Last updated: 2020-07-28
Checks: 7 0
Knit directory: jesslyn_ovca/analysis/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200713) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 3f6dc78. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .DS_Store
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/.DS_Store
Ignored: code/.DS_Store
Ignored: data/.DS_Store
Ignored: data/HTAPP/
Ignored: data/Izar_2020/
Ignored: data/gene_lists/.DS_Store
Ignored: data/gene_lists/extra/.DS_Store
Ignored: jesslyn_plots/
Ignored: mike_plots/
Ignored: old/.DS_Store
Ignored: renv/.DS_Store
Ignored: renv/library/
Ignored: renv/python/
Ignored: renv/staging/
Ignored: vignettes/
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/02.1_Izar2020_SS2_DEAnalysis.Rmd) and HTML (docs/02.1_Izar2020_SS2_DEAnalysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.
| File | Version | Author | Date | Message |
|---|---|---|---|---|
| Rmd | cdd10f9 | jgoh2 | 2020-07-28 | SS2 DE Analysis |
| html | cdd10f9 | jgoh2 | 2020-07-28 | SS2 DE Analysis |
| Rmd | 35c7947 | jgoh2 | 2020-07-27 | SS2 Analysis Part 1 and 2 |
| Rmd | e27cfd1 | jgoh2 | 2020-07-22 | Moved files out of the analysis folder + AddModulescore in read_Izar_2020.R |
| Rmd | 527247a | jgoh2 | 2020-07-20 | Reorganize SS2 code and add to the analysis folder |
This is the third part of our 3-part analysis of the Izar 2020 SS2 (Cohort 2) data.
# Load packages
source(here::here('packages.R'))
#Read in SS2 RDS object
SS2Malignant = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant_processed.RDS")
SS2Malignant.8 = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant8_processed.RDS")
SS2Malignant.9 = readRDS(file = "data/Izar_2020/jesslyn_SS2Malignant9_processed.RDS")
#Read in hallmarks of interest
hallmark_names = read_lines("data/gene_lists/hallmarks.txt")
hallmark.list <- vector(mode = "list", length = length(hallmark_names) + 2)
names(hallmark.list) <- c(hallmark_names, "GO.OXPHOS", "KEGG.OXPHOS")
for(hm in hallmark_names){
file <- read_lines(glue("data/gene_lists/hallmarks/{hm}_updated.txt"), skip = 1)
hallmark.list[[hm]] <- file
}
hallmark.list[["GO.OXPHOS"]] <- read_lines("data/gene_lists/extra/GO.OXPHOS.txt", skip = 1)
hallmark.list[["KEGG.OXPHOS"]] <- read_lines("data/gene_lists/extra/KEGG.OXPHOS.txt", skip = 2)
#center module and cell cycle scores and reassign to the metadata of each Seurat object
hm.names <- names(SS2Malignant@meta.data)[14:51]
for(i in hm.names){
SS2Malignant.hm.centered <- scale(SS2Malignant[[i]], center = TRUE, scale = FALSE)
SS2Malignant <- AddMetaData(SS2Malignant, SS2Malignant.hm.centered, col.name = glue("{i}.centered"))
SS2Malignant8.hm.centered <- scale(SS2Malignant.8[[i]], center = TRUE, scale = FALSE)
SS2Malignant.8 <- AddMetaData(SS2Malignant.8, SS2Malignant8.hm.centered, col.name = glue("{i}.centered"))
SS2Malignant9.hm.centered <- scale(SS2Malignant.9[[i]], center = TRUE, scale = FALSE)
SS2Malignant.9 <- AddMetaData(SS2Malignant.9, SS2Malignant9.hm.centered, col.name = glue("{i}.centered"))
}
hms.centered <- c("KEGG.OXPHOS36.centered", "HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered")
#UMAP
SS2.names <- c("SS2 Malignant Patient 8", "SS2 Malignant Patient 9")
SS2s <- c(SS2Malignant.8, SS2Malignant.9)
UMAP.plots <- vector("list", length(SS2s))
names(UMAP.plots) <- SS2.names
for (i in 1:length(SS2s)){
obj <- SS2s[[i]]
name <- SS2.names[[i]]
numCells = nrow(obj@meta.data)
umap <- UMAPPlot(obj, group.by = "sample") +
labs(title = glue("{name} UMAP by Sample"), subtitle = glue("Number of cells in {name}: {numCells}")) +
theme(plot.title = element_text(size = 10), plot.subtitle = element_text(size = 8))
p <- FeaturePlot(obj, features = hms.centered, combine = FALSE)
p[[1]] <- p[[1]] + labs(title = glue("{name} UMAP by KEGG Oxphos Scores")) +
theme(plot.title = element_text(size = 10))
p[[2]] <- p[[2]] + labs(title = glue("{name} UMAP by HALLMARK UPR Scores")) +
theme(plot.title = element_text(size = 10))
UMAP.plots[[name]] <- umap + p[[1]] + p[[2]]
}
UMAP.plots[["SS2 Malignant Patient 8"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
UMAP.plots[["SS2 Malignant Patient 9"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
#VlnPlot
SS2.names <- c("SS2 Malignant Patient 8", "SS2 Malignant Patient 9")
SS2s <- c(SS2Malignant.8, SS2Malignant.9)
Vln.plots <- vector("list", length(SS2s))
names(UMAP.plots) <- SS2.names
patient <- c("8", "9")
for (i in 1:length(SS2s)){
obj <- SS2s[[i]]
name <- SS2.names[[i]]
numCells <- nrow(obj@meta.data)
p <- VlnPlot(obj, features = hms.centered, group.by = "sample", pt.size = 0, combine = F)
p[[1]] <- p[[1]] + labs(title = glue("{name} OXPHOS scores across treatment"), x = name, subtitle = glue("Number of cells in {name}: {numCells}"), caption = "www.gsea-msigdb.org: KEGG_OXIDATIVE_PHOSPHORYLATION") +
theme(plot.title = element_text(size = 10), plot.caption = element_text(size = 10)) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].0")), "cells"), x = glue("{patient[[i]]}.0"), y = min(obj$KEGG.OXPHOS36.centered) -0.03) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].1")), "cells"), x = glue("{patient[[i]]}.1"), y = min(obj$KEGG.OXPHOS36.centered) - 0.03) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].2")), "cells"), x = glue("{patient[[i]]}.2"), y = min(obj$KEGG.OXPHOS36.centered) - 0.03)
p[[2]] <- p[[2]] + labs(title = glue("{name} UPR scores across treatment"), x = name, caption = "www.gsea-msigdb.org: HALLMARK_UNFOLDED_PROTEIN_RESPONSE") +
theme(plot.title = element_text(size = 10), plot.caption = element_text(size = 10)) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F)
p <- p[[1]] + p[[2]] + plot_layout(guides= 'collect')
Vln.plots[[name]] <- p
}
Vln.plots[["SS2 Malignant Patient 8"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
Vln.plots[["SS2 Malignant Patient 9"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
#Patient 8 ---------------------------------
SS2Malignant8.0 <- subset(SS2Malignant.8, subset = (sample == "8.0"))
SS2Malignant8.1 <- subset(SS2Malignant.8, subset = (sample == "8.1"))
SS2Malignant8.2 <- subset(SS2Malignant.8, subset = (sample == "8.2"))
SS2M8.oxphos.df <- data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant8.0$KEGG.OXPHOS36.centered, SS2Malignant8.1$KEGG.OXPHOS36.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant8.1$KEGG.OXPHOS36.centered, SS2Malignant8.2$KEGG.OXPHOS36.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant8.0$KEGG.OXPHOS36.centered, SS2Malignant8.2$KEGG.OXPHOS36.centered)$p.value
)
SS2M8.UPR.df <-
data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant8.0$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant8.1$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant8.1$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant8.2$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant8.0$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant8.2$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value
)
#Patient 9 ---------------------------------
SS2Malignant9.0 <- subset(SS2Malignant.9, subset = (sample == "9.0"))
SS2Malignant9.1 <- subset(SS2Malignant.9, subset = (sample == "9.1"))
SS2Malignant9.2 <- subset(SS2Malignant.9, subset = (sample == "9.2"))
SS2M9.oxphos.df <- data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant9.0$KEGG.OXPHOS36.centered, SS2Malignant9.1$KEGG.OXPHOS36.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant9.1$KEGG.OXPHOS36.centered, SS2Malignant9.2$KEGG.OXPHOS36.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant9.0$KEGG.OXPHOS36.centered, SS2Malignant9.2$KEGG.OXPHOS36.centered)$p.value
)
SS2M9.UPR.df <-
data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant9.0$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant9.1$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant9.1$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant9.2$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant9.0$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered, SS2Malignant9.2$HALLMARK_UNFOLDED_PROTEIN_RESPONSE33.centered)$p.value
)
#combine ------------------------------
SS2.oxphos.DF <- rbind(SS2M8.oxphos.df, SS2M9.oxphos.df)
rownames(SS2.oxphos.DF) <- c("OXPHOS.PATIENT8", "OXPHOS.PATIENT9")
SS2.UPR.DF <- rbind(SS2M8.UPR.df, SS2M9.UPR.df)
rownames(SS2.UPR.DF) <- c("UPR.PATIENT8", "UPR.PATIENT9")
SS2.all.DF <- rbind(SS2.oxphos.DF, SS2.UPR.DF)
DT::datatable(SS2.all.DF) %>%
DT::formatRound(names(SS2.all.DF), digits = 7) %>%
DT::formatStyle(names(SS2.all.DF), color = DT::styleInterval(0.05, c('red', 'black')))
We try to confirm our results again with our second appraoch: GSEA
have not finalized the statistical test and ranking method to use for GSEA
have not finalized the statistical test to use for volcano plot (need to match what we use for GSEA)
#Stacked Bar Plot --------------------------
bar.plots <- vector("list", length = 3)
names(bar.plots) <- SS2.names
for(i in 1:length(SS2s)){
obj = SS2s[[i]]
name = SS2.names[[i]]
numCells = nrow(obj@meta.data)
obj$Phase <- factor(obj$Phase, levels = c("G1", "S", "G2M"))
t = table(obj$Phase, obj$sample) %>%
as.data.frame() %>%
rename(Phase = Var1, Sample = Var2, numCells = Freq)
sum = c()
z = 1
while(z < nrow(t)){
n = t$numCells[z] + t$numCells[z+1] + t$numCells[z+2]
sum = c(sum, rep(n,3))
z = z + 3
}
t <- t %>% mutate(total = sum) %>% mutate(percent = (numCells/total)*100)
p = t %>%
ggplot(aes(x=Sample, y=percent, fill=Phase)) +
geom_bar(stat="identity") +
labs(title = glue("{name} % of Cells in Each Cell Cycle Phase/ Treatment"), subtitle = glue("Total # Cells in {name}: {numCells}"), caption = "Labeled by # cells in each phase per treatment") +
theme(plot.title = element_text(size = 10), plot.subtitle = element_text(size = 10), plot.caption = element_text(size = 8)) +
geom_text(aes(label = paste(numCells, "cells")), position = "stack", hjust = 0.5, vjust = 2, size = 3, color = "white")
bar.plots[[i]] <- p
}
bar.plots[["SS2 Malignant Patient 8"]] + bar.plots[["SS2 Malignant Patient 9"]] + plot_layout(guides= 'collect')

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
To investigate this further, we compare PCA by sample vs. PCA by cell cycle phase and scores
#PCA -------------------- (PCA is known to separate cell by cell cycle really well)
ccPCA.plots <- vector("list", length = 3)
names(ccPCA.plots) <- SS2.names
for(i in 1:length(SS2s)){
obj = SS2s[[i]]
name = SS2.names[[i]]
numCells = nrow(obj@meta.data)
obj$Phase <- factor(obj$Phase, levels = c("G1", "S", "G2M"))
bys <- PCAPlot(obj, group.by = "sample") +
labs(title = glue("{name} PCA by sample"), subtitle = glue("Number of cells in {name}: {numCells}")) +
theme(plot.title = element_text(hjust = 0.5))
bycc <- PCAPlot(obj, group.by = "Phase") +
labs(title = glue("{name} PCA by Cell Cycle Phase")) +
theme(plot.title = element_text(hjust = 0.5))
byscore <- FeaturePlot(obj, features = c("S.Score", "G2M.Score"), reduction = "pca",combine = FALSE)
byscore[[1]] <- byscore[[1]] + labs(title = glue("{name} PCA by centered S Score"))
byscore[[2]] <- byscore[[2]] + labs(title = glue("{name} PCA by centered G2M Score"))
ccPCA.plots[[i]] <- bys + bycc + byscore[[1]] + byscore[[2]]
}
ccPCA.plots[["SS2 Malignant Patient 8"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
ccPCA.plots[["SS2 Malignant Patient 9"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
#VlnPlot -------------------------
cc.Vln.plots <- vector("list", length = 3)
names(Vln.plots) <- SS2.names
for (i in 1:length(SS2s)){
obj <- SS2s[[i]]
name <- SS2.names[[i]]
numCells = nrow(obj@meta.data)
p <- VlnPlot(obj, features = c("S.Score.centered", "G2M.Score.centered"), group.by = "sample", pt.size = 0, combine = F)
p[[1]] <- p[[1]] + labs(title = glue("{name} S.Score across treatment"), x = name, subtitle = glue("Number of cells in {name}: {numCells}")) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].0")), "cells"), x = glue("{patient[[i]]}.0"), y = min(obj$S.Score.centered) -0.03) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].1")), "cells"), x = glue("{patient[[i]]}.1"), y = min(obj$S.Score.centered) - 0.03) +
geom_text(label = paste(sum(str_detect(obj$sample, "[:digit:].2")), "cells"), x = glue("{patient[[i]]}.2"), y = min(obj$S.Score.centered) - 0.03)
p[[2]] <- p[[2]] + labs(title = glue("{name} G2M.Score across treatment"), x = name) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F)
cc.Vln.plots[[name]] <- p[[1]] + p[[2]] + plot_layout(guides= 'collect')
}
cc.Vln.plots[["SS2 Malignant Patient 8"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
cc.Vln.plots[["SS2 Malignant Patient 9"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
#Patient 8 ---------------------------------
SS2M8.S.df <- data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant8.0$S.Score.centered, SS2Malignant8.1$S.Score.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant8.1$S.Score.centered, SS2Malignant8.2$S.Score.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant8.0$S.Score.centered, SS2Malignant8.2$S.Score.centered)$p.value
)
SS2M8.G2M.df <-
data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant8.0$G2M.Score.centered, SS2Malignant8.1$G2M.Score.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant8.1$G2M.Score.centered, SS2Malignant8.2$G2M.Score.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant8.0$G2M.Score.centered, SS2Malignant8.2$G2M.Score.centered)$p.value
)
#Patient 9 ---------------------------------
SS2M9.S.df <- data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant9.0$S.Score.centered, SS2Malignant9.1$S.Score.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant9.1$S.Score.centered, SS2Malignant9.2$S.Score.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant9.0$S.Score.centered, SS2Malignant9.2$S.Score.centered)$p.value
)
SS2M9.G2M.df <-
data.frame(
"p.0vsp.1" = wilcox.test(SS2Malignant9.0$G2M.Score.centered, SS2Malignant9.1$G2M.Score.centered)$p.value,
"p.1vsp.2" = wilcox.test(SS2Malignant9.1$G2M.Score.centered, SS2Malignant9.2$G2M.Score.centered)$p.value,
"p.0vsp.2" = wilcox.test(SS2Malignant9.0$G2M.Score.centered, SS2Malignant9.2$G2M.Score.centered)$p.value
)
#combine ------------------------------
SS2.S.DF <- rbind(SS2M8.S.df, SS2M9.S.df)
rownames(SS2.S.DF) <- c("S.PATIENT8", "S.PATIENT9")
SS2.G2M.DF <- rbind(SS2M8.G2M.df, SS2M9.G2M.df)
rownames(SS2.G2M.DF) <- c("G2M.PATIENT8", "G2M.PATIENT9")
SS2.cc.DF <- rbind(SS2.S.DF, SS2.G2M.DF)
DT::datatable(SS2.cc.DF) %>%
DT::formatRound(names(SS2.cc.DF), digits = 7) %>%
DT::formatStyle(names(SS2.cc.DF), color = DT::styleInterval(0.05, c('red', 'black')))
Our results from above collectively suggest that OXPHOS and UPR expression weakly correlate with treatment condition, while cell cycle phase does not significantly correlate with treatment. However, considering the idea that cell cycle might influence the expression of signatures, we are now interested in examining whether there is a correlation between the expression of OXPHOS and UPR and cell cycle phase.
cc.exp.plot <- vector("list", length = 3)
names(cc.exp.plot) <- SS2.names
for(i in 1:length(SS2s)){
obj = SS2s[[i]]
name = SS2.names[[i]]
numCells = nrow(obj@meta.data)
obj$Phase <- factor(obj$Phase, levels = c("G1", "S", "G2M"))
p1 <- VlnPlot(obj, features = hms.centered, group.by = "Phase", pt.size = 0, combine = FALSE)
p1[[1]] <- p1[[1]] + labs(title = glue("{name} OXPHOS score by Cell Cycle Phase"), subtitle = glue("Number of cells in {name}: {numCells}")) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F)+
geom_text(label = paste(sum(obj$Phase == "G1"), "cells"), x = "G1", y = min(obj$KEGG.OXPHOS36.centered) -0.03) +
geom_text(label = paste(sum(obj$Phase == "S"), "cells"), x = "S", y = min(obj$KEGG.OXPHOS36.centered) - 0.03) +
geom_text(label = paste(sum(obj$Phase == "G2M"), "cells"), x = "G2M", y = min(obj$KEGG.OXPHOS36.centered) - 0.03) +
theme(plot.title = element_text(size = 10))
p1[[2]] <- p1[[2]] + labs(title = glue("{name} UPR score by Cell Cycle Phase")) +
theme(plot.title = element_text(size = 10)) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F)
p2 <- VlnPlot(obj, features = hms.centered, group.by = "sample", split.by = "Phase", pt.size = 0, combine = FALSE)
p2[[1]] <- p2[[1]] + labs(title = glue("{name} OXPHOS score by Cell Cycle Phase / Treatment")) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F) +
theme(plot.title = element_text(size = 10))
p2[[2]] <- p2[[2]] + labs(title = glue("{name} UPR score by Cell Cycle Phase / Treatment")) +
geom_boxplot(width = 0.15, position = position_dodge(0.9), alpha = 0.3, show.legend = F) +
theme(plot.title = element_text(size = 10))
cc.exp.plot[[i]] <- p1[[1]] + p1[[2]] + p2[[1]]+ p2[[2]] + plot_layout(guides= 'collect')
}
cc.exp.plot[["SS2 Malignant Patient 8"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
cc.exp.plot[["SS2 Malignant Patient 9"]]

| Version | Author | Date |
|---|---|---|
| cdd10f9 | jgoh2 | 2020-07-28 |
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Mojave 10.14.6
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices datasets utils methods base
other attached packages:
[1] ggpubr_0.4.0 GGally_2.0.0 gt_0.2.1 reshape2_1.4.4 tidyselect_1.1.0
[6] presto_1.0.0 data.table_1.12.8 Rcpp_1.0.5 glue_1.4.1 patchwork_1.0.1
[11] EnhancedVolcano_1.6.0 ggrepel_0.8.2 here_0.1 readxl_1.3.1 forcats_0.5.0
[16] stringr_1.4.0 dplyr_1.0.0 purrr_0.3.4 readr_1.3.1 tidyr_1.1.0
[21] tibble_3.0.3 ggplot2_3.3.2 tidyverse_1.3.0 cowplot_1.0.0 Seurat_3.1.5
[26] BiocManager_1.30.10 renv_0.11.0-4
loaded via a namespace (and not attached):
[1] Rtsne_0.15 colorspace_1.4-1 ggsignif_0.6.0 rio_0.5.16 ellipsis_0.3.1 ggridges_0.5.2
[7] rprojroot_1.3-2 fs_1.4.2 rstudioapi_0.11 farver_2.0.3 leiden_0.3.3 listenv_0.8.0
[13] DT_0.14 fansi_0.4.1 lubridate_1.7.9 xml2_1.3.2 codetools_0.2-16 splines_4.0.2
[19] knitr_1.29 jsonlite_1.7.0 workflowr_1.6.2 broom_0.7.0 ica_1.0-2 cluster_2.1.0
[25] dbplyr_1.4.4 png_0.1-7 uwot_0.1.8 sctransform_0.2.1 compiler_4.0.2 httr_1.4.1
[31] backports_1.1.8 assertthat_0.2.1 Matrix_1.2-18 lazyeval_0.2.2 cli_2.0.2 later_1.1.0.1
[37] htmltools_0.5.0 tools_4.0.2 rsvd_1.0.3 igraph_1.2.5 gtable_0.3.0 RANN_2.6.1
[43] carData_3.0-4 cellranger_1.1.0 vctrs_0.3.2 ape_5.4 nlme_3.1-148 crosstalk_1.1.0.1
[49] lmtest_0.9-37 xfun_0.15 globals_0.12.5 openxlsx_4.1.5 rvest_0.3.5 lifecycle_0.2.0
[55] irlba_2.3.3 rstatix_0.6.0 future_1.18.0 MASS_7.3-51.6 zoo_1.8-8 scales_1.1.1
[61] hms_0.5.3 promises_1.1.1 parallel_4.0.2 RColorBrewer_1.1-2 curl_4.3 yaml_2.2.1
[67] reticulate_1.16 pbapply_1.4-2 gridExtra_2.3 reshape_0.8.8 stringi_1.4.6 zip_2.0.4
[73] rlang_0.4.7 pkgconfig_2.0.3 evaluate_0.14 lattice_0.20-41 ROCR_1.0-11 labeling_0.3
[79] htmlwidgets_1.5.1 RcppAnnoy_0.0.16 plyr_1.8.6 magrittr_1.5 R6_2.4.1 generics_0.0.2
[85] DBI_1.1.0 foreign_0.8-80 pillar_1.4.6 haven_2.3.1 whisker_0.4 withr_2.2.0
[91] fitdistrplus_1.1-1 abind_1.4-5 survival_3.2-3 future.apply_1.6.0 tsne_0.1-3 car_3.0-8
[97] modelr_0.1.8 crayon_1.3.4 KernSmooth_2.23-17 plotly_4.9.2.1 rmarkdown_2.3 grid_4.0.2
[103] blob_1.2.1 git2r_0.27.1 reprex_0.3.0 digest_0.6.25 httpuv_1.5.4 munsell_0.5.0
[109] viridisLite_0.3.0