Last updated: 2020-06-12

Checks: 7 0

Knit directory: neural_scRNAseq/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200522) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a8f31cd. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    ._.DS_Store
    Ignored:    .__workflowr.yml
    Ignored:    ._neural_scRNAseq.Rproj
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    analysis/._.DS_Store
    Ignored:    analysis/._01-preprocessing.Rmd
    Ignored:    analysis/._01-preprocessing.html
    Ignored:    analysis/._02.1-SampleQC.Rmd
    Ignored:    analysis/._04-clustering.Rmd
    Ignored:    analysis/._04-clustering.knit.md
    Ignored:    analysis/._05-annotation.Rmd
    Ignored:    analysis/.__site.yml
    Ignored:    analysis/01-preprocessing_cache/
    Ignored:    analysis/02-1-SampleQC_cache/
    Ignored:    analysis/02-quality_control_cache/
    Ignored:    analysis/02.1-SampleQC_cache/
    Ignored:    analysis/03-filtering_cache/
    Ignored:    analysis/04-clustering_cache/
    Ignored:    analysis/figure/
    Ignored:    analysis/sample5_QC_cache/
    Ignored:    data/.DS_Store
    Ignored:    data/._.DS_Store
    Ignored:    data/._.smbdeleteAAA17ed8b4b
    Ignored:    data/._metadata.csv
    Ignored:    data/data_sushi/
    Ignored:    data/filtered_feature_matrices/
    Ignored:    output/.DS_Store
    Ignored:    output/._.DS_Store
    Ignored:    output/figures/
    Ignored:    output/sce_01_preprocessing.rds
    Ignored:    output/sce_02_quality_control.rds
    Ignored:    output/sce_03_filtering.rds
    Ignored:    output/sce_preprocessing.rds
    Ignored:    output/so_04_clustering.rds

Untracked files:
    Untracked:  Rplots.pdf
    Untracked:  analysis/sample5_QC.Rmd
    Untracked:  scripts/

Unstaged changes:
    Modified:   analysis/_site.yml

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/05-annotation.Rmd) and HTML (docs/05-annotation.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a8f31cd khembach 2020-06-12 analyze known marker genes
html f116d0f khembach 2020-06-10 Build site.
Rmd b6767a6 khembach 2020-06-10 wflow_publish(“analysis/05-annotation.Rmd”, verbose = TRUE)
html 419ac73 khembach 2020-06-09 Build site.
html a4d0e04 khembach 2020-05-29 Build site.
Rmd 97d5a52 khembach 2020-05-29 cluster analysis

Load packages

library(ComplexHeatmap)
library(cowplot)
library(ggplot2)
library(dplyr)
library(muscat)
library(purrr)
library(RColorBrewer)
library(viridis)
library(scran)
library(Seurat)
library(SingleCellExperiment)
library(stringr)
library(RCurl)

Load data & convert to SCE

so <- readRDS(file.path("output", "so_04_clustering.rds"))
sce <- as.SingleCellExperiment(so, assay = "RNA")
colData(sce) <- as.data.frame(colData(sce)) %>% 
    mutate_if(is.character, as.factor) %>% 
    DataFrame(row.names = colnames(sce))

Nb. of clusters by resolution

cluster_cols <- grep("res.[0-9]", colnames(colData(sce)), value = TRUE)
sapply(colData(sce)[cluster_cols], nlevels)
integrated_snn_res.0.1 integrated_snn_res.0.2 integrated_snn_res.0.4 
                     8                     12                     17 
integrated_snn_res.0.8   integrated_snn_res.1 integrated_snn_res.1.2 
                    24                     29                     31 
  integrated_snn_res.2 
                    39 

Cluster-sample counts

# set cluster IDs to resolution 0.4 clustering
so <- SetIdent(so, value = "integrated_snn_res.0.4")
so@meta.data$cluster_id <- Idents(so)
sce$cluster_id <- Idents(so)
(n_cells <- table(sce$cluster_id, sce$sample_id))
    
     1NSC 2NSC 3NC52 4NC52 5NC96 6NC96
  0  4850 5041   186    98   308    82
  1     0    0  1552  1279   492   627
  2  1037 1011   337   288   563   391
  3    12   10   572   383  1806   372
  4  1351 1221    69    56    76    16
  5     0    0  1017   847   380   415
  6     2    9   628   620   528   774
  7   253  236   577   606   376   369
  8     0    0  1007   867   250   285
  9     0    0   924   764   327   379
  10  688  716   130   121   188   119
  11    3    3   582   524   211   248
  12    0    0   365   281   186   235
  13    0    0   339   247   141   174
  14    1    1   205   260   210   194
  15   51   70   148   153    64    89
  16   83   90    49    44    83    24

Relative cluster-abundances

fqs <- prop.table(n_cells, margin = 2)
mat <- as.matrix(unclass(fqs))
Heatmap(mat,
    col = rev(brewer.pal(11, "RdGy")[-6]),
    name = "Frequency",
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    column_title = "sample_id",
    column_title_side = "bottom",
    rect_gp = gpar(col = "white"),
    cell_fun = function(i, j, x, y, width, height, fill)
        grid.text(round(mat[j, i] * 100, 2), x = x, y = y, 
            gp = gpar(col = "white", fontsize = 8)))

Version Author Date
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

Cell cycle

We assign each cell a cell cycle scores and visualize them in the DR plots. We use known G2/M and S phase markers that come with the Seurat package. The markers are anticorrelated and cells that to not express the markers should be in G1 phase.

We compute cell cycle phase using the 2000 anchor genes of the integrated data.

# A list of cell cycle markers, from Tirosh et al, 2015
cc_file <- getURL("https://raw.githubusercontent.com/hbc/tinyatlas/master/cell_cycle/Homo_sapiens.csv") 
cc_genes <- read.csv(text = cc_file)
# match the marker genes to the features
m <- match(cc_genes$geneID[cc_genes$phase == "S"], 
           str_split(rownames(GetAssayData(so)),
                     pattern = "\\.", simplify = TRUE)[,1])
s_genes <- rownames(GetAssayData(so))[m]
(s_genes <- s_genes[!is.na(s_genes)])
 [1] "ENSG00000051180.RAD51"    "ENSG00000092853.CLSPN"   
 [3] "ENSG00000093009.CDC45"    "ENSG00000094804.CDC6"    
 [5] "ENSG00000111247.RAD51AP1" "ENSG00000112312.GMNN"    
 [7] "ENSG00000119969.HELLS"    "ENSG00000131153.GINS2"   
 [9] "ENSG00000132646.PCNA"     "ENSG00000143476.DTL"     
[11] "ENSG00000151725.CENPU"    "ENSG00000156802.ATAD2"   
[13] "ENSG00000162607.USP1"     "ENSG00000171848.RRM2"    
[15] "ENSG00000176890.TYMS"    
m <- match(cc_genes$geneID[cc_genes$phase == "G2/M"], 
           str_split(rownames(GetAssayData(so)), 
                     pattern = "\\.", simplify = TRUE)[,1])
g2m_genes <- rownames(GetAssayData(so))[m]
(g2m_genes <- g2m_genes[!is.na(g2m_genes)])
 [1] "ENSG00000010292.NCAPD2" "ENSG00000011426.ANLN"   "ENSG00000013810.TACC3" 
 [4] "ENSG00000072571.HMMR"   "ENSG00000075218.GTSE1"  "ENSG00000080986.NDC80" 
 [7] "ENSG00000087586.AURKA"  "ENSG00000088325.TPX2"   "ENSG00000089685.BIRC5" 
[10] "ENSG00000111665.CDCA3"  "ENSG00000112742.TTK"    "ENSG00000113810.SMC4"  
[13] "ENSG00000114346.ECT2"   "ENSG00000115163.CENPA"  "ENSG00000117399.CDC20" 
[16] "ENSG00000117650.NEK2"   "ENSG00000117724.CENPF"  "ENSG00000123485.HJURP" 
[19] "ENSG00000123975.CKS2"   "ENSG00000126787.DLGAP5" "ENSG00000129195.PIMREG"
[22] "ENSG00000131747.TOP2A"  "ENSG00000134222.PSRC1"  "ENSG00000134690.CDCA8" 
[25] "ENSG00000136108.CKAP2"  "ENSG00000137804.NUSAP1" "ENSG00000137807.KIF23" 
[28] "ENSG00000138160.KIF11"  "ENSG00000138182.KIF20B" "ENSG00000138778.CENPE" 
[31] "ENSG00000139354.GAS2L3" "ENSG00000142945.KIF2C"  "ENSG00000143228.NUF2"  
[34] "ENSG00000143401.ANP32E" "ENSG00000148773.MKI67"  "ENSG00000157456.CCNB2" 
[37] "ENSG00000158402.CDC25C" "ENSG00000164104.HMGB2"  "ENSG00000169607.CKAP2L"
[40] "ENSG00000169679.BUB1"   "ENSG00000170312.CDK1"   "ENSG00000173207.CKS1B" 
[43] "ENSG00000175063.UBE2C"  "ENSG00000178999.AURKB"  "ENSG00000184661.CDCA2" 
[46] "ENSG00000188229.TUBB4B" "ENSG00000189159.JPT1"  
so <- CellCycleScoring(so, s.features = s_genes, g2m.features = g2m_genes,
                       set.ident = TRUE)

DR colored by cluster ID

cs <- sample(colnames(so), 5e3)
.plot_dr <- function(so, dr, id)
    DimPlot(so, cells = cs, group.by = id, reduction = dr, pt.size = 0.4) +
        guides(col = guide_legend(nrow = 11, 
            override.aes = list(size = 3, alpha = 1))) +
        theme_void() + theme(aspect.ratio = 1)
ids <- c("cluster_id", "group_id", "sample_id", "Phase")
for (id in ids) {
    cat("## ", id, "\n")
    p1 <- .plot_dr(so, "tsne", id)
    lgd <- get_legend(p1)
    p1 <- p1 + theme(legend.position = "none")
    p2 <- .plot_dr(so, "umap", id) + theme(legend.position = "none")
    ps <- plot_grid(plotlist = list(p1, p2), nrow = 1)
    p <- plot_grid(ps, lgd, nrow = 1, rel_widths = c(1, 0.2))
    print(p)
    cat("\n\n")
}

cluster_id

Version Author Date
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

group_id

Version Author Date
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

sample_id

Version Author Date
f116d0f khembach 2020-06-10
419ac73 khembach 2020-06-09
a4d0e04 khembach 2020-05-29

Phase

Version Author Date
f116d0f khembach 2020-06-10

Find markers using scran

We identify candidate marker genes for each cluster that enable a separation of that group from all other groups.

scran_markers <- findMarkers(sce, 
    groups = sce$cluster_id, block = sce$sample_id, 
    direction = "up", lfc = 2, full.stats = TRUE)

Heatmap of mean marker-exprs. by cluster

We aggregate the cells to pseudobulks and plot the average expression of the condidate marker genes in each of the clusters.

gs <- lapply(scran_markers, function(u) rownames(u)[u$Top == 1])
## candidate cluster markers
lapply(gs, function(x) str_split(x, pattern = "\\.", simplify = TRUE)[,2])
$`0`
[1] "SAMD11" "NEFL"   "VIM"    "CKB"    "TTYH1" 

$`1`
[1] "SAMD11" "STMN2"  "CRABP1" "ZFHX3"  "HOXB8"  "MT-CO2"

$`2`
[1] "S100A10" "S100A11" "CLU"     "VIM"     "TAGLN"   "CKB"     "TPM1"   

$`3`
[1] "SAMD11"  "STMN2"   "SNCG"    "RTN1"    "HOXB5"   "ONECUT2" "PCP4"   
[8] "MT-CO2" 

$`4`
[1] "HMGB2" "VIM"   "CKB"   "TOP2A"

$`5`
[1] "STMN2"  "RTN1"   "MEIS2"  "HOXB9"  "PCP4"   "MT-ND3"

$`6`
[1] "C1orf61" "SPP1"    "FABP5"   "VIM"     "HOXB9"   "TTYH1"   "MT-ND4" 

$`7`
[1] "CLU"   "LY6H"  "VIM"   "TAGLN" "DLK1"  "CKB"   "METRN"

$`8`
[1] "SAMD11" "TAC1"   "STMN2"  "ZFHX3"  "HOXB8"  "LAMP5"  "MT-CO2"

$`9`
[1] "SAMD11" "FOXP1"  "STMN2"  "PCP4"  

$`10`
[1] "SAMD11"   "VGF"      "EIF4EBP1" "ANXA1"    "VIM"      "CKB"      "FTL"     

$`11`
[1] "ENC1"    "STMN2"   "NFIB"    "HOXB8"   "HOXB9"   "MT-RNR2"

$`12`
[1] "TAC1"  "STMN2"

$`13`
[1] "STMN2"  "SNCG"   "MPPED2" "PCP4"  

$`14`
[1] "STMN2" "DDIT3"

$`15`
[1] "C1orf61" "HES6"    "SOX2"    "VIM"     "CKB"    

$`16`
[1] "S100A11" "COL3A1"  "COL1A1" 
sub <- sce[unique(unlist(gs)), ]
pbs <- aggregateData(sub, assay = "logcounts", by = "cluster_id", fun = "mean")
mat <- t(muscat:::.scale(assay(pbs)))
## remove the Ensembl ID from the gene names
colnames(mat) <- str_split(colnames(mat), pattern = "\\.", simplify = TRUE)[,2] 
Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    row_title = "cluster_id",
    rect_gp = gpar(col = "white"))

Version Author Date
f116d0f khembach 2020-06-10

Known marker genes

## source file with list of known marker genes
source(file.path("data", "known_cell_type_markers.R"))

fs <- lapply(fs, sapply, function(g)
    grep(pattern = paste0("\\.", g, "$"), rownames(sce), value = TRUE)
  )

fs <- lapply(fs, function(x) unlist(x[lengths(x) !=0]) )

gs <- gsub(".*\\.", "", unlist(fs))
ns <- vapply(fs, length, numeric(1))
ks <- rep.int(names(fs), ns)
labs <- lapply(fs, function(x) gsub(".*\\.", "",x))

Heatmap of mean marker-exprs. by cluster

# split cells by cluster
cs_by_k <- split(colnames(sce), sce$cluster_id)
# compute cluster-marker means
ms_by_cluster <- lapply(fs, function(gs) {
    cat(gs)
    vapply(cs_by_k, function(i)
        Matrix::rowMeans(logcounts(sce)[gs, i, drop = FALSE]), 
        numeric(length(gs)))}
    )
ENSG00000132688.NES ENSG00000181449.SOX2 ENSG00000175745.NR2F1 ENSG00000170558.CDH2 ENSG00000170561.IRX2 ENSG00000182968.SOX1 ENSG00000007372.PAX6 ENSG00000184486.POU3F2 ENSG00000135903.PAX3 ENSG00000026025.VIM ENSG00000104067.TJP1ENSG00000105825.TFPI2 ENSG00000175063.UBE2C ENSG00000110092.CCND1 ENSG00000129757.CDKN1C ENSG00000108106.UBE2S ENSG00000164611.PTTG1 ENSG00000134057.CCNB1 ENSG00000187840.EIF4EBP1 ENSG00000135069.PSAT1 ENSG00000070669.ASNS ENSG00000168003.SLC3A2 ENSG00000092621.PHGDH ENSG00000166803.PCLAF ENSG00000171848.RRM2ENSG00000258947.TUBB3 ENSG00000111674.ENO2 ENSG00000078018.MAP2 ENSG00000077279.DCX ENSG00000102003.SYP ENSG00000104435.STMN2 ENSG00000167281.RBFOX3 ENSG00000149294.NCAM1 ENSG00000104722.NEFM ENSG00000277586.NEFL ENSG00000273706.LHX1 ENSG00000186868.MAPT ENSG00000132639.SNAP25 ENSG00000117632.STMN1 ENSG00000172020.GAP43 ENSG00000179915.NRXN1 ENSG00000129355.CDKN2DENSG00000131095.GFAP ENSG00000026508.CD44 ENSG00000171885.AQP4 ENSG00000160307.S100BENSG00000026025.VIM ENSG00000181449.SOX2 ENSG00000167614.TTYH1 ENSG00000125462.C1orf61 ENSG00000117519.CNN3 ENSG00000185650.ZFP36L1 ENSG00000171476.HOPX ENSG00000152583.SPARCL1 ENSG00000147588.PMP2 ENSG00000185201.IFITM2 ENSG00000142089.IFITM3 ENSG00000163132.MSX1 ENSG00000182718.ANXA2 ENSG00000108821.COL1A1 ENSG00000139329.LUM ENSG00000163359.COL6A3 ENSG00000011465.DCNENSG00000106278.PTPRZ1 ENSG00000112531.QKI ENSG00000046653.GPM6B ENSG00000137558.PI15 ENSG00000185650.ZFP36L1 ENSG00000148053.NTRK2ENSG00000184221.OLIG1 ENSG00000134853.PDGFRAENSG00000136750.GAD2 ENSG00000128683.GAD1 ENSG00000101438.SLC32A1 ENSG00000157103.SLC6A1 ENSG00000075891.PAX2 ENSG00000172137.CALB2 ENSG00000157005.SSTENSG00000165970.SLC6A5 ENSG00000101438.SLC32A1ENSG00000091664.SLC17A6 ENSG00000176884.GRIN1 ENSG00000115419.GLS ENSG00000273079.GRIN2B ENSG00000183454.GRIN2AENSG00000132437.DDC ENSG00000136531.SCN2A ENSG00000180176.TH ENSG00000147434.CHRNA6 ENSG00000136944.LMX1B ENSG00000157542.KCNJ6ENSG00000135116.HRK ENSG00000116717.GADD45A ENSG00000175197.DDIT3 ENSG00000105327.BBC3
# prep. for plotting & scale b/w 0 and 1
mat <- do.call("rbind", ms_by_cluster)
mat <- muscat:::.scale(mat)
rownames(mat) <- gs
cols <- muscat:::.cluster_colors[seq_along(fs)]
cols <- setNames(cols, names(fs))
row_anno <- rowAnnotation(
    df = data.frame(label = factor(ks, levels = names(fs))),
    col = list(label = cols), gp = gpar(col = "white")) 
Heatmap(mat,
    name = "scaled avg.\nexpression",
    col = viridis(10),
    cluster_rows = FALSE,
    cluster_columns = FALSE,
    row_names_side = "left",
    column_title = "cluster_id",
    column_title_side = "bottom",
    rect_gp = gpar(col = "white"),
    left_annotation = row_anno)

DR colored by marker expression

# downsample to 5000 cells
cs <- sample(colnames(sce), 5e3)
sub <- subset(so, cells = cs)
# UMAPs colored by marker-expression
for (m in seq_along(fs)) {
    cat("## ", names(fs)[m], "\n")
    ps <- lapply(seq_along(fs[[m]]), function(i) {
        if (!fs[[m]][i] %in% rownames(so)) return(NULL)
        FeaturePlot(sub, features = fs[[m]][i], reduction = "umap", pt.size = 0.4) +
            theme(aspect.ratio = 1, legend.position = "none") +
            ggtitle(labs[[m]][i]) + theme_void() + theme(aspect.ratio = 1)
    })
    # arrange plots in grid
    ps <- ps[!vapply(ps, is.null, logical(1))]
    p <- plot_grid(plotlist = ps, ncol = 4, label_size = 10)
    print(p)
    cat("\n\n")
}
##  NSC 



##  proliferating 



##  neuronal 



##  mature_astrocytes 



##  glial_astrocytic 



##  radial_glia 



##  oligodendrocyte 



##  GABAergic_neurons 



##  glycinergic_neurons 



##  glutaminergic_neurons 



##  dopaminergic_neurons 



##  apoptotic 

Cluster annotation

Based on the plots we annotated the clusters: …


sessionInfo()
R version 4.0.0 (2020-04-24)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/local/R/R-4.0.0/lib/libRblas.so
LAPACK: /usr/local/R/R-4.0.0/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
 [1] parallel  stats4    grid      stats     graphics  grDevices utils    
 [8] datasets  methods   base     

other attached packages:
 [1] RCurl_1.98-1.2              stringr_1.4.0              
 [3] Seurat_3.1.5                scran_1.16.0               
 [5] SingleCellExperiment_1.10.1 SummarizedExperiment_1.18.1
 [7] DelayedArray_0.14.0         matrixStats_0.56.0         
 [9] Biobase_2.48.0              GenomicRanges_1.40.0       
[11] GenomeInfoDb_1.24.0         IRanges_2.22.2             
[13] S4Vectors_0.26.1            BiocGenerics_0.34.0        
[15] viridis_0.5.1               viridisLite_0.3.0          
[17] RColorBrewer_1.1-2          purrr_0.3.4                
[19] muscat_1.2.0                dplyr_0.8.5                
[21] ggplot2_3.3.0               cowplot_1.0.0              
[23] ComplexHeatmap_2.4.2        workflowr_1.6.2            

loaded via a namespace (and not attached):
  [1] backports_1.1.7           circlize_0.4.9           
  [3] blme_1.0-4                igraph_1.2.5             
  [5] plyr_1.8.6                lazyeval_0.2.2           
  [7] TMB_1.7.16                splines_4.0.0            
  [9] BiocParallel_1.22.0       listenv_0.8.0            
 [11] scater_1.16.0             digest_0.6.25            
 [13] foreach_1.5.0             htmltools_0.4.0          
 [15] gdata_2.18.0              lmerTest_3.1-2           
 [17] magrittr_1.5              memoise_1.1.0            
 [19] cluster_2.1.0             doParallel_1.0.15        
 [21] ROCR_1.0-11               limma_3.44.1             
 [23] globals_0.12.5            annotate_1.66.0          
 [25] prettyunits_1.1.1         colorspace_1.4-1         
 [27] rappdirs_0.3.1            ggrepel_0.8.2            
 [29] blob_1.2.1                xfun_0.14                
 [31] jsonlite_1.6.1            crayon_1.3.4             
 [33] genefilter_1.70.0         lme4_1.1-23              
 [35] zoo_1.8-8                 ape_5.3                  
 [37] survival_3.1-12           iterators_1.0.12         
 [39] glue_1.4.1                gtable_0.3.0             
 [41] zlibbioc_1.34.0           XVector_0.28.0           
 [43] leiden_0.3.3              GetoptLong_0.1.8         
 [45] BiocSingular_1.4.0        future.apply_1.5.0       
 [47] shape_1.4.4               scales_1.1.1             
 [49] DBI_1.1.0                 edgeR_3.30.0             
 [51] Rcpp_1.0.4.6              xtable_1.8-4             
 [53] progress_1.2.2            clue_0.3-57              
 [55] reticulate_1.16           dqrng_0.2.1              
 [57] bit_1.1-15.2              rsvd_1.0.3               
 [59] tsne_0.1-3                htmlwidgets_1.5.1        
 [61] httr_1.4.1                gplots_3.0.3             
 [63] ellipsis_0.3.1            ica_1.0-2                
 [65] farver_2.0.3              pkgconfig_2.0.3          
 [67] XML_3.99-0.3              uwot_0.1.8               
 [69] locfit_1.5-9.4            labeling_0.3             
 [71] tidyselect_1.1.0          rlang_0.4.6              
 [73] reshape2_1.4.4            later_1.0.0              
 [75] AnnotationDbi_1.50.0      munsell_0.5.0            
 [77] tools_4.0.0               RSQLite_2.2.0            
 [79] ggridges_0.5.2            evaluate_0.14            
 [81] yaml_2.2.1                knitr_1.28               
 [83] bit64_0.9-7               fs_1.4.1                 
 [85] fitdistrplus_1.1-1        caTools_1.18.0           
 [87] RANN_2.6.1                pbapply_1.4-2            
 [89] future_1.17.0             nlme_3.1-148             
 [91] whisker_0.4               pbkrtest_0.4-8.6         
 [93] compiler_4.0.0            plotly_4.9.2.1           
 [95] beeswarm_0.2.3            png_0.1-7                
 [97] variancePartition_1.18.0  tibble_3.0.1             
 [99] statmod_1.4.34            geneplotter_1.66.0       
[101] stringi_1.4.6             lattice_0.20-41          
[103] Matrix_1.2-18             nloptr_1.2.2.1           
[105] vctrs_0.3.0               pillar_1.4.4             
[107] lifecycle_0.2.0           lmtest_0.9-37            
[109] GlobalOptions_0.1.1       RcppAnnoy_0.0.16         
[111] BiocNeighbors_1.6.0       data.table_1.12.8        
[113] bitops_1.0-6              irlba_2.3.3              
[115] patchwork_1.0.0           httpuv_1.5.2             
[117] colorRamps_2.3            R6_2.4.1                 
[119] promises_1.1.0            KernSmooth_2.23-17       
[121] gridExtra_2.3             vipor_0.4.5              
[123] codetools_0.2-16          boot_1.3-25              
[125] MASS_7.3-51.6             gtools_3.8.2             
[127] assertthat_0.2.1          DESeq2_1.28.1            
[129] rprojroot_1.3-2           rjson_0.2.20             
[131] withr_2.2.0               sctransform_0.2.1        
[133] GenomeInfoDbData_1.2.3    hms_0.5.3                
[135] tidyr_1.1.0               glmmTMB_1.0.1            
[137] minqa_1.2.4               rmarkdown_2.1            
[139] DelayedMatrixStats_1.10.0 Rtsne_0.15               
[141] git2r_0.27.1              numDeriv_2016.8-1.1      
[143] ggbeeswarm_0.6.0