Last updated: 2025-03-02

Checks: 7 0

Knit directory: heatwave_co2_flux_2023/analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20240307) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 89d6687. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data
    Ignored:    output/

Untracked files:
    Untracked:  code/gas_flux_kwko.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/child/pCO2_product_analysis.Rmd
    Modified:   analysis/child/pCO2_product_preprocessing.Rmd
    Modified:   analysis/child/pCO2_product_synopsis.Rmd
    Modified:   analysis/pco2_product_mapping_skill.Rmd
    Modified:   code/Workflowr_project_managment.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/pco2_product_synopsis_2023_GCB.Rmd) and HTML (docs/pco2_product_synopsis_2023_GCB.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 417f35d jens-daniel-mueller 2025-02-28 Build site.
html d532d40 jens-daniel-mueller 2025-02-28 Build site.
Rmd f244698 jens-daniel-mueller 2025-02-28 ingest LDEO-HDP
html 518e3d0 jens-daniel-mueller 2025-02-27 Build site.
Rmd 931d9f4 jens-daniel-mueller 2025-02-27 ingest GCB fco2 products

center <- -160
boundary <- center + 180
target_crs <- paste0("+proj=robin +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +over +lon_0=", center)
# target_crs <- paste0("+proj=eqearth +lon_0=", center)
# target_crs <- paste0("+proj=igh_o +lon_0=", center)

worldmap <- ne_countries(scale = 'small',
                         type = 'map_units',
                         returnclass = 'sf')

worldmap <- worldmap %>% st_break_antimeridian(lon_0 = center)
worldmap_trans <- st_transform(worldmap, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans)

coastline <- ne_coastline(scale = 'small', returnclass = "sf")
coastline <- st_break_antimeridian(coastline, lon_0 = 200)
coastline_trans <- st_transform(coastline, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans)


bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 65, ymin = -78), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-78,65),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(worldmap, coastline, bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans, linewidth = 1) +
#   coord_sf(crs = target_crs,
#            ylim = lat_lim,
#            xlim = lon_lim,
#            expand = FALSE) +
#   theme(
#     panel.border = element_blank(),
#     axis.text = element_blank(),
#     axis.ticks = element_blank()
#   )

latitude_graticules <- st_graticule(
  x = bbox_graticules,
  crs = st_crs(bbox_graticules),
  datum = st_crs(bbox_graticules),
  lon = c(20, 20.001),
  lat = c(-60,-30,0,30,60),
  ndiscr = 1e3,
  margin = 0.001
)

latitude_graticules_trans <- st_transform(latitude_graticules, crs = target_crs)

latitude_labels <- data.frame(lat_label = c("60°N","30°N","Eq.","30°S","60°S"),
                 lat = c(60,30,0,-30,-60)-4, lon = c(35)-c(0,2,4,2,0))

latitude_labels <- st_as_sf(x = latitude_labels,
               coords = c("lon", "lat"),
               crs = "+proj=longlat")

latitude_labels_trans <- st_transform(latitude_labels, crs = target_crs)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col = "grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans) +
#   geom_sf(data = latitude_graticules_trans,
#           col = "grey60",
#           linewidth = 0.2) +
#   geom_sf_text(data = latitude_labels_trans,
#                aes(label = lat_label),
#                size = 3,
#                col = "grey60")
pco2_product_list <- c("OceanSODA", "SOM-FFN", "CMEMS", "LDEO-HPD")
# "fCO2-Residual"

gobm_product_list <- c("ETHZ-CESM", "FESOM-REcoM")

files <- list.files(here::here("data/"), pattern = "FESOM-REcoM")

file_types <- str_remove(files, "FESOM-REcoM_2023_")
GCB_products = TRUE
pCO2_product_synopsis <-
  knitr::knit_expand(
    file = here::here("analysis/child/pCO2_product_synopsis.Rmd"),
    year_anom = 2023
  )

Read data

map <-
  read_rds(here::here("data/map.rds"))

key_biomes <-
  read_rds(here::here("data/key_biomes.rds"))

key_biomes <- 
key_biomes[!str_detect(key_biomes, "NP")]


biome_mask <-
  read_rds(here::here("data/biome_mask.rds"))

biome_mask_print <-
  biome_mask %>%
  filter(!str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  select(lon, lat)

region_biomes <-
  read_rds(here::here("data/region_biomes.rds"))
nino_sst <- read_table(here::here("data/nino34sst.txt"))

nino_sst <-
  nino_sst %>%
  select(year = YR,
         month = MON,
         resid = ANOM_3)
name_core <- c("fgco2", "fgco2_int", "fgco2_hov",
               # "sfco2", "atm_fco2", 
               "dfco2",
               # "kw_sol", 
               "temperature", 
               # "salinity",
               # "dissic", "talk", "sdissic", "stalk", "cstar", 
               "sdissic_stalk",
               "no3", "o2",
               "mld", "thetao", 
               # "so",
               "intpp", "chl",
               "sfco2_therm","sfco2_nontherm","sfco2_total",
               "resid_fgco2_dfco2", "resid_fgco2_kw_sol", "resid_fgco2_dfco2_kw_sol")



all_product_list <- c(pco2_product_list, gobm_product_list)

color_products <- c(
  "OceanSODAv2" = "#672933",
  "OceanSODA" = "#672933",
  "SOM-FFN" = "#d1495b",
  "fCO2-Residual" = "#edae49",
  "LDEO-HPD" = "#edae49",
  "CMEMS" = "#AD8E55",
  "ETHZ-CESM" = "#66a182",
  "FESOM-REcoM" = "#00798c"
)

warm_color <- "#c33c57"
cold_color <- "#3f6fb3"
trend_color <- "#66a182"


warm_cool_gradient <- 
rev(c(
  "#61195a",
  "#6f185f",
  "#8d1e62",
  "#aa2960",
  "#c33c57",
  "#da5351",
  "#e77155",
  "#f09264",
  "#f09264",
  "#fbd297",
  "#fefefe",
  "#c6e8ea",
  "#97d4db",
  "#79bcd0",
  "#5ca2c6",
  "#4a88bc",
  "#3f6fb3",
  "#3e56a2",
  "#3c3f82",
  "#2f2c5a",
  "#272648"
))

# cmocean("balance")(100)
for(i_file_type in file_types) {
  
  # print(i_file_type)
  # i_file_type <- file_types[1]
  
  files <- list.files(here::here("data"),
                      pattern = paste(2023, i_file_type, sep = "_"),
                      full.names = TRUE)
  
  if (GCB_products) {
    files <- str_subset(files, paste("_GCB_", paste(gobm_product_list, collapse = "|"), sep = "|"))
  } else {
    files <- str_subset(files, "_GCB_", negate = TRUE)
  }
  

  pco2_product <-
    read_csv(files, id = "product")
  
  # pco2_product %>% 
  #   distinct(product)
  
  pco2_product <-
    pco2_product %>%
    mutate(
      product = str_extract(
        product,
        paste(all_product_list, collapse = "|")
      )
    )
  
  if (!str_detect(files[1], "slope|_temperature_predict")) {
    pco2_product <-
      pco2_product %>%
      mutate(
        name = factor(name, levels = name_core),
        product = factor(product, levels = all_product_list)
      ) %>%
      filter(!is.na(name))
  } else {
    pco2_product <-
      pco2_product %>%
      mutate(product = factor(product, levels = all_product_list))
  }
  
  i_file_type <- str_remove(i_file_type, ".csv")
  assign(paste("pco2_product", i_file_type, sep = "_"), pco2_product)

}

Define labels and breaks

labels_breaks <- function(i_name) {
  if (i_name == "dco2") {
    i_legend_title <- "ΔpCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dfco2") {
    i_legend_title <- "ΔfCO<sub>2</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "atm_co2") {
    i_legend_title <- "pCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "atm_fco2") {
    i_legend_title <- "fCO<sub>2,atm</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "sol") {
    i_legend_title <- "K<sub>0</sub> anom.<br>(mol m<sup>-3</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw") {
    i_legend_title <- "k<sub>w</sub> anom.<br>(m yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "kw_sol") {
    i_legend_title <- "k<sub>w</sub> K<sub>0</sub> anom.<br>(mol yr<sup>-1</sup> m<sup>-2</sup> µatm<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.015, 0.015, 0.003), Inf)
  }
  
  if (i_name == "spco2") {
    i_legend_title <- "pCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "sfco2") {
    i_legend_title <- "fCO<sub>2,ocean</sub> anom.<br>(µatm)"
    i_breaks <- c(-Inf, seq(-12, 12, 3), Inf)
  }
  
  if (i_name == "intpp") {
    i_legend_title <- "NPP<sub>int</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-3, 3, 0.5), Inf)
  }
  
  if (i_name == "no3") {
    i_legend_title <- "NO<sub>3</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-1.5, 1.5, 0.3), Inf)
  }
  
  if (i_name == "o2") {
    i_legend_title <- "O<sub>2</sub> anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "dissic") {
    i_legend_title <- "DIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic") {
    i_legend_title <- "sDIC anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "cstar") {
    i_legend_title <- "C* anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "talk") {
    i_legend_title <- "TA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "stalk") {
    i_legend_title <- "sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA anom.<br>(μmol kg<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-15, 15, 3), Inf)
  }
  
  if (i_name == "sfco2_total") {
    i_legend_title <- "total"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_therm") {
    i_legend_title <- "thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "sfco2_nontherm") {
    i_legend_title <- "non-thermal"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "slope") {
    i_legend_title <- "Slope FCO<sub>2</sub> anom. / SST anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup> °C<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-1, 1, 0.25), Inf)
  }

  if (i_name == "fgco2_predict") {
    i_legend_title <- "FCO<sub>2</sub> anom. pred.<br>(mol m<sup>-2</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_hov") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC deg<sup>-1</sup> yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_int") {
    i_legend_title <- "FCO<sub>2</sub> anom.<br>(PgC yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fgco2_predict_int") {
    i_legend_title <- "FCO<sub>2</sub> anom. pred.<br>(PgC yr<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp. anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "temperature") {
    i_legend_title <- "SST anom.<br>(°C)"
    i_breaks <- c(-Inf, seq(-1.6, 1.6, 0.4), Inf)
  }
  
  if (i_name == "salinity") {
    i_legend_title <- "SSS anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "so") {
    i_legend_title <- "Salinity anom."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "chl") {
    i_legend_title <- "lg(Chl-a) anom.<br>(lg(mg m<sup>-3</sup>))"
    i_breaks <- c(-Inf, seq(-0.2, 0.2, 0.05), Inf)
  }
  
  if (i_name == "mld") {
    i_legend_title <- "MLD anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-40, 40, 10), Inf)
  }
  
  if (i_name == "press") {
    i_legend_title <- "pressure<sub>atm</sub> anom.<br>(Pa)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "wind") {
    i_legend_title <- "Wind anom.<br>(m sec<sup>-1</sup>)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "SSH") {
    i_legend_title <- "SSH anom.<br>(m)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "fice") {
    i_legend_title <- "Sea ice anom.<br>(%)"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  
  if (i_name == "resid_fgco2") {
    i_legend_title <-
      "Observed"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_kw_sol") {
    i_legend_title <-
      "k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_dfco2_kw_sol") {
    i_legend_title <-
      "ΔfCO<sub>2</sub> ⨯ k<sub>w</sub> K<sub>0</sub> contr."
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_sum") {
    i_legend_title <-
      "∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  if (i_name == "resid_fgco2_offset") {
    i_legend_title <-
      "Obs. - ∑"
    i_breaks <- c(-Inf, seq(-0.5, 0.5, 0.1), Inf)
  }
  
  all_labels_breaks <- lst(i_legend_title, i_breaks)
  
  return(all_labels_breaks)
  
}

x_axis_labels <-
  c(
    "dco2" = labels_breaks("dco2")$i_legend_title,
    "dfco2" = labels_breaks("dfco2")$i_legend_title,
    "atm_co2" = labels_breaks("atm_co2")$i_legend_title,
    "atm_fco2" = labels_breaks("atm_fco2")$i_legend_title,
    "sol" = labels_breaks("sol")$i_legend_title,
    "kw" = labels_breaks("kw")$i_legend_title,
    "kw_sol" = labels_breaks("kw_sol")$i_legend_title,
    "intpp" = labels_breaks("intpp")$i_legend_title,
    "no3" = labels_breaks("no3")$i_legend_title,
    "o2" = labels_breaks("o2")$i_legend_title,
    "dissic" = labels_breaks("dissic")$i_legend_title,
    "sdissic" = labels_breaks("sdissic")$i_legend_title,
    "cstar" = labels_breaks("cstar")$i_legend_title,
    "talk" = labels_breaks("talk")$i_legend_title,
    "stalk" = labels_breaks("stalk")$i_legend_title,
    "sdissic_stalk" = labels_breaks("sdissic_stalk")$i_legend_title,
    "spco2" = labels_breaks("spco2")$i_legend_title,
    "sfco2" = labels_breaks("sfco2")$i_legend_title,
    "sfco2_total" = labels_breaks("sfco2_total")$i_legend_title,
    "sfco2_therm" = labels_breaks("sfco2_therm")$i_legend_title,
    "sfco2_nontherm" = labels_breaks("sfco2_nontherm")$i_legend_title,
    "fgco2" = labels_breaks("fgco2")$i_legend_title,
    "slope" = labels_breaks("slope")$i_legend_title,
    "fgco2_predict" = labels_breaks("fgco2_predict")$i_legend_title,
    "fgco2_hov" = labels_breaks("fgco2_hov")$i_legend_title,
    "fgco2_int" = labels_breaks("fgco2_int")$i_legend_title,
    "fgco2_predict_int" = labels_breaks("fgco2_predict_int")$i_legend_title,
    "thetao" = labels_breaks("thetao")$i_legend_title,
    "temperature" = labels_breaks("temperature")$i_legend_title,
    "salinity" = labels_breaks("salinity")$i_legend_title,
    "so" = labels_breaks("so")$i_legend_title,
    "chl" = labels_breaks("chl")$i_legend_title,
    "mld" = labels_breaks("mld")$i_legend_title,
    "press" = labels_breaks("press")$i_legend_title,
    "wind" = labels_breaks("wind")$i_legend_title,
    "SSH" = labels_breaks("SSH")$i_legend_title,
    "fice" = labels_breaks("fice")$i_legend_title,
    "resid_fgco2" = labels_breaks("resid_fgco2")$i_legend_title,
    "resid_fgco2_dfco2" = labels_breaks("resid_fgco2_dfco2")$i_legend_title,
    "resid_fgco2_kw_sol" = labels_breaks("resid_fgco2_kw_sol")$i_legend_title,
    "resid_fgco2_dfco2_kw_sol" = labels_breaks("resid_fgco2_dfco2_kw_sol")$i_legend_title,
    "resid_fgco2_sum" = labels_breaks("resid_fgco2_sum")$i_legend_title,
    "resid_fgco2_offset" = labels_breaks("resid_fgco2_offset")$i_legend_title
  )

# create axis labels for absolute values by removing anom.
x_axis_labels_abs <- x_axis_labels
x_axis_labels_abs <- str_replace_all(x_axis_labels_abs, " anom.", "") 
names(x_axis_labels_abs) <- names(x_axis_labels)

Functions

Seasonality plots

p_season <- function(df, 
                     dim_row = "name", 
                     dim_col = "product", 
                     title = NULL, 
                     var = "resid",
                     scales = "free_y") {
  
  p <- ggplot(data = df,
              aes(month, !!ensym(var)))
  
  if(var == "resid"){
      p <- p +
        geom_hline(yintercept = 0, linewidth =0.5)
    
  }
  
  
  
  p <- p +
      geom_path(data = . %>% filter(year != 2023),
                aes(group = as.factor(year),
                    col = as.factor(paste(min(year), max(year), sep = "-"))), 
                alpha = 0.5)+
      geom_path(data = . %>% 
                  filter(year != 2023) %>% 
                  group_by_at(vars(month, dim_col, dim_row)) %>% 
                  summarise(!!ensym(var) := mean(!!ensym(var))),
                aes(col = "Climatological\nmean"), 
                linewidth = 0.7) +
    scale_color_manual(values = c("grey60", "grey10"),
                       guide = guide_legend(order = 2,
                                            reverse = TRUE)) +
    new_scale_color()+
    geom_path(data = . %>% filter(year == 2023),
                aes(col = as.factor(year)),
                linewidth = 1.2) +
      scale_color_manual(
        values = warm_color,
        guide = guide_legend(order = 1)
      ) +
      scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
      labs(title = title,
           x = "Month")
  
    if(df %>% filter(name == "fgco2") %>% nrow() > 0 & "value" %in% names(df)){
    
    df_sink <- df %>% 
      filter(year == 2023,
             name == "fgco2")
    
      p <- p +
          geom_point(data = df_sink %>% filter(value < 0),
             aes(shape = "Sink"), fill = "white") +
          geom_point(data = df_sink %>% filter(value >= 0),
             aes(shape = "Source"), fill = "white") +
        scale_shape_manual(values = c(25,24))
    
  }
  
  
  if (!(is.null(dim_col))) {
    p <- p +
      facet_grid2(
        as.formula(paste(dim_row, "~", dim_col)),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
    
    
  } else {
    p <- p +
      facet_grid(
        as.formula(paste(dim_row, "~ .")),
        scales = scales,
        # independent = "y",
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      )
  }
  
  p <- p +
    theme(
      strip.text.y.left = element_markdown(),
      strip.placement = "outside",
      strip.background.y = element_blank(),
      axis.title.y = element_blank(),
      legend.title = element_blank(),
      axis.text.y.right = element_blank()
    ) 
    # scale_y_continuous(sec.axis = dup_axis())
  
  p
  
}

fCO2 decomposition

fco2_decomposition <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  # group_by <- quos(biome, year, month)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    df %>%
    filter(name %in% c("temperature", "sfco2"))
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "temperature") %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid),
      pco2_product_biome_monthly_fCO2_decomposition %>%
        filter(name == "sfco2") %>%
        select(-c(value, resid)) %>%
        pivot_wider(values_from = fit)
    )
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_therm = (sfco2 * exp(0.0423 * temperature)) - sfco2)
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    inner_join(
      pco2_product_biome_monthly_fCO2_decomposition,
      df %>%
        filter(name %in% c("sfco2")) %>%
        select(-c(value, fit, name)) %>%
        rename(sfco2_total = resid)
    )
  
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    mutate(sfco2_nontherm = sfco2_total - sfco2_therm)
  
  pco2_product_biome_monthly_fCO2_decomposition <-
    pco2_product_biome_monthly_fCO2_decomposition %>%
    select(-c(temperature, sfco2)) %>%
    pivot_longer(starts_with("sfco2"),
                 values_to = "resid")
  
}

Flux attribution

flux_attribution <- function(df, ...) {
  
  group_by <- quos(...)
  # group_by <- quos(lon, lat, month)
  
  pco2_product_flux_attribution <-
    df %>%
    filter(name %in% c("dfco2", "kw_sol", "fgco2"))
  
  
  pco2_product_flux_attribution <-
    inner_join(
      pco2_product_flux_attribution %>%
        select(-c(value, fit)) %>%
        pivot_wider(values_from = resid,
                    names_prefix = "resid_"),
      pco2_product_flux_attribution %>%
        select(-c(value, resid)) %>%
        filter(name != "fgco2") %>%
        pivot_wider(values_from = fit)
    )
  
    pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    mutate(
      resid_fgco2_dfco2 = resid_dfco2 * kw_sol,
      resid_fgco2_kw_sol = resid_kw_sol * dfco2,
      resid_fgco2_dfco2_kw_sol = resid_dfco2 * resid_kw_sol
      # resid_fgco2_sum = resid_fgco2_dfco2 + resid_fgco2_kw_sol + resid_fgco2_dfco2_kw_sol
    )
  
  # pco2_product_flux_attribution <-
  #   pco2_product_flux_attribution %>%
  #   mutate(resid_fgco2_offset = resid_fgco2 - resid_fgco2_sum)
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    select(product, !!!group_by, starts_with("resid_fgco2")) %>%
    pivot_longer(starts_with("resid_"),
                 values_to = "resid")
  
  
  pco2_product_flux_attribution <-
    pco2_product_flux_attribution %>%
    filter(str_detect(name, "dfco2|kw_sol")) %>% 
    mutate(name = factor(
      name,
      levels = c(
        "resid_fgco2",
        "resid_fgco2_dfco2",
        "resid_fgco2_kw_sol",
        "resid_fgco2_dfco2_kw_sol",
        "resid_fgco2_sum",
        "resid_fgco2_offset"
      )
    ))
  
}

Robinson map

bbox <- st_bbox(c(xmin = -180, xmax = 180, ymax = 76, ymin = -54), crs = st_crs(4326))
bbox <- st_as_sfc(bbox)
bbox_trans <- st_break_antimeridian(bbox, lon_0 = center)

bbox_graticules <- st_graticule(
  x = bbox_trans,
  crs = st_crs(bbox_trans),
  datum = st_crs(bbox_trans),
  lon = c(20, 20.001),
  lat = c(-54,76),
  ndiscr = 1e3,
  margin = 0.001
)

bbox_graticules_trans <- st_transform(bbox_graticules, crs = target_crs)
rm(bbox, bbox_trans)

# ggplot() +
#   geom_sf(data = worldmap_trans, fill = "grey", col="grey") +
#   geom_sf(data = coastline_trans) +
#   geom_sf(data = bbox_graticules_trans)

lat_lim <- ext(bbox_graticules_trans)[c(3,4)]*1.002
lon_lim <- ext(bbox_graticules_trans)[c(1,2)]*1.005


p_map_mdim_robinson <-
  function(df,
           df_uncertainty = NULL,
           dim_row = NULL,
           dim_col = NULL,
           dim_wrap = NULL,
           n_col = NULL,
           var,
           legend_title = NULL,
           breaks = NULL,
           n_labels = 2,
           target_crs = "+proj=robin +over +lon_0=-160",
           col = "divergent",
           col_scale = "warm_cold",
           plot_latitudes = FALSE,
           legend_position = "top") {
    
    if (is.null(dim_col) & is.null(dim_row) & is.null(dim_wrap)) {
      df_raster <- df %>%
        select(lon, lat, all_of(var)) %>% 
        rast(crs = "+proj=longlat")
      
      df_raster <-
        project(df_raster, target_crs)
      
      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        drop_na()
      
      
    } else {
      
      # if (!is.null(dim_col) & !is.null(dim_row) & !is.null(dim_wrap)) {
      #   names_sep <- ";"
      # } else {
      #   names_sep <- NULL
      # }
      
      names_sep <- ";"

      df_raster <- df %>%
        select(lon, lat,
               all_of(c(dim_row, dim_col, dim_wrap)),
               all_of(var)) %>%
        pivot_wider(names_from = all_of(c(dim_row, dim_col, dim_wrap)), 
                    values_from = all_of(var),
                    names_sep = names_sep) %>%
        rast(crs = "+proj=longlat")
      
      
      df_raster <-
        project(df_raster, target_crs)

           
            
      if (length(c(dim_row, dim_col, dim_wrap)) <= 1) {
        names_sep <- NULL
      }

      df_tibble <-
        df_raster %>%
        as.data.frame(xy = TRUE, na.rm = FALSE) %>%
        as_tibble() %>%
        rename(lon = x, lat = y) %>%
        pivot_longer(
          -c(lon, lat),
          names_sep = names_sep,
          names_to = c(dim_row, dim_col, dim_wrap),
          values_to = var
        ) %>%
        drop_na()
      
      
    }
    
    
    if (is.null(legend_title)) {
      legend_title <- var
    }
    
    var <- sym(var)
    
    p_map <- ggplot() +
      geom_raster(data = df_tibble, aes(
        x = lon,
        y = lat,
        fill = cut(!!var, breaks, include.lowest = TRUE)
      ))
    
    
    p_map <- p_map +
      geom_sf(data = worldmap_trans %>% select(-name),
              fill = "grey90",
              col = "grey90") +
      geom_sf(data = coastline_trans, linewidth = 0.3) +
      geom_sf(data = bbox_graticules_trans, linewidth = 0.5)
    
    if (plot_latitudes) {
      p_map <- p_map +
        geom_sf(data = latitude_graticules_trans,
                col = "grey60",
                linewidth = 0.2) +
        geom_sf_text(
          data = latitude_labels_trans,
          aes(label = lat_label),
          size = 3,
          col = "grey60"
        )
    }
    
    if (!is.null(df_uncertainty)) {
      p_map <- p_map +
        geom_sf(
          data = df_uncertainty %>% filter(signif_single == 0),
          col = "grey60",
          size = 0.05
        )
    }
    
    p_map <- p_map +
      coord_sf(
        crs = target_crs,
        ylim = lat_lim,
        xlim = lon_lim,
        expand = FALSE
      )
    
    if (legend_position == "top") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "top",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "top",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "bottom") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(0.3, "cm"),
            barwidth = unit(8, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "bottom",
            direction = "horizontal"
          )
        ) +
        theme_void() +
        theme(
          legend.margin=margin(t = .1, b = .1, unit='cm'),
          plot.margin = margin(.1,.1,.1,.1,"cm"),
          panel.spacing = unit(.1,"cm"),
          legend.position = "bottom",
          legend.title.align = 1,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 1, lineheight = 1.5)
        )
    }
    
    if (legend_position == "right") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "right",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "right",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (legend_position == "left") {
      p_map <- p_map +
        guides(
          fill = guide_colorsteps(
            barheight = unit(6, "cm"),
            barwidth = unit(0.3, "cm"),
            ticks = TRUE,
            ticks.colour = "grey20",
            frame.colour = "grey20",
            label.position = "left",
            direction = "vertical"
          )
        ) +
        theme_void() +
        theme(
          legend.position = "left",
          legend.title.align = 0,
          legend.box.spacing = unit(0.1, "cm"),
          legend.title = element_markdown(halign = 0, lineheight = 1.5)
        )
    }
    
    if (col == "sequential") {
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      breaks_reverse <-
        abs(first(breaks_test)) < abs(last(breaks_test))
      
      if (breaks_reverse == TRUE) {
        direction_value = 1
        reverse_value = TRUE
      } else{
        direction_value = -1
        reverse_value = FALSE
      }
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      if (col_scale %in% c("viridis", "plasma", "cividis")) {
        p_map <- p_map +
          scale_fill_viridis_d(
            drop = FALSE,
            name = legend_title,
            direction = direction_value,
            option = col_scale,
            labels = unname(labels)
          )
      }
      
    } else {
      
      breaks_test <- breaks[!breaks == Inf]
      breaks_test <- breaks_test[!breaks_test == -Inf]
      
      if (n_labels == 1) {
        labels <- breaks_test
      } else {
        breaks_test[seq_along(breaks_test) %% 2 == 0] <- ""
        labels <- breaks_test
      }
      
      p_map <- p_map +
        scale_fill_gradientn(
          colours = warm_cool_gradient,
          # rescaler = ~ scales::rescale_mid(.x, mid = 0),
          super = ScaleDiscretised,
          name = legend_title,
          labels = unname(labels)
        )
        # colorspace::scale_fill_discrete_divergingx(
        #   palette = "RdBu",
        #   drop = FALSE,
        #   rev = TRUE,
        #   name = legend_title,
        #   labels = unname(labels)
        # )
    }
    
    
    
    if (!(is.null(dim_row) & is.null(dim_col))) {
      if (is.null(dim_col)) {
        dim_col <- "."
      }
      
      if (is.null(dim_row)) {
        dim_row <- "."
      }
      
      p_map <- p_map +
        facet_grid(as.formula(paste(dim_row, "~", dim_col)),
                   labeller = labeller(name = x_axis_labels),
                   switch = "y") +
        theme(strip.text.x.top = element_markdown(),
              strip.text.y.left = element_markdown())
      
    }
    
    if (!is.null(dim_wrap) & is.null(n_col)) {

      p_map <- p_map +
        facet_wrap(as.formula(paste("~", dim_wrap)))
    }
    

    if (!(is.null(dim_wrap) & is.null(n_col))) {
      if (dim_wrap == "name") {
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)),
                     labeller = labeller(name = x_axis_labels),
                     ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      } else{
        p_map <- p_map +
          facet_wrap(as.formula(paste("~", dim_wrap)), ncol = n_col) +
          theme(strip.text.x.top = element_markdown())
      }
    }
    
    p_map
    
  }

Maps

The following maps show the anomalies of each variable in 2023 as provided through the fCO2 product. Anomalies are determined based on the predicted value of a linear regression model fit to the available data from 1990 to 2022.

Maps are first presented as annual means, and than as monthly means. Note that the 2023 predictions for the monthly maps are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Note: The increase the computational speed, I regridded all maps to 5X5° grid.

Annual means

2023 anomaly

pco2_product_map_annual_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_annual_anomaly
  )

pco2_product_map_annual_anomaly %>%
  filter(year == 2023) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      dim_wrap = "product",
      n_col = 2
    )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "ETHZ-CESM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_ETHZ-CESM.jpg")
plot_list <- 
pco2_product_map_annual_anomaly %>%
  filter(year == 2023,
         product == "FESOM-REcoM",
         name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 14,
       height = 11,
       filename = "../output/map_anomaly_FESOM-REcoM.jpg")

rm(plot_list)
pco2_product_map_annual_anomaly_ensemble <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    value_sd = fsd(value),
    value_mean = fmean(value),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_anomaly_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(
    resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
    resid_mean_coarse = fmean(resid_mean, na.rm = TRUE),
    value_sd_coarse = fmean(value_sd, na.rm = TRUE),
    value_mean_coarse = fmean(value_mean, na.rm = TRUE)
  ) %>% 
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2", "temperature")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      legend_position = "bottom",
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 3,
       filename = "../output/map_anomaly_ensemble_mean_pco2_products.jpg")


pco2_product_map_annual_anomaly_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(value_mean_coarse) < value_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")

pco2_product_map_annual_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  filter(name %in% c("fgco2")) %>% 
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_ensemble_uncertainty %>%
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "value_mean",
      legend_title = str_remove(
        labels_breaks(.x %>% distinct(name))$i_legend_title,
        " anom."),
      breaks = c(-Inf, seq(-4,4,1), Inf),
      n_labels = 2
    )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 3,
       filename = "../output/map_absolute_ensemble_mean_pco2_products.jpg")




rm(pco2_product_map_annual_anomaly_ensemble_uncertainty)
pco2_product_map_annual_anomaly_ensemble_offset <-
left_join(
    pco2_product_map_annual_anomaly_ensemble,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Anomaly offset` = resid - resid_mean) %>% 
  select(name, lon, lat, product, `Anomaly offset`)

pco2_product_map_annual_anomaly_ensemble_baseline <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    fit_mean = mean(fit),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)

pco2_product_map_annual_anomaly_ensemble_baseline <-
left_join(
    pco2_product_map_annual_anomaly_ensemble_baseline,
    pco2_product_map_annual_anomaly %>% 
      filter(year == 2023,
             product %in% pco2_product_list)
  ) %>%
  mutate(`Baseline offset` = fit - fit_mean) %>% 
  select(name, lon, lat, product, `Baseline offset`)

full_join(
  pco2_product_map_annual_anomaly_ensemble_offset,
  pco2_product_map_annual_anomaly_ensemble_baseline
) %>%
  pivot_longer(contains("offset"),
               names_to = "offset") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = value)) +
      labs(title =  paste(2023, "offset from ensemble mean")) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$value, .01), quantile(.x$value, .99)),
        oob = squish
      ) +
      facet_grid(product ~ offset) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(), legend.position = "top")
  )

rm(pco2_product_map_annual_anomaly_ensemble_offset,
   pco2_product_map_annual_anomaly_ensemble_baseline)

gc()
pco2_product_map_annual_anomaly_ensemble_gobm <-
  pco2_product_map_annual_anomaly %>% 
  filter(year == 2023,
         product %in% gobm_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(gobm_product_list)) %>% 
  select(-n)


plot_list <- 
pco2_product_map_annual_anomaly_ensemble_gobm %>%
  filter(name %in% c(
           "fgco2",
           "dfco2",
           "kw_sol",
           "temperature",
           "salinity",
           "sdissic",
           "stalk",
           "sdissic_stalk",
           "no3",
           "mld",
           "intpp",
           "chl"
         )) %>%
  group_split(name) %>% 
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )


ggsave(plot = wrap_plots(plot_list,
                         ncol = 2,
                         byrow = FALSE),
       width = 10,
       height = 16,
       filename = "../output/map_anomaly_ensemble_mean_gobm.jpg")

rm(plot_list,
   pco2_product_map_annual_anomaly_ensemble_gobm)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3169170  169.3    6507598  347.6   6507598  347.6
Vcells 305165519 2328.3  561789084 4286.2 561714440 4285.6

Bivariate anomaly

bivariate_map <-
  pco2_product_map_annual_anomaly %>%
  filter(year == 2023, name %in% c("fgco2", "temperature")) %>%
  select(product, name, lon, lat, resid) %>%
  pivot_wider(names_from = name, values_from = resid) %>%
  drop_na()

dim_set <- 3


bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        min(bivariate_map$fgco2),
        0,
        0.1,
        max(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )


bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, product, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class) %>% 
    pivot_wider(names_from = product,
                values_from = bi_class_numeric),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  pivot_longer(-c(lon, lat),
               names_to = "product",
               values_to = "bi_class_numeric") %>% 
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  ) +
  facet_wrap( ~ product, ncol = 2)

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(
  width = 6,
  height = 5,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products.jpg"
)


bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(
  width = 4,
  height = 3,
  dpi = 600,
  filename = "../output/map_anomaly_bivariate_all_products_legend.jpg"
)
bivariate_map <- 
pco2_product_map_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2", "temperature")) %>%
  select(name, lon, lat, resid_mean) %>% 
  pivot_wider(names_from = name,
              values_from = resid_mean) %>% 
  drop_na()


dim_set <- 3

bivariate_map <-
  bivariate_map %>%
  mutate(
    temperature = cut(
      temperature,
      breaks = c(
        min(bivariate_map$temperature),
        0,
        0.3,
        max(bivariate_map$temperature)
      ),
      include.lowest = TRUE
    ),
    fgco2 = cut(
      fgco2,
      breaks = c(
        max(bivariate_map$fgco2),
        0.1,
        0,
        min(bivariate_map$fgco2)
      ),
      include.lowest = TRUE
    )
  )

bivariate_map <-
  bi_class(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile"
  )

bi_breaks <-
  bi_class_breaks(
    bivariate_map,
    x = temperature,
    y = fgco2,
    dim = dim_set,
    style = "quantile",
    dig_lab = 1,
    split = TRUE
  )

bivariate_map_raster <-
bivariate_map %>%
    relocate(lon, lat) %>%
    select(lon, lat, bi_class) %>%
    mutate(bi_class_numeric = as.character(as.numeric(as.factor(bi_class))))


bivariate_map_raster_values <- 
bivariate_map_raster %>% 
  distinct(bi_class, bi_class_numeric)

bivariate_map_raster <- rast(
  bivariate_map_raster %>%
    select(-bi_class),
    crs = "+proj=longlat"
)


bivariate_map_raster <- project(bivariate_map_raster, target_crs, method = "near")

bivariate_map_tibble <- bivariate_map_raster %>%
  as.data.frame(xy = TRUE, na.rm = FALSE) %>%
  as_tibble() %>%
  rename(lon = x, lat = y) %>%
  drop_na()

bivariate_map_tibble <-
  right_join(
    bivariate_map_tibble,
    bivariate_map_raster_values %>%
      mutate(bi_class_numeric = as.numeric(bi_class_numeric))
  )


ggplot() +
  geom_raster(data = bivariate_map_tibble,
            aes(x = lon, y = lat, fill = bi_class)) +
  bi_scale_fill(pal = "DkBlue2", dim = dim_set, flip_axes = TRUE) +
  geom_sf(data = worldmap_trans, fill = "grey90", col = "grey90") +
  geom_sf(data = coastline_trans, linewidth = 0.3) +
  geom_sf(data = bbox_graticules_trans, linewidth = 0.5) +
  coord_sf(
    crs = target_crs,
    ylim = lat_lim,
    xlim = lon_lim,
    expand = FALSE
  ) +
  theme(
    axis.title = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    panel.border = element_rect(colour = "transparent"),
    strip.background = element_blank(),
    legend.position = "none"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 2.5,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products.jpg")

bi_breaks$bi_x <- bi_breaks$bi_x[-1]
bi_breaks$bi_x[1] <- paste0("-", bi_breaks$bi_x[1])

bi_breaks$bi_y <- bi_breaks$bi_y[-1]
bi_breaks$bi_y[1] <- paste0("-", bi_breaks$bi_y[1])


bi_legend(
  pal = "DkBlue2",
  xlab = labels_breaks("temperature")$i_legend_title,
  ylab = labels_breaks("fgco2")$i_legend_title,
  dim = dim_set,
  pad_width = 2,
  breaks = bi_breaks,
  arrows = FALSE,
  flip_axes = TRUE
) +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    axis.ticks = element_blank(),
    axis.text = element_text(size = 10)
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 4,
       height = 3,
       dpi = 600,
       filename = "../output/map_anomaly_bivariate_ensemble_mean_pco2_products_legend.jpg")
pco2_product_zonal_annual_anomaly <-
pco2_product_hovmoeller_monthly_anomaly %>%
  filter(year == 2023) %>%
  group_by(product, name, lat) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() 


pco2_product_zonal_annual_anomaly %>%
  ggplot(aes(resid, lat, col = product)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_path() +
  scale_color_manual(values = color_products) +
  facet_wrap( ~ name, scales = "free_x", ncol = 4)

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_zonal_annual_anomaly_ensemble <- 
pco2_product_zonal_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>% 
  group_by(lat, name) %>% 
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid)
  )

pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov", "temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  # geom_ribbon(aes(xmin = resid_mean - resid_sd, xmax = resid_mean + resid_sd),
  #             alpha = 0.5) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.5) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.5) +
  scale_fill_manual(values = c(cold_color, warm_color)) +
  geom_path() +
  facet_grid(. ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_x",
             switch = "x") +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
bi_pal("DkBlue2", preview = FALSE)
      1-1       2-1       3-1       1-2       2-2       3-2       1-3       2-3 
"#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" 
      3-3 
"#434e87" 
# "#d3d3d3" "#97c5c5" "#52b6b6" "#c098b9" "#898ead" "#4a839f" "#ad5b9c" "#7c5592" "#434e87"

p_zonal_fgco2 <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("fgco2_hov")) %>%
  mutate(resid_mean = resid_mean * 1000) %>% 
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#52b6b6")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-5,5,5),
                     name = str_replace(
                       labels_breaks("fgco2_hov")$i_legend_title,
                     "PgC", "TgC"
                     )) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.text.y = element_blank(),
    axis.ticks.y = element_blank(),
    axis.title.y = element_blank(),
    axis.line.y = element_blank()
  )


p_zonal_temperature <- 
pco2_product_zonal_annual_anomaly_ensemble %>%
  filter(name %in% c("temperature")) %>%
  ggplot(aes(resid_mean, lat)) +
  geom_vline(xintercept = 0) +
  geom_ribbon(aes(xmin = 0, xmax = pmax(0, resid_mean), fill = "Positive"),
              alpha = 0.9) +
  geom_ribbon(aes(xmax = 0, xmin = pmin(0, resid_mean), fill = "Negative"),
              alpha = 0.9) +
  scale_fill_manual(values = c("#d3d3d3", "#ad5b9c")) +
  geom_path() +
  scale_y_continuous(breaks = seq(-60,60,30),
                     name = "Lat (°N)",
                     limits = c(-54,76),
                     expand = c(0,0)) +
  scale_x_continuous(breaks = seq(-0.6,0.6,0.3),
                     name = labels_breaks("temperature")$i_legend_title) +
  theme_classic() +
  theme(
    legend.position = "none",
    axis.title.x = element_markdown(),
    axis.title.y = element_text(angle = 0)
  )

p_zonal_temperature | p_zonal_fgco2

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 2.8,
       height = 4.5,
       filename = "../output/zonal_mean_anomaly_pco2_product_ensemble_mean.jpg")

SST flux slope

pco2_product_map_annual_anomaly_temperature_predict <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  drop_na()
  
  
pco2_product_map_annual_anomaly_temperature_predict %>%
  p_map_mdim_robinson(
    var = "slope",
    legend_title = "Slope FCO<sub>2</sub> anom. / SST anom.<br>(mol m<sup>-2</sup> yr<sup>-1</sup> °C<sup>-1</sup>)",
    breaks = c(-Inf, seq(-1, 1, 0.25), Inf),
    dim_wrap = "product",
    n_col = 2
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 6,
       dpi = 600,
       filename = "../output/map_anomaly_correlation_all_products.jpg")


pco2_product_map_annual_anomaly_temperature_predict <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  select(-year) %>%
  pivot_longer(-c(product, lon, lat), values_to = "resid")


pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(str_detect(name, "fgco2")) %>%
  p_map_mdim_robinson(
    var = "resid",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    dim_row = "product",
    dim_col = "name"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_anomaly_temperature_predict_ensemble <-
  pco2_product_map_annual_anomaly_temperature_predict %>%
  filter(product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n)


pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_anomaly_temperature_predict_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(
    resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
    resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)
  ) %>% 
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty <-
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_anomaly_temperature_predict_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
plot_list <- pco2_product_map_annual_anomaly_temperature_predict_ensemble %>%
  mutate(product = "Ensemble mean") %>%
  group_split(name) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      df_uncertainty = pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty %>% 
        filter(name == .x %>% distinct(name) %>% pull()),
      var = "resid_mean",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      legend_position = "bottom",
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks,
      n_labels = 2
    )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 2),
       width = 12,
       height = 6,
       filename = "../output/map_annual_anomaly_temperature_predict_ensemble.jpg")

rm(
  pco2_product_map_annual_anomaly_temperature_predict_ensemble,
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_coarse,
  pco2_product_map_annual_anomaly_temperature_predict_ensemble_uncertainty
)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3305389  176.6    6507599  347.6   6507599  347.6
Vcells 322811448 2462.9  563240138 4297.2 563240138 4297.2

Monthly means

2023 anomaly

pco2_product_map_monthly_anomaly <-
  inner_join(
    biome_mask_print,
    pco2_product_map_monthly_anomaly
  )
pco2_product_map_monthly_anomaly %>%
  filter(name %in% name_core,
         year == 2023) %>%
  group_split(name) %>%
  head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      facet_grid(month ~ product) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_monthly_anomaly_ensemble <-
  pco2_product_map_monthly_anomaly %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  fgroup_by(name, lon, lat, month) %>%
  fsummarise(
    resid_sd = fsd(resid),
    resid_mean = fmean(resid),
    n = fnobs(resid)
  ) %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)

pco2_product_map_monthly_anomaly_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_monthly_anomaly_ensemble) %>%
  fgroup_by(name, month, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)

pco2_product_map_monthly_anomaly_ensemble <-
  left_join(
    pco2_product_map_monthly_anomaly_ensemble,
    pco2_product_map_monthly_anomaly_ensemble_coarse
  )


pco2_product_map_monthly_anomaly_ensemble %>%
  filter(name %in% name_core) %>%
  mutate(month = as.character(month),
         month = fct_inorder(month)) %>% 
  group_split(name) %>%
  head(1) %>%
  map(
    ~ p_map_mdim_robinson(
      df = .x,
      var = "resid_mean",
      dim_wrap = "month",
      legend_title = labels_breaks(.x %>% distinct(name))$i_legend_title,
      breaks = labels_breaks(.x %>% distinct(name))$i_breaks
    )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
rm(
  pco2_product_map_monthly_anomaly_ensemble,
  pco2_product_map_monthly_anomaly_ensemble_coarse
)

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3260021  174.2    6507599  347.6   6507599  347.6
Vcells 288554712 2201.5  563240138 4297.2 563240138 4297.2

fCO2 decomposition

pco2_product_map_monthly_fCO2_decomposition <-
  inner_join(pco2_product_map_monthly_fCO2_decomposition,
             biome_mask_print)
pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023) %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(title = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )

pco2_product_map_monthly_fCO2_decomposition %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(
      #   data = .x %>% filter(abs(resid_mean) < resid_sd),
      #   aes(lon, lat, shape = "Ensemble mean\n< StDev"),
      #   col = "grey"
      # ) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("sfco2"),,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      scale_shape_manual(values = 46, name = "") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top")
  )
pco2_product_map_annual_fCO2_decomposition <-
  pco2_product_map_monthly_fCO2_decomposition %>% 
  select(product, year, lat, lon, name, resid) %>% 
  fgroup_by(product, year, lat, lon, name) %>% 
  fmean()

gc()
            used   (Mb) gc trigger   (Mb)  max used   (Mb)
Ncells   3229678  172.5    6507599  347.6   6507599  347.6
Vcells 259261572 1978.1  563240138 4297.2 563240138 4297.2
pco2_product_map_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove(name, "sfco2_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_col = "name",
    dim_row = "product",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2 * (labels_breaks("sfco2")$i_breaks),
    n_labels = 2
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_fCO2_decomposition_ensemble <-
  pco2_product_map_annual_fCO2_decomposition %>%
  filter(product %in% pco2_product_list, year == 2023) %>%
  group_by(name, lon, lat) %>%
  summarize(resid_sd = sd(resid),
            resid_mean = mean(resid),
            n = n()) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>%
  select(-n)


pco2_product_map_annual_fCO2_decomposition_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_fCO2_decomposition_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty <-
  pco2_product_map_annual_fCO2_decomposition_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_fCO2_decomposition_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  mutate(name = fct_relevel(name,
                            c("sfco2_therm", "sfco2_nontherm"))) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_fCO2_decomposition_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("sfco2")$i_legend_title,
    breaks = 2*(labels_breaks("sfco2")$i_breaks),
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")

Flux attribution

pco2_product_map_monthly_flux_attribution <-
  inner_join(pco2_product_map_monthly_flux_attribution, biome_mask_print)
# pco2_product_map_monthly_flux_attribution <-
#   flux_attribution(pco2_product_map_monthly_anomaly,
#                    year, month, lon, lat)

pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid)) +
      labs(subtitle = .x$product) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid, .01), quantile(.x$resid, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown(), 
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(legend.title = element_markdown(),
            legend.position = "top",
            strip.text.x.top = element_markdown())
  )



pco2_product_map_monthly_flux_attribution %>%
  filter(year == 2023) %>% 
  drop_na() %>% 
  filter(product %in% pco2_product_list) %>%
  group_by(name, lon, lat, month) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  mutate(product = "Ensemble mean") %>% 
  drop_na() %>% 
  group_split(product) %>%
  # head(1) %>%
  map(
    ~ map +
      geom_tile(data = .x,
                aes(lon, lat, fill = resid_mean)) +
      # geom_point(data = .x %>% filter(abs(resid_mean) < resid_sd),
      #            aes(lon, lat, shape = "Ensemble mean\n< StDev"))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks("fgco2"),
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      )+
      scale_shape_manual(values = 46, name = "") +
      theme(legend.title = element_markdown(),
            legend.position = "bottom") +
      facet_grid(month ~ name,
                 labeller = labeller(name = x_axis_labels)) +
      guides(
        fill = guide_colorbar(
          barheight = unit(0.3, "cm"),
          barwidth = unit(6, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.title = element_markdown(),
        legend.position = "top",
        strip.text.x.top = element_markdown()
      )
  )
pco2_product_map_annual_flux_attribution <-
  pco2_product_map_monthly_flux_attribution %>% 
  group_by(product, year, lat, lon, name) %>% 
  summarise(resid = mean(resid, na.rm = TRUE)) %>% 
  ungroup()

pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023) %>%
  select(-year) %>% 
  relocate(lon, lat) %>% 
  # mutate(name = str_remove_all(name, "_")) %>%
  p_map_mdim_robinson(
    var = "resid",
    dim_row = "product",
    dim_col = "name",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    n_labels = 2
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_map_annual_flux_attribution_ensemble <-
pco2_product_map_annual_flux_attribution %>%
  filter(year == 2023,
         product %in% pco2_product_list) %>%
  group_by(name, lon, lat) %>%
  summarize(
    resid_sd = sd(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n == length(pco2_product_list)) %>% 
  select(-n) %>% 
  drop_na()

pco2_product_map_annual_flux_attribution_ensemble_coarse <-
  m_grid_horizontal_coarse(pco2_product_map_annual_flux_attribution_ensemble) %>%
  fgroup_by(name, lon_grid, lat_grid) %>%
  fsummarise(resid_sd_coarse = fmean(resid_sd, na.rm = TRUE),
             resid_mean_coarse = fmean(resid_mean, na.rm = TRUE)) %>%
  rename(lon = lon_grid, lat = lat_grid)



pco2_product_map_annual_flux_attribution_ensemble_uncertainty <-
  pco2_product_map_annual_flux_attribution_ensemble_coarse %>%
  mutate(signif_single = if_else(abs(resid_mean_coarse) < resid_sd_coarse, 0, 1)) %>% 
  select(lon, lat, name, signif_single) %>% 
  st_as_sf(coords = c("lon", "lat"), crs = "+proj=longlat")


pco2_product_map_annual_flux_attribution_ensemble %>%
  select(lon, lat, name, resid_mean) %>% 
  p_map_mdim_robinson(
    df_uncertainty = pco2_product_map_annual_flux_attribution_ensemble_uncertainty,
    var = "resid_mean",
    legend_title = labels_breaks("fgco2")$i_legend_title,
    breaks = labels_breaks("fgco2")$i_breaks,
    dim_wrap = "name",
    n_col = 1,
    n_labels = 2
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 5,
       height = 7,
       dpi = 600,
       filename = "../output/map_anomaly_flux_attribution_ensemble_mean_pco2_products.jpg")

Hovmoeller plots

The following Hovmoeller plots show the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Hovmoeller plots are presented as monthly means. Note that the predictions for the monthly Hovmoeller plots are done individually for each month, such the mean seasonal anomaly from the annual mean is removed.

Monthly means

Anomalies

pco2_product_hovmoeller_monthly_anomaly %>%
  filter(name %in% name_core) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid,.01),quantile(.x$resid,.99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap(~ product, ncol = 1)
  )
pco2_product_hovmoeller_monthly_anomaly_ensemble <-
  pco2_product_hovmoeller_monthly_anomaly %>% 
  group_by(name, decimal, lat) %>%
  summarize(
    resid_range = max(resid) - min(resid),
    resid_mean = mean(resid),
    n = n()
  ) %>%
  ungroup() %>%
  filter(n > 1)
  

pco2_product_hovmoeller_monthly_anomaly_ensemble %>%
  mutate(product = "Ensemble mean") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_mean)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0) +
      labs(title = "Monthly mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )
left_join(
    pco2_product_hovmoeller_monthly_anomaly_ensemble,
    pco2_product_hovmoeller_monthly_anomaly
  ) %>%
  mutate(resid_offset = resid - resid_mean) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(decimal, lat, fill = resid_offset)) +
      geom_raster() +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        name = labels_breaks(.x %>% distinct(name))$i_legend_title,
        limits = c(quantile(.x$resid_mean, .01), quantile(.x$resid_mean, .99)),
        oob = squish
      ) +
      theme(legend.title = element_markdown()) +
      coord_cartesian(expand = 0)+
      labs(title = "Monthly offset from ensemble mean anomalies",
           y = "Latitude") +
      theme(axis.title.x = element_blank()) +
      facet_wrap( ~ product, ncol = 1)
  )

Regional means and integrals

The following plots show biome-, super biome- or global- averaged/integrated values of each variable as provided through the fCO2 product, represented here as the anomalies from the prediction of a linear/quadratic fit to the data from 1990 to 2022.

Anomalies are presented relative to the predicted annual mean of each year, hence preserving the seasonality.

Annual anomalies

pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid),
            value = mean(value),
            fit = mean(fit)) %>%
  ungroup()


lm_fgco2_sst <- pco2_product_biome_annual_anomaly %>%
  filter(
    name %in% c("fgco2_int", "temperature"),
    biome == "Global non-polar",
    year != 2023,
    product %in% pco2_product_list
  ) %>%
  select(year, product, name, resid) %>%
  pivot_wider(values_from = resid) %>%
  nest(data = -product) %>%
  mutate(fit = map(data, ~ flm(
    formula = fgco2_int ~ temperature, data = .x
  )))

lm_fgco2_sst <-
  left_join(
    lm_fgco2_sst %>%
      unnest_wider(fit) %>%
      select(product, intercept = `(Intercept)`, slope = temperature) %>%
      mutate(intercept = as.vector(intercept), slope = as.vector(slope)),
    pco2_product_biome_annual_anomaly %>%
      filter(
        name %in% c("temperature"),
        biome == "Global non-polar",
        year == 2023,
        product %in% pco2_product_list
      ) %>%
      select(product, name, resid) %>%
      pivot_wider(values_from = resid)
  ) %>%
  mutate(resid = intercept + temperature * slope)


lm_fgco2_sst
# A tibble: 4 × 5
  product   intercept  slope temperature   resid
  <fct>         <dbl>  <dbl>       <dbl>   <dbl>
1 CMEMS     -7.31e-15 -0.548       0.191 -0.105 
2 LDEO-HPD  -5.98e-15 -0.701       0.202 -0.142 
3 OceanSODA -5.72e-15 -0.402       0.223 -0.0897
4 SOM-FFN   -3.41e-15 -0.303       0.233 -0.0708
lm_fgco2_sst %>%
  mutate(across(c(slope, temperature, resid), ~ round(.x, 2)),
         across(c(intercept), ~ signif(.x, 2))) %>%
  write_csv("../output/lm_fgco2_sst.csv")

lm_fgco2_sst <-
lm_fgco2_sst %>% 
  summarise(resid_sd = sd(resid),
            resid_mean = mean(resid),
            temperature_sd = sd(temperature),
            temperature_mean = mean(temperature))



pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst <-
  bind_cols(
    lm_fgco2_sst,
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name %in% c("fgco2_int"), biome == "Global non-polar",
             year == 2023) %>%
      select(year, name, fit)
  ) %>%
  mutate(fgco2_predict = resid_mean + fit) %>%
  select(-fit)

nino_sst %>% 
  filter(year >= 1990) %>% 
  ggplot(aes(year + month/12, resid)) +
  geom_hline(yintercept = 0.5) +
  geom_path() +
  geom_path(data = . %>% 
              group_by(year) %>% 
              mutate(resid = mean(resid)) %>% 
              ungroup())

bind_rows(
  pco2_product_biome_annual_anomaly_ensemble,
  pco2_product_biome_annual_anomaly_ensemble %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>%
    select(-c(resid, resid_sd))
) %>%
  filter(name %in% c("fgco2_int", "temperature"), biome == "Global non-polar") %>%
  mutate(name = fct_rev(as.factor(name))) %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(
        product %in% pco2_product_list,
        name %in% c("fgco2_int", "temperature"),
        biome == "Global non-polar"
      ) %>%
      group_by(year, month, name, biome) %>%
      summarise(value = mean(value)) %>%
      ungroup(),
    aes(year + month / 12, value),
    col = "grey90"
  ) +

  geom_rect(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% c(2023)),
    aes(xmin = year, xmax = year + 1, ymin = fgco2_predict - resid_sd,
        ymax = fgco2_predict + resid_sd),
    fill = trend_color, col = trend_color
  ) +
  geom_text(
    data = pco2_product_biome_annual_anomaly_ensemble_lm_fgco2_sst %>%
      filter(year %in% c(2023)),
    aes(x = year + 1, y = fgco2_predict - 0.2, label = "Expected 2023 anomaly"),
    hjust = 1,
    fontface = "bold",
    col = trend_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.95, label = "Warm"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "temperature"),
    aes(x = year, y = 21.45, label = "Cold"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -0.85, label = "Weak carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = warm_color
  ) +
  geom_text(
    data = . %>%
      filter(year == 1991, name == "fgco2_int"),
    aes(x = year, y = -2.1, label = "Strong carbon sink"),
    hjust = 0,
    fontface = "bold",
    col = cold_color
  ) +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "fgco2_int"),
    aes(
      x = year + 0.5,
      y = -2.6,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_text(
    data = . %>%
      filter(year %in% c(1997, 2015, 2023), name == "temperature"),
    aes(
      x = year + 0.5,
      y = 21.45,
      label = "EN"
    ), size = 3, fontface = "italic", col = "grey20") +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.7
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  geom_linerange(aes(
    x = year + 0.5,
    ymin = value - resid_sd,
    ymax = value + resid_sd,
    linetype = "Product SD"
  )) +
  scale_color_manual(values = c("grey40", "grey10"), name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  scale_linetype(name = "Anomaly uncertainty") +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2),
    linetype = guide_legend(order = 3)
  ) +
  scale_x_continuous(limits = c(1989.5, 2024.8), expand = c(0, 0)) +
  facet_wrap(
    . ~ name,
    scales = "free_y",
    strip.position = "left",
    labeller = labeller(name = x_axis_labels_abs)
    # switch = "y"
  )+
  labs(x = "Year") +
  theme(
    axis.title.y = element_blank(),
    axis.title.x = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 10,
       height = 2,
       dpi = 600,
       filename = "../output/timeseries_ensemble_mean_pco2_products.jpg")

bind_rows(
  pco2_product_biome_annual_anomaly,
  pco2_product_biome_annual_anomaly %>%
    filter(year == max(year)) %>%
    mutate(year = year + 1) %>% 
    select(-c(resid))
) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         biome == "Global non-polar") %>%
  ggplot() +
  geom_path(
    data = pco2_product_biome_monthly_anomaly %>%
      filter(name %in% c("fgco2_int", "temperature"),
             biome == "Global non-polar"),
    aes(year + month / 12, value),
    col = "grey90"
  )+
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  geom_step(aes(year, value, col = "Observed")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(
    color = guide_legend(order = 1),
    fill = guide_legend(order = 2)
  ) +
  scale_x_continuous(limits = c(1989.5,2024.5), expand = c(0,0),
                     breaks = c(1990,2010)) +
  facet_grid(
    name ~ product,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "none",
    legend.direction = "vertical"
  )

ggsave(width = 8,
       height = 3,
       dpi = 600,
       filename = "../output/timeseries_all_products.jpg")


bind_rows(
  pco2_product_biome_monthly_anomaly,
  pco2_product_biome_monthly_anomaly %>%
    filter(year == max(year),
           month == 12) %>%
    mutate(month = month + 1)
) %>%
  mutate(year = year + month/12) %>% 
  filter(name %in% c("fgco2_int", "temperature"),
         product == if(GCB_products){"OceanSODA"}else{"OceanSODAv2"},
         biome == "Global non-polar",
         year >= 2010) %>%
  ggplot() +
  geom_rect(
    data = . %>% filter(year != max(year)),
    aes(
      xmin = year,
      xmax = year + 1/12,
      ymin = fit,
      ymax = value,
      fill = as.factor(sign(-resid))
    ),
    alpha = 0.5
  ) +
  geom_step(aes(year, fit, col = "Baseline")) +
  scale_color_manual(values = c("grey40", "grey10"),
                     name = "Annual means") +
  scale_fill_manual(
    values = c(warm_color, cold_color),
    labels = c("positive", "negative"),
    name = "Anomalies"
  ) +
  guides(color = guide_legend(order = 1),
         fill = guide_legend(order = 2))+
  facet_grid(
    name ~ .,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  coord_cartesian(expand = 0) +
  theme(
    axis.title = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    legend.position = "top",
    legend.direction = "vertical"
  )

pco2_product_biome_annual_anomaly %>%
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2",
                     "kw_sol", "temperature",
                     "no3", "mld", "intpp", "chl")) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global non-polar",
                            # biome %in% super_biomes ~ "Super biomes",
                            TRUE ~ "Biomes"),
         region = factor(region, levels = c("Global non-polar", "Biomes"))) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Absolute") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
full_join(
  pco2_product_biome_annual_anomaly %>%
    filter(year != 2023,
           name %in% name_core) %>%
    group_by(product, name, biome) %>% 
    summarise(resid_sd = sd(resid)) %>% 
    ungroup(),
  pco2_product_biome_annual_anomaly %>%
    filter(year == 2023,
           name %in% name_core)) %>%
  mutate(
    region = case_when(
      biome == "Global non-polar" ~ "Global non-polar",
      TRUE ~ "Biomes"
    ),
    region = factor(region, levels = c("Global non-polar", "Biomes"))
  ) %>%
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes(biome, value - fit, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(biome, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title,
           title = "Anomalies") +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1),
            axis.title.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[7]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[8]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[9]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

Super regions

pco2_product_biome_annual_anomaly_super_regions <-
  full_join(
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar"),
    biome_mask %>%
      mutate(area = earth_surf(lat, lon)) %>%
      group_by(biome) %>%
      summarise(area = sum(area)) %>%
      ungroup()
  ) %>% 
  pivot_longer(c(value,resid,fit),
               names_to = "estimate") %>% 
  pivot_wider()

pco2_product_biome_annual_anomaly_super_regions <-
bind_rows(
  pco2_product_biome_annual_anomaly_super_regions %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(!str_detect(biome, "SO-ICE|SO-SPSS|Arctic")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Global non-polar"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NA-|NP-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "NH extratropics"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NA-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "North Atlantic"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "NP-")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "North Pacific"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "PEQU|AEQU|Equ")) %>%
    select(-biome) %>% 
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int,
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "Tropics"),
  pco2_product_biome_annual_anomaly_super_regions %>%
    filter(str_detect(biome, "SA-|SP-|Southern|SO-STSS")) %>%
    select(-biome) %>%
    group_by(product, estimate, year) %>%
    summarise(across(-c(fgco2_int, area),
                     ~ weighted.mean(., area, na.rm = TRUE)),
              across(fgco2_int, 
                     ~ sum(., na.rm = TRUE))) %>%
    ungroup() %>%
    mutate(region = "SH extratropics")) %>%
  mutate(region = fct_inorder(region)) %>% 
  pivot_longer(-c(product, year, region, estimate)) %>% 
  pivot_wider(names_from = estimate)

pco2_product_biome_annual_anomaly_super_regions %>% 
  filter(year == 2023,
         name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, value, fill = product),
                 position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, fit, group = product, col = paste0(2023,"\nlinear\nprediction")),
               position = "dodge2",
               fill = "transparent") +
      labs(y = str_remove(labels_breaks(unique(.x$name))$i_legend_title, " anom.")) +
      scale_color_grey() +
      facet_grid(.~region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
full_join(pco2_product_biome_annual_anomaly_super_regions %>%
  group_by(product, name, region) %>%
  summarise(resid_sd = sd(resid, na.rm = TRUE)) %>%
  ungroup(),
pco2_product_biome_annual_anomaly_super_regions %>%  
  filter(year == 2023)) %>% 
  filter(name %in% c("fgco2", "fgco2_int", "dfco2", "temperature")) %>%    
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_hline(yintercept = 0) +
      geom_col(aes(region, resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(aes(region, resid_sd * sign(value - fit), 
                   group = product, col = paste0("Anomaly SD\nexcl.",2023)),
               position = "dodge2",
               fill = "transparent") +
      labs(y = labels_breaks(unique(.x$name))$i_legend_title) +
      scale_color_grey() +
      facet_grid(. ~ region, scales = "free_x", space = "free_x") +
      theme(legend.title = element_blank(),
            axis.text.x = element_blank(),
            axis.title.x = element_blank(),
            axis.ticks.x = element_blank(),
            axis.title.y = element_markdown(),
            strip.background = element_blank(),
            legend.position = "top")
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_super_regions <-
  bind_rows(
    pco2_product_biome_annual_anomaly_super_regions %>%
      rename(biome = region),
    pco2_product_biome_annual_anomaly %>% 
      filter(biome != "Global non-polar")
  ) %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome) %>%
  summarise(
    resid_sd = sd(resid),
    resid = mean(resid),
    value_sd = sd(value),
    value = mean(value)
  ) %>%
  ungroup()


pco2_product_biome_annual_anomaly_super_regions <-
  pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_super_regions %>%
  filter(year == 2023) %>%
  mutate(
    resid = paste(ifelse(
      resid > 0, paste0("+", round(resid, 2)), round(resid, 2)
    ), round(resid_sd, 2), sep = "±"),
    value = paste(ifelse(
      value > 0, paste0("+", round(value, 2)), round(value, 2)
    ), round(value_sd, 2), sep = "±")
  ) %>%
  select(-c(contains("_sd"), year)) %>%
  pivot_wider(values_from = c(resid, value)) %>%
  relocate(
    biome,
    value_temperature,
    resid_temperature,
    value_fgco2_int,
    resid_fgco2_int,
    value_fgco2,
    resid_fgco2
  ) %>%
  arrange(match(
    biome,
    c(
      "NA-SPSS",
      "NA-STPS",
      "NA-STSS",
            "North Atlantic",
            "NP-SPSS",
      "NP-STPS",
      "NP-STSS",
      "North Pacific",
      "NH extratropics",
      "PEQU-E",
      "PEQU-W",
      "AEQU",
      "Equatorial Indian",
      "Tropics",
      "SA-STPS",
      "SP-STPS",
      "Southern Indian",
      "SO-STSS",
      "SH extratropics",
      "Global non-polar",
      "SO-SPSS",
      "SO-ICE",
      "Arctic",
      "Global"
    )
  )) %>% 
  write_csv("../output/biome_anomaly_ensemble_mean_pco2_products.csv")
pco2_product_biome_annual_anomaly_merged <-
full_join(region_biomes,
          pco2_product_biome_annual_anomaly) %>%
  mutate(region = case_when(biome == "Global non-polar" ~ "Global\nnon-polar",
                            region == "atlantic" ~ "Atlantic",
                            region == "pacific" ~ "Pacific",
                            region == "indian" ~ "Indian Ocean",
                            TRUE ~ region),
         region = fct_rev(fct_inorder(region))) %>% 
  mutate(
    latitude = case_when(
      biome == "Global non-polar" ~ "Global\nnon-polar",
      biome %in% c(
        "NA-SPSS",
        "NA-STSS",
        "NA-STPS",
        "NP-SPSS",
        "NP-STSS",
        "NP-STPS"
      ) ~ "NH extratropics",
      biome %in% c(
        "Equatorial Indian",
        "PEQU-W",
        "PEQU-E",
        "AEQU"
      ) ~ "Tropics",
      biome %in% c("SA-STPS", "SP-STPS", "Southern Indian", "SO-STSS") ~ "SH extratropics",
      biome %in% c("SO-SPSS", "SO-ICE") ~ "SH polar",
      biome %in% c("Arctic") ~ "NH polar",
      TRUE ~ "other"
    ),
    latitude = fct_relevel(latitude, c("Global\nnon-polar",
                                       "NH polar",
                                       "NH extratropics",
                                       "Tropics",
                                       "SH extratropics",
                                       "SH polar"))) %>% 
  mutate(basin = case_when(
    biome == "Global non-polar" ~ "",
    str_detect(biome, "NA-|SA-|AEQU") ~ "Atlantic",
    str_detect(biome, "NP-|SP-") ~ "Pacific",
    str_detect(biome, "Indian") ~ "Indian",
    str_detect(biome, "SO-") ~ "Southern\nOcean",
    str_detect(biome, "Arctic") ~ "Arctic",
    biome == "PEQU-E" ~ "Pacific-E",
    biome == "PEQU-W" ~ "Pacific-W",
    TRUE ~ "other")) %>% 
  mutate(biome_class = case_when(
    str_detect(biome, "SPSS") ~ "Subpolar\nseasonally\nstratified\n(SPSS)",
    str_detect(biome, "STSS") ~ "Subtropical\nseasonally\nstratified\n(STSS)",
    str_detect(biome, "STPS|Southern Indian") ~ "Subtropical\npermanently\nstratified\n(STPS)",
    str_detect(biome, "Arctic|ICE") ~ "Ice",
    TRUE ~ ""),
    biome_class = fct_relevel(biome_class, 
                              "Subtropical\nseasonally\nstratified\n(STSS)", 
                              after = 2)) %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2", "fgco2_int"))

pco2_product_biome_annual_anomaly_merged_ensemble <- 
pco2_product_biome_annual_anomaly_merged %>% 
  filter(product %in% pco2_product_list) %>% 
  group_by(name, biome, basin, region, latitude, biome_class) %>%
  summarise(resid_sd = sd(resid),
            resid = mean(resid))

pco2_product_biome_annual_anomaly_merged_ensemble %>%
  kable() %>%
  kable_styling() %>%
  scroll_box(height = "300px")
name biome basin region latitude biome_class resid_sd resid
fgco2 AEQU Atlantic Atlantic Tropics 0.0332262 -0.0690282
fgco2 Arctic Arctic arctic NH polar Ice 0.0685539 0.2398672
fgco2 Equatorial Indian Indian Indian Ocean Tropics 0.0306574 -0.0502064
fgco2 Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.1636
permanently stratified (STP
) | 0.0228 16| 0.1646
fgco2 NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.1128
seasonally stratified (SPSS)
0.2519
permanently stratified (STP
) | 0.0345 97| 0.0675
fgco2 NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0453
permanently stratified (STP
) | 0.0781 76| 0.0028
fgco2 SO-ICE Southern Ocean |southern |SH polar |Ice
0.160378
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.337
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.145 787| 0.218
fgco2 SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0388 00| 0.0156
fgco2 Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0384 19| 0.1121
fgco2_int AEQU Atlantic Atlantic Tropics 0.0032891 -0.0070470
fgco2_int Arctic Arctic arctic NH polar Ice 0.0101368 0.0249535
fgco2_int Equatorial Indian Indian Indian Ocean Tropics 0.0093217 -0.0158441
fgco2_int Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.0178
permanently stratified (STP
) | 0.0065 57| 0.0441
fgco2_int NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.0082
seasonally stratified (SPSS)
0.0439
permanently stratified (STP
) | 0.0179 58| 0.0350
fgco2_int NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0052
permanently stratified (STP
) | 0.0182 22| 0.0006
fgco2_int SO-ICE Southern Ocean |southern |SH polar |Ice
0.037991
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.125
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.050 884| 0.076
fgco2_int SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0256 27| 0.0101
fgco2_int Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0077 09| 0.0228
temperature AEQU Atlantic Atlantic Tropics 0.0783671 0.2682333
temperature Arctic Arctic arctic NH polar Ice 0.0905657 -0.0791156
temperature Equatorial Indian Indian Indian Ocean Tropics 0.0500738 0.0202774
temperature Global non-polar Global non-polar |Global non-pola
seasonally stratified (SPSS)
0.0258
permanently stratified (STP
) | 0.0481 16| 0.4978
temperature NA-STSS Atlantic Atlantic NH extratropics Subtropical seasonally stratified (STSS
0.0292
seasonally stratified (SPSS)
0.0392
permanently stratified (STP
) | 0.0228 64| -0.0000
temperature NP-STSS Pacific Pacific NH extratropics Subtropical seasonally stratified (STSS
0.0419
permanently stratified (STP
) | 0.0373 58| 0.1091
temperature SO-ICE Southern Ocean |southern |SH polar |Ice
0.033078
Ocean
|southern |SH polar |Subpolar seasonally stratified (SPSS)
0.029
Ocean
|southern |SH extratropics |Subtropical seasonally stratified (STS ) | 0.046 902| 0.248
temperature SP-STPS Pacific Pacific SH extratropics Subtropical permanently stratified (STP ) | 0.0317 15| 0.1095
temperature Southern Indian Indian Indian Ocean SH extratropics Subtropical permanently stratified (STP ) | 0.0928 62| 0.0886
pco2_product_biome_annual_anomaly_merged_ensemble %>%
  filter(name != "fgco2_int", !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")) %>%
  ggplot(aes(x = basin, y = resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(
    ymin = resid - resid_sd,
    ymax = resid + resid_sd,
    col = "fCO2 product\nensemble SD"
  )) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color() +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% pco2_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product)
  ) +
  scale_color_manual(values = color_products, name = "fCO2 products") +
  scale_shape_manual(values = 21:24, name = "fCO2 products") +
  new_scale_color() +
  new_scale("shape") +
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(
        name != "fgco2_int",
        product %in% gobm_product_list,
        !str_detect(biome, "SO-SPSS|SO-ICE|Arctic")
      ),
    aes(col = product, shape = product),
    position = position_nudge(x = 0.2)
  ) +
  scale_color_manual(values = color_products, name = "GOBMs") +
  scale_shape_manual(values = 21:22, name = "GOBMs") +
  facet_nested(
    name ~ latitude + biome_class,
    scales = "free",
    space = "free_x",
    labeller = labeller(name = x_axis_labels),
    switch = "y",
    nest_line = element_line(linewidth = 0.8),
    solo_line = TRUE,
    strip = strip_nested(
      text_x = list(
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        element_text(face = "bold"),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text(),
        elem_list_text()
      )
    )
  ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products.jpg")


p_global <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome == "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome == "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome == "Global",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = x_axis_labels),
             switch = "y",
             nest_line = element_line(),
             solo_line = TRUE) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "none"
  )
  
p_biome <- pco2_product_biome_annual_anomaly_merged_ensemble %>% 
  filter(biome != "Global non-polar") %>% 
  ggplot(aes(basin, resid)) +
  geom_hline(yintercept = 0) +
  geom_col(aes(fill = "fCO2 product\nensemble mean"), col = "grey20") +
  geom_linerange(aes(ymin = resid - resid_sd,
                     ymax = resid + resid_sd,
                     col = "fCO2 product\nensemble SD")) +
  scale_color_manual(values = "grey20", name = "") +
  scale_fill_manual(values = "grey90", name = "") +
  new_scale_color()+
  geom_point(
    data = pco2_product_biome_annual_anomaly_merged %>%
      filter(biome != "Global non-polar",
             product %in% pco2_product_list),
    aes(col = product),
    # position = position_nudge(x = -0.15),
    shape = 21
  ) +
  scale_color_manual(values = color_products,
                     name = "fCO2 products") +
  new_scale_color()+
  geom_point(data = pco2_product_biome_annual_anomaly_merged %>% 
               filter(biome != "Global non-polar",
                      product %in% gobm_product_list),
             aes(col = product),
             position = position_nudge(x = 0.2),
             shape = 21) +
  scale_color_manual(values = color_products,
                     name = "GOBMs") +
  facet_nested(name ~ latitude + biome_class, 
             scales = "free", space = "free_x",
             labeller = labeller(name = ""),
             # switch = "y",
             nest_line = element_line(),
             solo_line = TRUE
             ) +
  theme(
    axis.text.x = element_text(
      angle = 90,
      vjust = 0.5,
      hjust = 1
    ),
    axis.title.x = element_blank(),
    axis.title.y = element_blank(),
    strip.text.y.right = element_text(colour = "transparent",
                                      size = 0),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    strip.background.x = element_blank(),
    legend.position = "bottom",
    legend.direction = "vertical"
  )


ggsave(cowplot::plot_grid(p_global, p_biome,
                   align = "hv",
                   axis = "tb",
                   rel_widths = c(1,7)),
       width = 12,
       height = 8,
       dpi = 600,
       filename = "../output/biome_anomaly_ensemble_mean_pco2_products_with_integrated_flux_and_SO.jpg")

Seasonal anomalies

Flux anomaly correlation

The following plots aim to unravel the correlation between biome-, super-biome- or globally- integrated monthly flux anomalies and the corresponding anomalies of the means/integrals of each other variable.

Anomalies are first presented are first presented in absolute units. Due to the different flux magnitudes, we need to plot the globally and biome-integrated fluxes separately. Secondly, we normalize the anomalies to the monthly spread (expressed as standard deviation) of the anomalies from 1990 to 2021.

Annual anomalies

Absolute

pco2_product_biome_annual_anomaly %>%
  filter(biome %in% c("Global non-polar", key_biomes),
         name %in% name_core) %>%
  mutate(biome = if_else(biome == "Global non-polar", "Global non-polar", biome)) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # tail(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        method = "lm",
        fill = "grey",
        col = "grey40",
        fullrange = TRUE,
        level = 0.68
      ) +
      geom_point(
        data = . %>% filter(!year %in% c(2023, 1997, 2015)),
        aes(fill = "1990-2022"),
        shape = 21
      ) +
      scale_color_manual(values = "grey60", name = "X") +
      scale_fill_manual(values = "grey60", name = "X") +
      new_scale_fill() +
      new_scale_color() +
      geom_point(
        data = . %>% filter(year %in% c(2023, 1997, 2015)),
        aes(fill = as.factor(year)),
        shape = 21,
        size = 3
      )  +
      scale_fill_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      scale_color_manual(
        values = rev(warm_cool_gradient[c(17,13,20)]),
        guide = guide_legend(reverse = TRUE,
                             order = 2)
      ) +
      labs(y = labels_breaks("fgco2_int")$i_legend_title,
           x = labels_breaks(unique(.x$name))$i_legend_title) +
      facet_grid2(
        product ~ biome,
        scales = "free",
        independent = "y"
      ) +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown(),
        legend.title = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 8,
       height = 10,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_all_pco2_products.jpg")


pco2_product_biome_annual_anomaly_ensemble <-
  pco2_product_biome_annual_anomaly %>%
  filter(name %in% name_core, product %in% pco2_product_list) %>%
  select(-c(value, fit, product)) %>%
  fgroup_by(name, biome, year) %>%
  fsummarise(sd = fsd(resid),
             mean = fmean(resid))

pco2_product_biome_annual_anomaly_ensemble <-
  full_join(
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name == "fgco2_int") %>%
      pivot_wider(values_from = c(sd, mean)),
    pco2_product_biome_annual_anomaly_ensemble %>%
      filter(name != "fgco2_int")
  )



pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  )+
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free") +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank()
    # strip.background = element_blank()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 8,
       height = 6,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products.jpg")


pco2_product_biome_annual_anomaly_super_regions %>%
  filter(name %in% c("fgco2_int", "temperature")) %>%
  select(-contains("value")) %>%
  pivot_wider(values_from = contains("resid")) %>%
  ggplot(aes(resid_temperature, resid_fgco2_int)) +
  # geom_vline(xintercept = 0) +
  # geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
        level = 0.68
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = "1990-2022"
    )
  ) +
  geom_linerange(
    data = . %>% filter(!year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = "1990-2022"
    )
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      ymin = resid_fgco2_int - resid_sd_fgco2_int,
      ymax = resid_fgco2_int + resid_sd_fgco2_int,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_linerange(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(
      xmin = resid_temperature - resid_sd_temperature,
      xmax = resid_temperature + resid_sd_temperature,
      col = as.factor(year)
    ),
    linewidth = 1
  ) +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(y = labels_breaks("fgco2_int")$i_legend_title,
       x = labels_breaks(unique("temperature"))$i_legend_title) +
  facet_wrap(~ biome, scales = "free",
             ncol = 4) +
  # theme_classic() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 12,
       dpi = 600,
       filename = "../output/biome_anomaly_correlation_ensemble_mean_pco2_products_all_biomes.jpg")


pco2_product_biome_annual_anomaly %>%
  filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a annual mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(product,name,fill=correlation)) +
  geom_tile() +
  scale_fill_divergent() +
  facet_wrap(~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis") +
  theme(axis.text.x = element_text(angle = 90, hjust = 1),
        axis.title = element_blank(),
        legend.position = c(0.85,0.1),
        legend.direction = "horizontal")

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_anomaly %>%
filter(
    biome %in% c("Global non-polar", key_biomes),
    name %in% c(
      "fgco2_int",
      "chl",
      "dfco2",
      "sfco2",
      "atm_fco2",
      "temperature",
      "sdissic",
      "no3",
      "int_pp",
      "mld",
      "kw_sol"
    )
  ) %>% 
  select(-c(value, fit)) %>%
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int)) %>% 
  group_by(product, name, biome, month) %>% 
  summarise(correlation = cor(fgco2_int, value)) %>% 
  ungroup() %>% 
  group_by(name) %>% 
  mutate(correlation_mean = mean(abs(correlation), na.rm = TRUE)) %>% 
  ungroup() %>% 
  mutate(name = fct_reorder(name, correlation_mean)) %>% 
  ggplot(aes(month, correlation, col = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_grid(product ~ biome) +
  labs(title = "Correlation with FCO2 on a monthly mean basis")

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

SST based prediction

pco2_product_biome_annual_anomaly_temperature_predict <-
  full_join(
    pco2_product_biome_annual_anomaly_temperature_predict,
    pco2_product_biome_annual_anomaly_temperature_predict %>%
      filter(year != 2023) %>%
      nest(data = -c(product, biome)) %>%
      mutate(fit = map(
        data, ~ flm(formula = fgco2_int ~ temperature, data = .x)
      )) %>%
      unnest_wider(fit) %>%
      select(product, biome, slope = temperature) %>%
      mutate(slope = as.vector(slope))
  )

pco2_product_biome_annual_anomaly_temperature_predict <-
  pco2_product_biome_annual_anomaly_temperature_predict %>%
  mutate(fgco2_predict_int_biome = slope * temperature)

pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         fgco2_int,
         `SST pattern` = fgco2_predict_int,
         `SST mean` = fgco2_predict_int_biome) %>% 
  pivot_longer(contains("SST"),
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  ggplot(aes(fgco2_int, resid))+
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(x = labels_breaks("fgco2_int")$i_legend_title,
       y = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_grid(name ~ product) +
  coord_equal() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product,
         year,
         biome,
         fgco2_int,
         `SST pattern` = fgco2_predict_int) %>% 
  pivot_longer(contains("SST"),
               values_to = "resid") %>% 
  filter(biome %in% c(key_biomes)) %>%
  ggplot(aes(fgco2_int, resid))+
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_smooth(
    data = . %>% filter(year != 2023),
    method = "lm",
    fill = "grey",
    col = "grey40",
    fullrange = TRUE,
    level = 0.68
  ) +
  geom_point(data = . %>% filter(!year %in% c(2023, 1997, 2015)),
             aes(fill = "1990-2022"),
             shape = 21) +
  scale_color_manual(values = "grey60", name = "X") +
  scale_fill_manual(values = "grey60", name = "X") +
  new_scale_fill() +
  new_scale_color() +
  geom_point(
    data = . %>% filter(year %in% c(2023, 1997, 2015)),
    aes(fill = as.factor(year)),
    shape = 21,
    size = 3
  )  +
  scale_fill_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                    guide = guide_legend(reverse = TRUE, order = 2)) +
  scale_color_manual(values = rev(warm_cool_gradient[c(17, 13, 20)]),
                     guide = guide_legend(reverse = TRUE, order = 2)) +
  labs(x = labels_breaks("fgco2_int")$i_legend_title,
       y = labels_breaks("fgco2_predict_int")$i_legend_title) +
  facet_grid(biome ~ product) +
  coord_equal() +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 8,
#        height = 10,
#        dpi = 600,
#        filename = "../output/biome_flux_anomaly_prediction_correlation_all_pco2_products.jpg")  


pco2_product_biome_annual_anomaly_temperature_predict %>% 
  select(product, year, biome, fgco2_int, fgco2_predict_int, fgco2_predict_int_biome) %>% 
  pivot_longer(contains("predict"),
               values_to = "resid") %>% 
  filter(biome %in% c("Global non-polar")) %>%
  ggplot(aes(fgco2_int - resid, fill = name)) +
  geom_vline(xintercept = 0) +
  geom_histogram(binwidth=.05, alpha=.5, position="identity") +
  geom_density(aes(col = name), fill = "transparent") +
  facet_wrap(~ product, scales = "free") +
  theme(
    axis.title.x = element_markdown(),
    axis.title.y = element_markdown(),
    legend.title = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

Monthly anomalies

Absolute

pco2_product_biome_monthly_detrended %>%
  filter(biome == "Global non-polar") %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_detrended %>%
  filter(biome %in% key_biomes) %>%
  select(-c(time, fit, value)) %>% 
  pivot_wider(values_from = resid) %>%
  pivot_longer(-c(product, year, month, biome, fgco2_int))  %>%
  filter(name == "temperature") %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x,
             aes(value, fgco2_int)) +
      geom_hline(yintercept = 0) +
      geom_point(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        alpha = 0.2
      ) +
      geom_smooth(
        data = . %>% filter(year != 2023),
        aes(col = paste(min(year), max(year), sep = "-")),
        method = "lm",
        se = FALSE,
        fullrange = TRUE
      )  +
      scale_color_grey(name = "") +
      new_scale_color() +
      geom_path(data = . %>% filter(year == 2023),
      aes(col = as.factor(month), group = 1))  +
      geom_point(
        data = . %>% filter(year == 2023),
        aes(fill =  as.factor(month)),
        shape = 21,
        size = 3
      )  +
      scale_color_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      scale_fill_scico_d(
        palette = "buda",
        guide = guide_legend(reverse = TRUE,
                             order = 1),
        name = paste("Month\nof", 2023)
      ) +
      labs(
        y = labels_breaks("fgco2_int")$i_legend_title,
        x = labels_breaks(unique(.x$name))$i_legend_title
      ) +
      facet_grid(biome ~ product,
                 scales = "free_y") +
      theme(
        axis.title.x = element_markdown(),
        axis.title.y = element_markdown()
      )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

fCO2 decomposition

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(biome %in% c("Global non-polar",key_biomes)) %>%
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(df = .x,
               title  = paste("Anomalies from predicted monthly mean |", .x$biome))
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition <-
  pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, name, biome, product) %>%
  summarise(resid = mean(resid)) %>%
  ungroup() %>%
  group_by(year, name, biome) %>%
  summarise(resid_sd = sd(resid), resid = mean(resid)) %>%
  ungroup()

pco2_product_biome_annual_fCO2_decomposition %>%
  ggplot(aes(year, resid, colour = name)) +
  geom_hline(yintercept = 0) +
  geom_path() +
  facet_wrap( ~ biome)

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  pivot_wider(values_from = contains("resid")) %>% 
  ggplot(aes(resid_sfco2_therm, resid_sfco2_nontherm, col = "observed")) +
  geom_vline(xintercept = 0) +
  geom_hline(yintercept = 0) +
  geom_abline(slope = -1, intercept = 0) +
  geom_smooth(method = "lm", se = FALSE) +
  geom_point(shape = 21) +
  scale_color_muted() +
  facet_wrap( ~ biome, scales = "free")

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  scale_fill_manual(values = c(warm_color, cold_color, "grey80")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(~ biome, scales = "free_y") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    legend.position = c(0.9, 0.1)
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023, biome %in% c("PEQU-E", "NA-STPS")) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
  geom_text(
    data = . %>% filter(biome == "NA-STPS"),aes(
    label = name,
    col = name,
    hjust = if_else(sign(resid) > 0, 0, 1),
    y = resid + if_else(sign(resid) > 0, 1, -1)
  ),
  angle = 90,
  fontface = "bold") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  scale_y_continuous(breaks = seq(-20, 20, 20)) +
  facet_grid(. ~ fct_rev(biome)) +
  theme_classic() +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.background = element_blank(),
    strip.text = element_text(face = "bold", size = 16),
    axis.line.x = element_blank(),
    legend.position = "none"
  )

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 6,
#        height = 3,
#        dpi = 600,
#        filename = "../output/biome_annual_fco2_decomposition.jpg")

pco2_product_biome_annual_fCO2_decomposition %>%
  filter(year == 2023) %>%
  mutate(name = case_when(
    name == "sfco2_therm" ~ "thermal",
    name == "sfco2_nontherm" ~ "non-thermal",
    name == "sfco2_total" ~ "total"
  ),
  name = fct_inorder(name)) %>% 
  ggplot(aes(name, resid, fill = name)) +
  geom_hline(yintercept = 0) +
  geom_col(col = "grey20") +
    geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_color_manual(values = c(warm_color, cold_color, "grey20")) +
  scale_fill_manual(values = c(warm_color, cold_color, "grey20")) +
  labs(y = labels_breaks("sfco2")$i_legend_title) +
  facet_wrap(. ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.position = c(0.9,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_fco2_decomposition_all_biomes.jpg")

Flux attribution

Seasonal

pco2_product_biome_annual_flux_attribution_ensemble <- 
pco2_product_biome_annual_flux_attribution %>%
      filter(product %in% pco2_product_list) %>% 
      group_by(biome, name) %>% 
      summarise(
        resid_sd = sd(resid),
        resid = mean(resid)) %>% 
      ungroup()



pco2_product_biome_annual_flux_attribution_ensemble %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes("", resid), fill = "grey90", col = "grey20") +
  geom_point(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    shape = 21
  ) +
  scale_fill_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10, 10, 0.1)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(
    biome ~ name,
    labeller = labeller(name = x_axis_labels),
    scales = "free_y",
    space = "free_y",
    switch = "x"
  ) +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_annual_flux_attribution_ensemble %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(aes(name, resid, fill = name), col = "grey20") +
  geom_linerange(aes(
    name,
    ymin = resid - resid_sd,
    ymax = resid + resid_sd
  ), col = "grey20") +
  scale_fill_bright(labels = x_axis_labels) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_wrap( ~ biome, scales = "free_y", ncol = 4) +
  theme(
    legend.title = element_blank(),
    legend.text = element_markdown(),
    legend.position = c(0.8,0.1),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 7,
       height = 7,
       dpi = 600,
       filename = "../output/biome_annual_flux_attribution_all_biomes.jpg")


ggplot() +
  geom_hline(yintercept = 0) +
  geom_col(
    data = pco2_product_biome_annual_flux_attribution %>%
      filter(biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    alpha = 0.5, col = "grey30"
  ) +
  geom_point(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(year == 2023,
             biome %in% c("Global non-polar", key_biomes)),
    aes("", resid, fill = product),
    position = position_dodge(width = 1),
    shape = 21, alpha = 0.5, col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  # scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
                          scales = "free_y",
             space = "free_y",
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.text.x = element_blank(),
    axis.ticks.x = element_blank(),
    axis.title.x = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot() +
  geom_hline(yintercept = 0) +
  geom_path(
    aes(month, resid, col = product)
  ) +
  geom_point(
    aes(month, resid, fill = product),
    shape = 21,
    alpha = 0.5,
    col = "grey30"
  ) +
  scale_fill_manual(values = color_products) +
  scale_color_manual(values = color_products) +
  scale_y_continuous(breaks = seq(-10,10,0.2)) +
  scale_x_continuous(position = "top", breaks = seq(1,12,3)) +
  labs(y = labels_breaks(unique("fgco2"))$i_legend_title) +
  facet_grid(biome ~ name,
             labeller = labeller(name = x_axis_labels),
             scales = "free_y",
             space = "free_y", 
             switch = "x") +
  theme(
    legend.title = element_blank(),
    axis.title.y = element_markdown(),
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    legend.position = "top"
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ p_season(
      df = .x,
      title  = paste("Anomalies from predicted monthly mean |", .x$biome)
    ) +
      facet_grid(
        name ~ product,
        labeller = labeller(name = x_axis_labels),
        switch = "y"
      ) +
      theme(
        strip.text.y.left = element_markdown(),
        strip.placement = "outside",
        strip.background.y = element_blank(),
        axis.title.y = element_blank(),
        legend.title = element_blank()
      )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

Annual

# pco2_product_biome_annual_flux_attribution <-
# full_join(
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year == 2023) %>% 
#   select(-year),
# pco2_product_biome_annual_flux_attribution %>% 
#   filter(year != 2023) %>% 
#   group_by(product, biome, name) %>% 
#   summarise(resid_mean = mean(abs(resid))) %>% 
#   ungroup())

pco2_product_biome_annual_flux_attribution %>%
  filter(biome %in% c("Global non-polar", key_biomes)) %>% 
  group_split(biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_col(aes("x", resid, fill = product),
               position = "dodge2") +
      scale_fill_manual(values = color_products) +
      geom_col(
        aes(
          "x",
          resid_mean * sign(resid),
          group = product,
          col = paste0("Mean\nexcl.",2023)
        ),
        position = "dodge2",
        fill = "transparent"
      ) +
      labs(y = labels_breaks(unique("fgco2"))$i_legend_title,
           title = .x$biome) +
      facet_grid(
        .~name,
        labeller = labeller(name = x_axis_labels),
        switch = "x"
      ) +
      scale_color_grey() +
      theme(
        legend.title = element_blank(),
        axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank(),
        axis.title.y = element_markdown(),
        strip.text.x.bottom = element_markdown(),
        strip.placement = "outside",
        strip.background.x = element_blank(),
        legend.position = "top"
      )
  )
[[1]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27

Merged seasonality plots

pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes,
         year != 2023) %>%
  group_by(month, biome, name) %>% 
  summarise(resid_sd = sd(resid)) %>% 
  ungroup() %>% 
  ggplot(aes(month, resid_sd)) +
  geom_path() +
  facet_grid(name ~ biome, scales = "free_y")

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_biome_monthly_detrended %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("temperature", "fgco2"), biome %in% key_biomes) %>%
  p_season(dim_col = "biome", 
           title = "Ensemble mean anomalies from predicted monthly mean") +
  theme(axis.title.x = element_blank(), axis.text.x = element_blank()) +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_detrended %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("temperature", "fgco2"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% key_biomes) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean drivers of flux anomaly",
           scales = "fixed") +
  new_scale_color() +
  scale_color_manual(values = warm_cool_gradient[15]) +
  geom_path(
    data = pco2_product_biome_monthly_flux_attribution %>%
      filter(
        product %in% gobm_product_list,
        year == 2023,
        name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
        biome %in% key_biomes
      ) %>%
      group_by(year, month, biome, name) %>%
      summarise(across(where(is.numeric), mean)) %>%
      ungroup(),
    aes(month, resid, col = "2023\nGOBM mean")
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_ensemble_mean_pco2_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>%
  filter(product %in% pco2_product_list) %>%
  group_by(year, month, biome, name) %>%
  summarise(across(where(is.numeric), mean)) %>%
  ungroup() %>%
  filter(name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  p_season(dim_col = "biome",
           title = "Ensemble mean decomposition of fCO2 anomaly")  

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_ensemble_mean_pco2_products.jpg")
pco2_product_biome_monthly_detrended %>% 
  filter(year == 2023,
         name %in% c("temperature", "fgco2"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Anomalies from predicted monthly mean") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_sst_all_products.jpg")

pco2_product_biome_monthly_flux_attribution %>%
  filter(year == 2023,
         name %in% c("resid_fgco2_dfco2", "resid_fgco2_kw_sol"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Drivers of flux anomaly") +
  facet_grid(
    name ~ biome,
    scales = "fixed",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 3,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fgco2_attribution_all_products.jpg")

pco2_product_biome_monthly_fCO2_decomposition %>% 
  filter(year == 2023,
         name %in% c("sfco2_nontherm", "sfco2_therm", "sfco2_total"),
         biome %in% c("Global non-polar", key_biomes)) %>%
  ggplot(aes(month, resid)) +
  geom_hline(yintercept = 0, linewidth = 0.5) +
  geom_path(aes(col = product)) +
  scale_color_manual(values = color_products) +
  scale_x_continuous(breaks = seq(1, 12, 3), expand = c(0, 0)) +
  labs(x = "Month",
       title = "Decomposition of fCO2 anomaly") +
  facet_grid(
    name ~ biome,
    scales = "free_y",
    labeller = labeller(name = x_axis_labels),
    switch = "y"
  ) +
  theme(
    strip.text.y.left = element_markdown(),
    strip.placement = "outside",
    strip.background.y = element_blank(),
    axis.title.y = element_blank(),
    legend.title = element_blank()
  )

Version Author Date
417f35d jens-daniel-mueller 2025-02-28
d532d40 jens-daniel-mueller 2025-02-28
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(width = 9,
       height = 4,
       dpi = 600,
       filename = "../output/biome_seasonal_anomaly_fco2_decomposition_all_products.jpg")

Biome profiles

The following analysis is available for GOBMs only.

Annual means

2023 anomaly

pco2_product_profiles_annual %>%
  filter(biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, group = year), col = "grey30", alpha = 0.3) +
      geom_path(data = .x %>% filter(year == 2023),
                aes(resid, depth, col = as.factor(year)),
                linewidth = 1) +
      scale_color_brewer(palette = "Set1") +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

Monthly means

2023 anomaly

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         name %in% name_core) %>% 
  group_split(name) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_vline(xintercept = 0) +
      geom_path(aes(resid, depth, col = as.factor(month)),
                linewidth = 1) +
      scale_color_viridis_d(option = "magma", end = .8) +
      scale_y_continuous(trans = trans_reverser("sqrt"),
                         breaks = c(50,100,200,400)) +
      coord_cartesian(expand = 0) +
      facet_grid2(biome ~ product,
                  scales = "free_x", independent = "x") +
      labs(y = "Depth (m)",
           x = labels_breaks(.x %>% distinct(name))$i_legend_title) +
      theme(legend.title = element_blank(),
            axis.title.x = element_markdown())
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/CESM_2023_anomaly_profiles.jpg")

pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "ETHZ-CESM",
         name %in% name_core) %>%
  arrange(month) %>% 
  group_by(biome, name, depth) %>% 
  mutate(resid = resid - first(resid)) %>% 
  ungroup() %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Monthly anomaly evolution relative to January 2023")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
pco2_product_profiles_monthly %>%
  filter(year == 2023,
         biome %in% key_biomes,
         product == "FESOM-REcoM",
         name %in% name_core) %>% 
  ggplot() +
  geom_vline(xintercept = 0) +
  geom_path(aes(resid, depth, col = as.factor(month)),
            linewidth = 1) +
  scale_color_viridis_d(option = "magma", end = .8,
                        name = paste("Month of\n", 2023)) +
  scale_y_continuous(trans = trans_reverser("sqrt"),
                     breaks = c(50, 100, 200, 400)) +
  coord_cartesian(expand = 0) +
  facet_grid2(
    biome ~ name,
    scales = "free_x",
    independent = "x",
    labeller = labeller(name = x_axis_labels),
    switch = "x"
  ) +
  theme(
    strip.text.x.bottom = element_markdown(),
    strip.placement = "outside",
    strip.background.x = element_blank(),
    axis.title.x = element_blank()
  ) +
  labs(y = "Depth (m)",
       title = "Anomalies from monthly baseline (deseasonalized)")

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
# ggsave(width = 10,
#        height = 8,
#        dpi = 600,
#        filename = "../output/FESOM_2023_anomaly_profiles.jpg")

Hovmoeller

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

plot_list
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[2]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[3]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[4]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[5]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27

[[6]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm.jpg")

plot_list <-
  full_join(
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ) %>% 
      arrange(month) %>% 
      group_by(product, name, biome, depth) %>% 
      mutate(resid = if_else(name == "sdissic_stalk",
                             resid - first(resid),
                             resid)) %>% 
      ungroup(),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      select(product, month, biome, mld = value)
  ) %>%
  group_split(name, biome) %>%
  # head(1) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld))+
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      )+
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(20, 50, 100, 200, 400)) +
      coord_cartesian(expand = 0,
                      ylim = c(300,NA)) +
      facet_grid(product ~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1,
                                        lineheight = 1.5)
      )
  )

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 12,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_all_gobm_evolution.jpg")
CESM_depth_grid <- pco2_product_profiles_monthly %>%
  filter(year == 2023, 
         product == "ETHZ-CESM",
         biome %in% key_biomes,
         name %in% c("sdissic_stalk", "thetao")) %>%
  distinct(name, biome, month, depth)

pco2_product_profiles_monthly_FESOM_regrid <-
full_join(
  pco2_product_profiles_monthly %>%
    filter(
      year == 2023,
      product == "FESOM-REcoM",
      biome %in% key_biomes,
      name %in% c("sdissic_stalk", "thetao")
    ),
  CESM_depth_grid %>% mutate(product = "FESOM-REcoM")
)

pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(product, name, biome, month, depth)
  
  
pco2_product_profiles_monthly_FESOM_regrid <-
pco2_product_profiles_monthly_FESOM_regrid %>%
  arrange(depth) %>%
  group_by(product, name, biome, month) %>%
  mutate(resid = spline(
    depth,
    resid,
    method = "natural",
    xout = depth
  )$y) %>%
  ungroup()

CESM_depth <- 
  CESM_depth_grid %>% distinct(depth) %>% pull()

pco2_product_profiles_monthly_FESOM_regrid <-
  pco2_product_profiles_monthly_FESOM_regrid %>%
  filter(depth %in% CESM_depth)


pco2_product_profiles_monthly_merged <-
  bind_rows(
    pco2_product_profiles_monthly_FESOM_regrid,
    pco2_product_profiles_monthly %>%
      filter(
        year == 2023,
        product == "ETHZ-CESM",
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      )
  )


pco2_product_profiles_monthly_ensemble <-
  pco2_product_profiles_monthly_merged %>%
  group_by(name, biome, month, depth) %>%
  summarise(resid = mean(resid)) %>%
  ungroup()


pco2_product_profiles_monthly_ensemble <-
  full_join(
    pco2_product_profiles_monthly_ensemble %>%
      filter(
        biome %in% key_biomes,
        name %in% c("sdissic_stalk", "thetao")
      ),
    pco2_product_biome_monthly_detrended %>%
      filter(
        biome %in% key_biomes,
        name %in% "mld",
        year == 2023,
        product %in% gobm_product_list
      ) %>%
      group_by(month, biome) %>% 
      summarise(mld = mean(value)) %>% 
      ungroup()
  ) 



# plot_list <-
  pco2_product_profiles_monthly_ensemble %>%
  group_split(name, biome) %>% 
  head(1) %>% 
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid)) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        rescaler = ~ scales::rescale_mid(.x, mid = 0),
        super = ScaleDiscretised,
        name = labels_breaks(.x %>% distinct(name))$i_legend_title
      ) +
      scale_y_continuous(trans = trans_reverser("sqrt"), breaks = c(50, 100, 200, 400)) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(10, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(halign = 1, lineheight = 1.5)
      )
  )
[[1]]

Version Author Date
518e3d0 jens-daniel-mueller 2025-02-27
ggsave(plot = wrap_plots(plot_list,
                         ncol = 3),
       width = 18,
       height = 8,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm.jpg")
labels_breaks_hov <- function(i_name, i_biome) {
  
  if (i_name == "sdissic_stalk") {
    i_legend_title <- "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"
  }
  
  if (i_name == "thetao") {
    i_legend_title <- "Temp.<br>anom.<br>(°C)"
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-SPSS") {
    i_breaks <- c(-Inf, seq(-0.4, 0.4, 0.1), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-2.4, 2.4, 0.6), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "NA-STPS") {
    i_breaks <- c(-Inf, seq(-0.6, 0.6, 0.15), Inf)
  }
  
  if (i_name == "sdissic_stalk" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-32, 32, 8), Inf)
  }
  
  if (i_name == "thetao" & i_biome == "PEQU-E") {
    i_breaks <- c(-Inf, seq(-2, 2, 0.5), Inf)
  }
  
  i_breaks_labels <- i_breaks[!i_breaks == Inf]
  i_breaks_labels <- i_breaks_labels[!i_breaks_labels == -Inf]
  i_breaks_labels[seq_along(i_breaks_labels) %% 2 == 0] <- ""
  
  all_labels_breaks <- lst(i_legend_title, i_breaks, i_breaks_labels)
  
  return(all_labels_breaks)
  
}

labels_breaks_hov("sdissic_stalk", "NA-SPSS")
$i_legend_title
[1] "sDIC - sTA<br>anom.<br>(μmol kg<sup>-1</sup>)"

$i_breaks
 [1] -Inf -2.0 -1.5 -1.0 -0.5  0.0  0.5  1.0  1.5  2.0  Inf

$i_breaks_labels
[1] "-2" ""   "-1" ""   "0"  ""   "1"  ""   "2" 
plot_list_left <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  head(2) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      # scale_fill_gradientn(
      #   colours = warm_cool_gradient,
      #   rescaler = ~ scales::rescale_mid(.x, mid = 0),
      #   super = ScaleDiscretised,
      #   name = labels_breaks(.x %>% distinct(name))$i_legend_title
      # ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)",
           x = "Month") +
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_markdown(hjust = 1,
                                        lineheight = 1.5)
      )
  )

plot_list_right <-
  pco2_product_profiles_monthly_ensemble %>%
  arrange(month) %>%
  group_by(name, biome, depth) %>%
  mutate(resid = if_else(name == "sdissic_stalk", resid - first(resid), resid)) %>%
  ungroup() %>%
  group_split(biome, name) %>%
  tail(4) %>%
  map(
    ~ ggplot(data = .x) +
      geom_contour_filled(aes(month, depth, z = resid),
                          breaks = labels_breaks_hov(.x %>% distinct(name),
                                                     .x %>% distinct(biome))$i_breaks) +
      geom_line(aes(month, mld)) +
      scale_fill_gradientn(
        colours = warm_cool_gradient,
        super = ScaleDiscretised,
        name = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_legend_title,
        labels = labels_breaks_hov(.x %>% distinct(name),
                                   .x %>% distinct(biome))$i_breaks_labels
      ) +
      scale_y_continuous(
        trans = trans_reverser("sqrt"),
        breaks = c(20, 50, 100, 200, 400)
      ) +
      coord_cartesian(expand = 0, ylim = c(300, NA)) +
      labs(y = "Depth (m)", x = "Month")+
      facet_wrap(~ biome) +
      guides(
        fill = guide_colorsteps(
          barheight = unit(0.3, "cm"),
          barwidth = unit(5, "cm"),
          ticks = TRUE,
          ticks.colour = "grey20",
          frame.colour = "grey20",
          label.position = "top",
          direction = "horizontal"
        )
      ) +
      theme(
        legend.position = "top",
        # legend.margin = margin(0, 0, 0, 0),
        # legend.justification = "left",
        axis.title.y = element_blank(),
        axis.text.y = element_blank(),
        legend.title.align = 1,
        legend.box.spacing = unit(0.1, "cm"),
        legend.title = element_blank()
      )
  )

plot_list <- c(plot_list_left, plot_list_right)

ggsave(plot = wrap_plots(plot_list,
                         ncol = 3,
                         byrow = FALSE),
       width = 10,
       height = 6,
       dpi = 600,
       filename = "../output/profiles_hovmoeller_ensemble_mean_gobm_evolution.jpg")

sessionInfo()
R version 4.4.2 (2024-10-31)
Platform: x86_64-pc-linux-gnu
Running under: openSUSE Leap 15.6

Matrix products: default
BLAS/LAPACK: /usr/local/OpenBLAS-0.3.28/lib/libopenblas_haswellp-r0.3.28.so;  LAPACK version 3.12.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Europe/Zurich
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.4.0    cmocean_0.3-2       ggh4x_0.3.0        
 [4] scales_1.3.0        biscale_1.0.0       ggtext_0.1.2       
 [7] khroma_1.14.0       ggnewscale_0.5.0    terra_1.8-5        
[10] sf_1.0-19           rnaturalearth_1.0.1 geomtextpath_0.1.4 
[13] colorspace_2.1-1    marelac_2.1.11      shape_1.4.6.1      
[16] ggforce_0.4.2       metR_0.16.0         scico_1.5.0        
[19] patchwork_1.3.0     collapse_2.0.18     lubridate_1.9.3    
[22] forcats_1.0.0       stringr_1.5.1       dplyr_1.1.4        
[25] purrr_1.0.2         readr_2.1.5         tidyr_1.3.1        
[28] tibble_3.2.1        ggplot2_3.5.1       tidyverse_2.0.0    
[31] workflowr_1.7.1    

loaded via a namespace (and not attached):
 [1] DBI_1.2.3               rlang_1.1.4             magrittr_2.0.3         
 [4] git2r_0.35.0            e1071_1.7-16            compiler_4.4.2         
 [7] mgcv_1.9-1              getPass_0.2-4           systemfonts_1.1.0      
[10] callr_3.7.6             vctrs_0.6.5             pkgconfig_2.0.3        
[13] crayon_1.5.3            fastmap_1.2.0           backports_1.5.0        
[16] labeling_0.4.3          utf8_1.2.4              promises_1.3.2         
[19] rmarkdown_2.29          markdown_1.13           tzdb_0.4.0             
[22] ps_1.8.1                oce_1.8-3               ragg_1.3.3             
[25] gsw_1.2-0               bit_4.5.0               xfun_0.49              
[28] cachem_1.1.0            jsonlite_1.8.9          later_1.4.1            
[31] tweenr_2.0.3            parallel_4.4.2          R6_2.5.1               
[34] RColorBrewer_1.1-3      bslib_0.8.0             stringi_1.8.4          
[37] jquerylib_0.1.4         Rcpp_1.0.13-1           knitr_1.49             
[40] seacarb_3.3.3           Matrix_1.7-1            splines_4.4.2          
[43] httpuv_1.6.15           timechange_0.3.0        tidyselect_1.2.1       
[46] rstudioapi_0.17.1       yaml_2.3.10             codetools_0.2-20       
[49] processx_3.8.4          lattice_0.22-6          withr_3.0.2            
[52] evaluate_1.0.1          isoband_0.2.7           rnaturalearthdata_1.0.0
[55] units_0.8-5             proxy_0.4-27            polyclip_1.10-7        
[58] xml2_1.3.6              pillar_1.9.0            whisker_0.4.1          
[61] KernSmooth_2.23-24      checkmate_2.3.2         generics_0.1.3         
[64] vroom_1.6.5             rprojroot_2.0.4         hms_1.1.3              
[67] commonmark_1.9.2        munsell_0.5.1           class_7.3-22           
[70] glue_1.8.0              tools_4.4.2             data.table_1.16.2      
[73] fs_1.6.5                cowplot_1.1.3           grid_4.4.2             
[76] nlme_3.1-166            cli_3.6.3               SolveSAPHE_2.1.0       
[79] textshaping_0.4.0       fansi_1.0.6             viridisLite_0.4.2      
[82] svglite_2.1.3           gtable_0.3.6            sass_0.4.9             
[85] digest_0.6.37           classInt_0.4-10         farver_2.1.2           
[88] memoise_2.0.1           htmltools_0.5.8.1       lifecycle_1.0.4        
[91] httr_1.4.7              here_1.0.1              gridtext_0.1.5         
[94] bit64_4.5.2             MASS_7.3-61