Last updated: 2022-04-12

Checks: 7 0

Knit directory: logistic-susie-gsea/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20220105) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5e3a4e3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    library/
    Ignored:    renv/library/
    Ignored:    renv/staging/
    Ignored:    staging/

Untracked files:
    Untracked:  .ipynb_checkpoints/
    Untracked:  Untitled.ipynb
    Untracked:  _targets.R
    Untracked:  _targets.html
    Untracked:  _targets.md
    Untracked:  _targets/
    Untracked:  _targets_r/
    Untracked:  analysis/fetal_reference_cellid_gsea.Rmd
    Untracked:  analysis/fixed_intercept.Rmd
    Untracked:  analysis/iDEA_examples.Rmd
    Untracked:  analysis/latent_gene_list.Rmd
    Untracked:  analysis/libra_setup.Rmd
    Untracked:  analysis/linear_method_failure_modes.Rmd
    Untracked:  analysis/linear_regression_failure_regime.Rmd
    Untracked:  analysis/logistic_susie_veb_boost_vs_vb.Rmd
    Untracked:  analysis/logistic_susie_vis.Rmd
    Untracked:  analysis/references.bib
    Untracked:  analysis/simulations.Rmd
    Untracked:  analysis/test.Rmd
    Untracked:  baboon_diet_cache/
    Untracked:  build_site.R
    Untracked:  cache/
    Untracked:  code/enrichment_pipeline.R
    Untracked:  code/html_tables.R
    Untracked:  code/latent_logistic_susie.R
    Untracked:  code/logistic_susie_data_driver.R
    Untracked:  code/marginal_sumstat_gsea_collapsed.R
    Untracked:  code/sumstat_gsea.py
    Untracked:  code/susie_gsea_queries.R
    Untracked:  data/adipose_2yr_topsnp.txt
    Untracked:  data/de-droplet/
    Untracked:  data/deng/
    Untracked:  data/fetal_reference_cellid_gene_sets.RData
    Untracked:  data/human_chimp_eb/
    Untracked:  data/pbmc-purified/
    Untracked:  data/wenhe_baboon_diet/
    Untracked:  deng_example_cache/
    Untracked:  docs.zip
    Untracked:  human_chimp_eb_de_example_cache/
    Untracked:  index.md
    Untracked:  latent_logistic_susie_cache/
    Untracked:  simulation_targets/
    Untracked:  single_cell_pbmc_cache/
    Untracked:  single_cell_pbmc_l1_cache/
    Untracked:  summary_stat_gsea_exploration_cache/
    Untracked:  summary_stat_gsea_sim_cache/

Unstaged changes:
    Modified:   _simulation_targets.R
    Modified:   _targets.Rmd
    Modified:   analysis/alpha_for_single_cell.Rmd
    Modified:   analysis/deng_example.Rmd
    Modified:   analysis/gseabenchmark_tcga.Rmd
    Modified:   analysis/single_cell_pbmc.Rmd
    Modified:   analysis/single_cell_pbmc_l1.Rmd
    Deleted:    analysis/summary_stat_gsea_univariate_simulations.Rmd
    Modified:   code/fit_baselines.R
    Modified:   code/fit_logistic_susie.R
    Modified:   code/fit_mr_ash.R
    Modified:   code/fit_susie.R
    Modified:   code/load_gene_sets.R
    Modified:   code/marginal_sumstat_gsea.R
    Modified:   code/simulate_gene_lists.R
    Modified:   target_components/factories.R
    Modified:   target_components/methods.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/human_chimp_eb_de_example.Rmd) and HTML (docs/human_chimp_eb_de_example.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5e3a4e3 karltayeb 2022-04-12 wflow_publish(c(“analysis/index.Rmd”, “analysis/baboon_diet.Rmd”,
Rmd 8d47637 karltayeb 2022-04-11 run human chimp EB with new standardized input/output

Introduction

library(tidyverse)
library(htmltools)
source('code/utils.R')
source('code/logistic_susie_vb.R')
source('code/logistic_susie_veb_boost.R')
source('code/load_gene_sets.R')
source('code/enrichment_pipeline.R')

Setup

Format

de <- readRDS('data/human_chimp_eb/big.df.rds')
genesets <- load_gene_sets()

hs <- org.Hs.eg.db::org.Hs.eg.db
gene_symbols <- unique(de$gene)
symbol2entrez <- AnnotationDbi::select(
  hs, keys=gene_symbols,
  columns=c('ENTREZID', 'SYMBOL'),
  keytype = 'SYMBOL')

add_names = function(l, n){
  names(l) <- n
  return(l)
}

data <- de %>%
  rename(SYMBOL=gene) %>%
  left_join(symbol2entrez, by='SYMBOL') %>%
  relocate(ENTREZID, .after=SYMBOL) %>%
  mutate(  # set default columns
    beta = dream.logFC,
    se = dream.SE,
    threshold.on = dream.p.val
  ) %>%
  group_by(celltype) %>%
  group_map(~ .x, .keep = T) %>%
  add_names(map_chr(., ~pluck(.x, 'celltype')[1]))

Fit

# fit logistic susie
do_logistic_susie_cached = function(data,
                                    db,
                                    thresh,
                                    prefix=''){
  res <- xfun::cache_rds({
    purrr::map_dfr(
      names(data),
      ~do_logistic_susie(.x, db, thresh, genesets, data))
  },
  dir = params$cache_dir,
  file=paste0(prefix, 'logistic_susie_', db, '_', thresh),
  hash = list(data, db, thresh, prefix))
}

params.genesets <- eval(parse(text=params$genesets))
params.thresh <- eval(parse(text=params$thresh))
fits <- map_dfr(params.genesets, ~do_logistic_susie_cached(data, .x, params.thresh))

# fit ora
do_ora_cached = function(data, db, thresh, prefix='', ...){
  res <- xfun::cache_rds({
    purrr::map_dfr(names(data), ~do_ora(.x, db, thresh, genesets, data))
  }, dir = params$cache_dir, file=paste0(prefix, 'ora_', db, '_', thresh), ...)
}
ora <- map_dfr(params.genesets, ~do_ora_cached(data, .x, params.thresh))

Overview

Threshold sensitivity

mean.gene.prop = function(l){
  purrr::map_dbl(3:10, ~get_y(l, 10^(-.x)) %>% mean())
}

thresh <- map_dbl(1:10, ~10**-.x)

.prop.ones = function(experiment){
  map_dbl(thresh, ~ prep_binary_data(
  genesets[['gobp']], data[[experiment]], thresh=.x)$y %>% mean())
}

prop.ones <- xfun::cache_rds({map_dfc(names(data), ~.prop.ones(.x))},
                             dir=params$cache_dir,
                             file='threshold_sensitivity')
colnames(prop.ones) <- names(data)
prop.ones <- prop.ones %>% mutate(thresh = thresh)

prop.ones %>%
  pivot_longer(one_of(names(data))) %>%
  group_by(name) %>%
  mutate(value = value) %>%
  ggplot(aes(x=factor(-log10(thresh)), y=value)) +
  geom_boxplot() +
  labs(
    y = 'Proportions of genes in gene list',
    title = 'Sensitivity to thresholding'
  )

Big volcano plot

Colors represent enrichment/depletion detected by Fishers exact test (Benjamini Hochberg corrected p-values < \(0.05\)). Gene sets that belong to a SuSiE credible set are circled.

get_ora_enrichments = function(tbl){
   tbl %>% mutate(
    padj = p.adjust(pFishersExact),
    result = case_when(
      padj < 0.05 & oddsRatio < 1 ~ 'depleted',
      padj < 0.05 & oddsRatio > 1 ~ 'enriched',
      TRUE ~ 'not significant'
    )
  )
}

# plot all enrichments, highlight gene sets in credible set
csdat <- res2 %>% 
  filter(in_cs, active_cs)

res %>% 
  group_by(experiment, db) %>%
  get_ora_enrichments %>%
  ggplot(aes(x=log10(oddsRatio), y=-log10(pFishersExact), color=result)) +
  geom_point() +
  geom_point(
    csdat, 
    mapping=aes(x=log10(oddsRatio), y=-log10(pFishersExact)),
    color='black', pch=21, size=5) +
  scale_color_manual(values = c('depleted' = 'coral',
                                'enriched' = 'dodgerblue',
                                'not significant' = 'grey')) +
  facet_wrap(vars(db))

Enrichment results

Glossary

  • alpha is the posterior probability of SuSiE including this gene set in this component which is different from PIP (probability of SuSiE including this gene set in ANY component)
  • beta posterior mean/standard error of posterior mean for effect size. Standard errors are likely too small.
  • oddsRatio, pHypergeometric, pFishersExact construct a contingency table (gene list membersip) x (gene set membership), estimate the oddsRatio gives the odds of being in the gene list conditional on being in the gene set / odds of being in the gene list conditional on NOT being in the gene set. pHypergeometric and pFishersExact are pvalues from 1 and 2 sided test respectively.
experiments <- unique(res$experiment)

do.experiment.volcano = function(this_experiment){
  res %>% 
    filter(experiment == this_experiment) %>%
    group_by(db) %>%
    get_ora_enrichments %>%
    ggplot(aes(x=log10(oddsRatio), y=-log10(pFishersExact), color=result)) +
    geom_point() +
    geom_point(
      csdat %>% filter(experiment == this_experiment), 
      mapping=aes(x=log10(oddsRatio), y=-log10(pFishersExact)),
      color='black', pch=21, size=5) +
    scale_color_manual(values = c('depleted' = 'coral',
                                  'enriched' = 'dodgerblue',
                                  'not significant' = 'grey')) +
    facet_wrap(vars(db)) +
    labs(title = this_experiment)
}

for (i in 1:length(experiments)){
  this_experiment <- experiments[i]
  cat("\n") 
  cat("###", this_experiment, "\n") # Create second level headings with the names.
  do.experiment.volcano(this_experiment) %>% print()
  cat("\n\n") 

  for(db in names(html_tables[[this_experiment]])){
    cat("####", db, "\n") # Create second level headings with the names.
    to_print <- html_tables[[this_experiment]][[db]] %>% distinct()
    to_print %>% report_susie_credible_sets() %>% htmltools::HTML() %>% print()
    cat("\n")
  }}

Acinar cells

Adrenocortical cells

Amacrine cells

Antigen presenting cells

Astrocytes

Bipolar cells

Bronchiolar and alveolar epithelial cells

Cardiomyocytes

Chromaffin cells

Ciliated epithelial cells

CLC_IL5RA positive cells

Corneal and conjunctival epithelial cells

Ductal cells

Early Ectoderm 1

gobp_nr

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
GO:0006260 DNA replication 1 1.58 0.134 7.85e-18 7.85e-18 53 252 5.23

kegg

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
hsa03030 DNA replication 1 2.93 0.333 5.67e-15 5.67e-15 19 36 20.7

Early Ectoderm 2

Early Ectoderm 3

Early Ectoderm 4

Early Endoderm 1

Early Mesoderm 1

ELF3_AGBL2 positive cells

ENS glia

ENS neurons

Epicardial fat cells

Erythroblasts

Extravillous trophoblasts

gobp_nr

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
GO:0007059 chromosome segregation 1 1.78 0.186 3.07e-10 3.07e-10 23 140 6.41

Ganglion cells

Goblet cells

Granule neurons

gobp_nr

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
GO:0070972 protein localization to endoplasmic reticulum 1 2.17 0.205 2.91e-11 2.91e-11 19 115 9.41

Hematopoietic stem cells

Hepatoblasts

Horizontal cells

IGFBP1_DKK1 positive cells

Inhibitory interneurons

Islet endocrine cells

Lens fibre cells

Limbic system neurons

Megakaryocytes

Mesangial cells

Mesothelial cells

Metanephric cells

Microglia

MUC13_DMBT1 positive cells

gobp_nr

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
GO:0045165 cell fate commitment 1 1.74 0.228 1.36e-08 1.36e-08 19 87 6.26

Neuroendocrine cells

Oligodendrocytes

PAEP_MECOM positive cells

Parietal and chief cells

PDE11A_FAM19A2 positive cells

PDE1C_ACSM3 positive cells

Photoreceptor cells

Retinal pigment cells

Retinal progenitors and Muller glia

SATB2_LRRC7 positive cells

Schwann cells

Skeletal muscle cells

SKOR2_NPSR1 positive cells

SLC24A4_PEX5L positive cells

SLC26A4_PAEP positive cells

Smooth muscle cells

Squamous epithelial cells

Stellate cells

Stromal cells

Sympathoblasts

Syncytiotrophoblasts and villous cytotrophoblasts

gobp_nr

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
GO:0007059 chromosome segregation 1 1.43 0.134 1.32e-17 1.32e-17 61 243 4.81

kegg

geneSet description alpha beta beta.se pHypergeometric pFishersExact overlap geneSetSize oddsRatio
L1
hsa03030 DNA replication 1 2.21 0.346 1.13e-08 1.13e-08 15 33 10.5

Thymic epithelial cells

Thymocytes

Trophoblast giant cells

Undifferentiated 1

Undifferentiated 2

Unipolar brush cells

Ureteric bud cells

Vascular endothelial cells

Visceral neurons


sessionInfo()
#> R version 4.1.2 (2021-11-01)
#> Platform: x86_64-apple-darwin17.0 (64-bit)
#> Running under: macOS Big Sur 10.16
#> 
#> Matrix products: default
#> BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
#> LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib
#> 
#> locale:
#> [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
#> 
#> attached base packages:
#> [1] stats     graphics  grDevices datasets  utils     methods   base     
#> 
#> other attached packages:
#>  [1] kableExtra_1.3.4    BiocGenerics_0.40.0 htmltools_0.5.2    
#>  [4] forcats_0.5.1       stringr_1.4.0       dplyr_1.0.8        
#>  [7] purrr_0.3.4         readr_2.1.2         tidyr_1.2.0        
#> [10] tibble_3.1.6        ggplot2_3.3.5       tidyverse_1.3.1    
#> 
#> loaded via a namespace (and not attached):
#>   [1] colorspace_2.0-3       ellipsis_0.3.2         rprojroot_2.0.2       
#>   [4] XVector_0.34.0         fs_1.5.2               rstudioapi_0.13       
#>   [7] farver_2.1.0           bit64_4.0.5            AnnotationDbi_1.56.2  
#>  [10] fansi_1.0.2            lubridate_1.8.0        xml2_1.3.3            
#>  [13] codetools_0.2-18       doParallel_1.0.17      cachem_1.0.6          
#>  [16] knitr_1.38             jsonlite_1.8.0         workflowr_1.7.0       
#>  [19] apcluster_1.4.9        WebGestaltR_0.4.4      broom_0.7.12          
#>  [22] dbplyr_2.1.1           png_0.1-7              BiocManager_1.30.16   
#>  [25] compiler_4.1.2         httr_1.4.2             backports_1.4.1       
#>  [28] assertthat_0.2.1       Matrix_1.4-0           fastmap_1.1.0         
#>  [31] cli_3.2.0              later_1.3.0            tools_4.1.2           
#>  [34] igraph_1.2.11          gtable_0.3.0           glue_1.6.2            
#>  [37] GenomeInfoDbData_1.2.7 doRNG_1.8.2            Rcpp_1.0.8.2          
#>  [40] Biobase_2.54.0         cellranger_1.1.0       jquerylib_0.1.4       
#>  [43] vctrs_0.3.8            Biostrings_2.62.0      svglite_2.1.0         
#>  [46] iterators_1.0.14       xfun_0.30              rvest_1.0.2           
#>  [49] lifecycle_1.0.1        renv_0.15.4            rngtools_1.5.2        
#>  [52] org.Hs.eg.db_3.14.0    zlibbioc_1.40.0        scales_1.1.1          
#>  [55] vroom_1.5.7            hms_1.1.1              promises_1.2.0.1      
#>  [58] parallel_4.1.2         yaml_2.3.5             curl_4.3.2            
#>  [61] memoise_2.0.1          sass_0.4.0             stringi_1.7.6         
#>  [64] RSQLite_2.2.10         highr_0.9              S4Vectors_0.32.3      
#>  [67] foreach_1.5.2          GenomeInfoDb_1.30.1    rlang_1.0.2           
#>  [70] pkgconfig_2.0.3        systemfonts_1.0.4      bitops_1.0-7          
#>  [73] evaluate_0.15          lattice_0.20-45        labeling_0.4.2        
#>  [76] bit_4.0.4              tidyselect_1.1.2       magrittr_2.0.2        
#>  [79] R6_2.5.1               IRanges_2.28.0         generics_0.1.2        
#>  [82] DBI_1.1.2              pillar_1.7.0           haven_2.4.3           
#>  [85] whisker_0.4            withr_2.5.0            KEGGREST_1.34.0       
#>  [88] RCurl_1.98-1.6         modelr_0.1.8           crayon_1.5.0          
#>  [91] utf8_1.2.2             tzdb_0.2.0             rmarkdown_2.13        
#>  [94] grid_4.1.2             readxl_1.3.1           blob_1.2.2            
#>  [97] git2r_0.29.0           webshot_0.5.2          reprex_2.0.1          
#> [100] digest_0.6.29          httpuv_1.6.5           stats4_4.1.2          
#> [103] munsell_0.5.0          viridisLite_0.4.0      bslib_0.3.1