplot(data = .x,
                  aes(decimal, lat, fill = value)) +
        geom_raster() +
        scale_fill_viridis_c(.x$name) +
        coord_cartesian(expand = 0) +
        theme(axis.title.x = element_blank()))
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[6]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

Anomalies

SOM_FFN_hovmoeller_monthly_regression <-
  SOM_FFN_hovmoeller_monthly %>%
  select(-c(decimal)) %>% 
  group_by(lat, month) %>%
  nest() %>%
  mutate(anomalies = map(.x = data, ~ anomaly_determination(.x))) %>%
  select(-data) %>%
  unnest(anomalies) %>%
  ungroup()

  
SOM_FFN_hovmoeller_monthly_regression <-
  SOM_FFN_hovmoeller_monthly_regression %>%
  mutate(decimal = year + (month - 1) / 12)
  
SOM_FFN_hovmoeller_monthly_regression %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplotly(
      ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
        geom_raster() +
        scale_fill_divergent(.x$name) +
        coord_cartesian(expand = 0) +
        labs(title = "Monthly mean anomalies",
             y = "Latitude") +
        theme(axis.title.x = element_blank())
    )
  )
[[1]]

[[2]]

[[3]]

[[4]]

[[5]]

[[6]]

Anomalies since 2021

SOM_FFN_hovmoeller_monthly_regression %>%
  filter(year >= 2021) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_divergent(.x$name) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank())
  )
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[6]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

Regional means and integrals

The following plots show biome- or global- averaged/integrated values of each variable as provided through the pCO2 product, as well as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are first presented relative to the predicted annual mean of each year, hence preserving the seasonality. Furthermore, anomalies are presented relative to the predicted monthly mean values, such that the mean seasonality is removed.

SOM_FFN_monthly_global <-
  SOM_FFN %>%
  group_by(time) %>% 
  drop_na() %>% 
  summarise(across(dco2:spco2, 
                   ~weighted.mean(., area, na.rm = TRUE)),
            across(fgco2, 
                   ~sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>% 
  ungroup()

SOM_FFN_monthly_biome <-
  SOM_FFN %>%
  drop_na() %>% 
  group_by(time, biome) %>% 
  summarise(across(dco2:spco2, 
                   ~weighted.mean(., area, na.rm = TRUE)),
            across(fgco2, 
                   ~sum(. * area, na.rm = TRUE) * 12.01 * 1e-15)) %>% 
  ungroup()
  
SOM_FFN_monthly <- 
  bind_rows(SOM_FFN_monthly_global %>% 
              mutate(biome = "Global"),
            SOM_FFN_monthly_biome)

rm(SOM_FFN_monthly_global,
   SOM_FFN_monthly_biome)


SOM_FFN_monthly <-
SOM_FFN_monthly %>%
  mutate(year = year(time),
         month = month(time),
         .after = time)

SOM_FFN_monthly <-
  SOM_FFN_monthly %>%
  pivot_longer(-c(time:month, biome))

Absolute values

Overview

SOM_FFN_monthly %>%
  filter(biome %in% key_biomes) %>%
  ggplot(aes(month, value, group = as.factor(year))) +
  geom_path(data = . %>% filter(year < 2022),
            aes(col = year)) +
  scale_color_grayC() +
  new_scale_color() +
  geom_path(data = . %>% filter(year >= 2022),
            aes(col = as.factor(year)),
            linewidth = 1) +
  scale_color_manual(values = c("orange", "red"),
                     guide = guide_legend(reverse = TRUE,
                                          order = 1)) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(title = "Absolute values") +
  facet_grid(name ~ biome, scales = "free_y") +
  theme(legend.title = element_blank(),
        axis.title.y = element_blank())

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

Selected biomes

SOM_FFN_monthly %>%
  filter(biome %in% key_biomes) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(month, value, group = as.factor(year))) +
      geom_path(data = . %>% filter(year < 2022),
                aes(col = year)) +
      scale_color_grayC() +
      new_scale_color() +
      geom_path(
        data = . %>% filter(year >= 2022),
        aes(col = as.factor(year)),
        linewidth = 1
      ) +
      scale_color_manual(
        values = c("orange", "red"),
        guide = guide_legend(reverse = TRUE,
                             order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = "Absolute values") +
      facet_grid(name ~ biome, scales = "free_y") +
      theme(legend.title = element_blank(),
            axis.title.y = element_blank())
  )
[[1]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
4eb2ea7 jens-daniel-mueller 2024-03-14

Anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2022.

Monthly anomalies

Absolute

SOM_FFN_monthly_detrended_anomaly <-
  SOM_FFN_monthly_detrended %>%
  select(year, month, biome, name, resid) %>%
  pivot_wider(names_from = name,
              values_from = resid)


SOM_FFN_monthly_detrended_anomaly %>%
  filter(biome == "Global") %>%
  pivot_longer(dco2:spco2)  %>%
  ggplot(aes(value, fgco2)) +
  geom_hline(yintercept = 0) +
  geom_point(data = . %>% filter(year <= 2022),
             aes(fill = year),
             shape = 21) +
  scale_fill_grayC() +
  new_scale_fill() +
  geom_point(data = . %>% filter(year > 2022),
             aes(fill = as.factor(month)),
             shape = 21,
             size = 3)  +
  scale_fill_scico_d(palette = "buda",
                     guide = guide_legend(reverse = TRUE,
                                            order = 1),
                     name = "month\nof 2023") +
  labs(title = "Globally integrated fluxes") +
  facet_wrap( ~ name, ncol = 3, scales = "free_x") +
  theme(axis.title.x = element_blank())

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14
SOM_FFN_monthly_detrended_anomaly %>%
  filter(biome != "Global") %>%
  pivot_longer(dco2:spco2) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year <= 2022),
        aes(fill = year),
        shape = 21
      ) +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(year > 2022),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = "month\nof 2023"
      ) +
      facet_wrap(~ biome, ncol = 3, scales = "free_x") +
      labs(title = "Biome integrated fluxes",
           x = .x$name)
  )
[[1]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

Relative to spread

SOM_FFN_monthly_detrended_anomaly_spread <-
  SOM_FFN_monthly_detrended_anomaly %>%
  pivot_longer(-c(month, biome, year)) %>%
  filter(year < 2023) %>%
  group_by(month, biome, name) %>%
  summarise(spread = sd(value)) %>%
  ungroup()



SOM_FFN_monthly_detrended_anomaly_relative <-
  full_join(
    SOM_FFN_monthly_detrended_anomaly_spread,
    SOM_FFN_monthly_detrended_anomaly %>%
      pivot_longer(-c(month, biome, year))
  )

SOM_FFN_monthly_detrended_anomaly_relative <- 
SOM_FFN_monthly_detrended_anomaly_relative %>% 
  mutate(value = value / spread) %>% 
  select(-spread) %>% 
  pivot_wider() %>% 
  pivot_longer(-c(month, biome, year, fgco2))


SOM_FFN_monthly_detrended_anomaly_relative %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2)) +
      geom_vline(xintercept = 0) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year <= 2022),
        aes(fill = year),
        shape = 21
      ) +
      scale_fill_grayC() +
      new_scale_fill() +
      geom_point(
        data = . %>% filter(year > 2022),
        aes(fill = as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = "month\nof 2023"
      ) +
      facet_wrap(~ biome, ncol = 3) +
      coord_fixed() +
      labs(x = .x$name)
  )
[[1]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[2]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[3]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[4]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

[[5]]

Version Author Date
baf5167 jens-daniel-mueller 2024-03-14

sessionInfo()
R version 4.2.2 (2022-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: openSUSE Leap 15.5

Matrix products: default
BLAS:   /usr/local/R-4.2.2/lib64/R/lib/libRblas.so
LAPACK: /usr/local/R-4.2.2/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] plotly_4.10.1       broom_1.0.5         khroma_1.9.0       
 [4] ggnewscale_0.4.8    lubridate_1.9.0     timechange_0.1.1   
 [7] stars_0.6-0         abind_1.4-5         terra_1.7-65       
[10] sf_1.0-9            rnaturalearth_0.1.0 geomtextpath_0.1.1 
[13] colorspace_2.0-3    marelac_2.1.10      shape_1.4.6        
[16] ggforce_0.4.1       metR_0.13.0         scico_1.3.1        
[19] patchwork_1.1.2     collapse_1.8.9      forcats_0.5.2      
[22] stringr_1.5.0       dplyr_1.1.3         purrr_1.0.2        
[25] readr_2.1.3         tidyr_1.3.0         tibble_3.2.1       
[28] ggplot2_3.4.4       tidyverse_1.3.2     workflowr_1.7.0    

loaded via a namespace (and not attached):
  [1] googledrive_2.0.0       ellipsis_0.3.2          class_7.3-20           
  [4] rprojroot_2.0.3         fs_1.5.2                rstudioapi_0.15.0      
  [7] proxy_0.4-27            farver_2.1.1            bit64_4.0.5            
 [10] fansi_1.0.3             xml2_1.3.3              splines_4.2.2          
 [13] codetools_0.2-18        cachem_1.0.6            knitr_1.41             
 [16] polyclip_1.10-4         jsonlite_1.8.3          gsw_1.1-1              
 [19] dbplyr_2.2.1            compiler_4.2.2          httr_1.4.4             
 [22] backports_1.4.1         Matrix_1.5-3            lazyeval_0.2.2         
 [25] assertthat_0.2.1        fastmap_1.1.0           gargle_1.2.1           
 [28] cli_3.6.1               later_1.3.0             tweenr_2.0.2           
 [31] htmltools_0.5.3         tools_4.2.2             rnaturalearthdata_0.1.0
 [34] gtable_0.3.1            glue_1.6.2              Rcpp_1.0.11            
 [37] RNetCDF_2.6-1           cellranger_1.1.0        jquerylib_0.1.4        
 [40] vctrs_0.6.4             nlme_3.1-160            crosstalk_1.2.0        
 [43] lwgeom_0.2-10           xfun_0.35               ps_1.7.2               
 [46] rvest_1.0.3             ncmeta_0.3.5            lifecycle_1.0.3        
 [49] googlesheets4_1.0.1     oce_1.7-10              getPass_0.2-2          
 [52] MASS_7.3-58.1           scales_1.2.1            vroom_1.6.0            
 [55] hms_1.1.2               promises_1.2.0.1        parallel_4.2.2         
 [58] RColorBrewer_1.1-3      yaml_2.3.6              memoise_2.0.1          
 [61] sass_0.4.4              stringi_1.7.8           highr_0.9              
 [64] e1071_1.7-12            checkmate_2.1.0         rlang_1.1.1            
 [67] pkgconfig_2.0.3         systemfonts_1.0.4       evaluate_0.18          
 [70] lattice_0.20-45         SolveSAPHE_2.1.0        htmlwidgets_1.5.4      
 [73] labeling_0.4.2          bit_4.0.5               processx_3.8.0         
 [76] tidyselect_1.2.0        seacarb_3.3.1           magrittr_2.0.3         
 [79] R6_2.5.1                generics_0.1.3          DBI_1.1.3              
 [82] mgcv_1.8-41             pillar_1.9.0            haven_2.5.1            
 [85] whisker_0.4             withr_2.5.0             units_0.8-0            
 [88] sp_1.5-1                modelr_0.1.10           crayon_1.5.2           
 [91] KernSmooth_2.23-20      utf8_1.2.2              tzdb_0.3.0             
 [94] rmarkdown_2.18          grid_4.2.2              readxl_1.4.1           
 [97] data.table_1.14.6       callr_3.7.3             git2r_0.30.1           
[100] reprex_2.0.2            digest_0.6.30           classInt_0.4-8         
[103] httpuv_1.6.6            textshaping_0.3.6       munsell_0.5.0          
[106] viridisLite_0.4.1       bslib_0.4.1