Last updated: 2021-12-15

Checks: 7 0

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version affdfcb. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/humanFibroblast/

Unstaged changes:
    Modified:   metadata.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/mergeHumanSamples.Rmd) and HTML (docs/mergeHumanSamples.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html c967df3 mluetge 2021-11-10 add two new samples
Rmd 6057189 mluetge 2021-09-23 add samples
html 6057189 mluetge 2021-09-23 add samples
Rmd cf82798 mluetge 2021-09-03 first merge
html cf82798 mluetge 2021-09-03 first merge

load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
})

set dir

basedir <- here()
metaDat <- read_tsv(paste0(basedir, "/metadata.txt"), col_names = T)

load and assign samples

assignSamples <- function(smpNam, basedirSmp, smpTec, smpBatch, smpLoc, smpOri,
                          smpIso, smpCol){
  smpNamFull <- list.files(path = paste0(basedirSmp, "/data/humanFibroblast/"),
                 pattern = paste0(smpNam, ".*_seurat.rds"))
  seuratSmp <- readRDS(paste0(basedirSmp, "/data/humanFibroblast/", smpNamFull))
  seuratSmp$technique <- smpTec
  seuratSmp$batch <- smpBatch
  seuratSmp$location <- smpLoc
  seuratSmp$origin <- smpOri
  seuratSmp$isolation <- smpIso
  seuratSmp$collagenase <- smpCol
  return(seuratSmp)
}

####################################################################

for(i in 1:length(metaDat$Sample)){
  seuratX <- assignSamples(smpNam = metaDat$Sample[i],
                           basedirSmp = basedir,
                           smpTec = metaDat$technique[i],
                           smpBatch = metaDat$batch[i],
                           smpLoc = metaDat$location[i],
                           smpOri = metaDat$origin[i],
                           smpIso = metaDat$isolation[i],
                           smpCol = metaDat$collagenase[i])
  if(exists("seurat")){
    seurat <- merge(x = seurat, y = seuratX, project = "humanCardiacFibro")
  }else{
    seurat <- seuratX
  }
}

remove(seuratX)

run clustering and DR and remove contaminating cells

seurat <- rerunSeurat3(seurat)
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 24437
Number of edges: 916672

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9671
Number of communities: 18
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 24437
Number of edges: 916672

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9403
Number of communities: 23
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 24437
Number of edges: 916672

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9262
Number of communities: 26
Elapsed time: 3 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 24437
Number of edges: 916672

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9553
Number of communities: 22
Elapsed time: 3 seconds
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026271.Grem1` >0) ## 5 cells
#seuratSub <- subset(seurat1, subset = `MGP-BALBcJ-G0026527.Bmp2` >0) ## 14104 cells

dat <- data.frame(table(seurat$dataset))
colnames(dat) <- c("dataset", "all")

knitr::kable(dat)
dataset all
1_20210811_Hu_nucleoi_seq_ECMO_Heart01_Myocardium_NextGEM 4041
1_20210930_Hu_nucseq_HTrans_Heart22_24_GEM 2381
10_20210817_Hu_nucleoi_seq_ECMO_Heart04_Myocardium_NextGEM 1549
10_20210907_Hu_nucseq_iDCM_Heart01_GEM 826
11_20210819_Hu_nucleoi_seq_ECMO_Heart01_Myocardium_Frozen_NG 3162
12_20210819_Hu_nucleoi_seq_ECMO_Heart03_Myocardium_Frozen_NG 1469
13_20210819_Hu_nucleoi_seq_ECMO_Heart04_Myocardium_Frozen_NG 1819
2_20210811_Hu_nucleoi_seq_ECMO_Heart01_Septum_NextGEM 1895
2_20210930_Hu_nucseq_HTrans_Heart23_25_GEM 3131
3_20210811_Hu_cells_seq_ECMO_Heart01_Myocardium_NextGEM 395
4_20210811_Hu_cell_seq_ECMO_Heart01_Septum_NextGEM 244
8_20210813_Hu_cells_seq_ECMO_Heart03_Myocardium_collagenase_NG 668
9_20210817_Hu_nucleoi_seq_cardiac_transplant_Heart17_biopsy_NG 1321
9_20210907_Hu_nucseq_HTrans_Heart21_GEM 1536

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8))[1:length(unique(seurat$dataset))]
colLoc <- pal_npg()(length(unique(seurat$location)))
colBatch <- pal_jco()(length(unique(seurat$batch)))
colOrig <- pal_futurama()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colColl <- pal_aaas()(length(unique(seurat$collagenase)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colLoc) <- unique(seurat$location)
names(colBatch) <- unique(seurat$batch)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colColl) <- unique(seurat$collagenase)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

batch

DimPlot(seurat, reduction = "umap", group.by = "batch", cols=colBatch)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

location

DimPlot(seurat, reduction = "umap", group.by = "location", cols=colLoc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

collagenase

DimPlot(seurat, reduction = "umap", group.by = "collagenase", cols=colColl)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Version Author Date
c967df3 mluetge 2021-11-10
6057189 mluetge 2021-09-23

marker genes

seurat_markers_all <- FindAllMarkers(object = seurat, assay ="RNA",
                                     only.pos = TRUE, min.pct = 0.25,
                                     logfc.threshold = 0.25,
                                     test.use = "wilcox")

top 15 marker genes per cluster

cluster <- levels(seurat)
selGenesAll <- seurat_markers_all %>% group_by(cluster) %>% 
  top_n(-15, p_val_adj) %>% 
  top_n(15, avg_log2FC)
selGenesAll <- selGenesAll %>% mutate(geneIDval=gsub("^.*\\.", "", gene)) %>% filter(nchar(geneIDval)>1)

template_hm <- c(
    "#### {{cl}}\n",
    "```{r top marker {{cl}}, fig.height=8, fig.width=6, echo = FALSE}\n",
    "selGenes <- selGenesAll %>% filter(cluster=='{{cl}}')",
    "pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                  colVecIdent = colPal, 
                  ordVec=levels(seurat),
                  gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                  cr=T, condCol=F)\n",
    "```\n",
    "\n"
  )

plots_gp <- lapply(cluster, 
  function(cl) knitr::knit_expand(text = template_hm)
)

0

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

1

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

2

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

3

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

4

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

5

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

6

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

7

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

8

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

9

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

10

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

11

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

12

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

13

Version Author Date
6057189 mluetge 2021-09-23
cf82798 mluetge 2021-09-03

14

15

16

17

18

19

20

21

save objects

Idents(seurat) <- seurat$seurat_clusters
saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHearts_merged_seurat.rds"))

write.table(seurat_markers_all,
            file=paste0(basedir, "/data/humanHearts_merged_markerGenes.txt"),
            row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")

session info

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.1             
 [7] SeuratObject_4.0.2          Seurat_4.0.5               
 [9] forcats_0.5.1               stringr_1.4.0              
[11] dplyr_1.0.7                 purrr_0.3.4                
[13] readr_2.0.2                 tidyr_1.1.4                
[15] tibble_3.1.6                ggplot2_3.3.5              
[17] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[19] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[21] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[23] IRanges_2.26.0              S4Vectors_0.30.2           
[25] BiocGenerics_0.38.0         MatrixGenerics_1.4.3       
[27] matrixStats_0.61.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.22        tidyselect_1.1.1      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.15            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.23.0          miniUI_0.1.1.1         withr_2.4.2           
 [13] colorspace_2.0-2       highr_0.9              knitr_1.36            
 [16] rstudioapi_0.13        ROCR_1.0-11            ggsignif_0.6.3        
 [19] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [22] git2r_0.28.0           GenomeInfoDbData_1.2.6 polyclip_1.10-0       
 [25] farver_2.1.0           bit64_4.0.5            rprojroot_2.0.2       
 [28] parallelly_1.28.1      vctrs_0.3.8            generics_0.1.1        
 [31] xfun_0.28              R6_2.5.1               bitops_1.0-7          
 [34] spatstat.utils_2.2-0   DelayedArray_0.18.0    assertthat_0.2.1      
 [37] promises_1.2.0.1       scales_1.1.1           vroom_1.5.5           
 [40] gtable_0.3.0           globals_0.14.0         goftest_1.2-3         
 [43] workflowr_1.6.2        rlang_0.4.12           splines_4.1.0         
 [46] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.3-0   
 [49] broom_0.7.10           yaml_2.2.1             reshape2_1.4.4        
 [52] abind_1.4-5            modelr_0.1.8           backports_1.3.0       
 [55] httpuv_1.6.3           tools_4.1.0            ellipsis_0.3.2        
 [58] spatstat.core_2.3-1    jquerylib_0.1.4        RColorBrewer_1.1-2    
 [61] ggridges_0.5.3         Rcpp_1.0.7             plyr_1.8.6            
 [64] zlibbioc_1.38.0        RCurl_1.98-1.5         rpart_4.1-15          
 [67] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [70] zoo_1.8-9              haven_2.4.3            ggrepel_0.9.1         
 [73] cluster_2.1.2          fs_1.5.0               data.table_1.14.2     
 [76] RSpectra_0.16-0        scattermore_0.7        lmtest_0.9-39         
 [79] reprex_2.0.1           RANN_2.6.1             whisker_0.4           
 [82] fitdistrplus_1.1-6     hms_1.1.1              patchwork_1.1.1       
 [85] mime_0.12              evaluate_0.14          xtable_1.8-4          
 [88] readxl_1.3.1           gridExtra_2.3          compiler_4.1.0        
 [91] KernSmooth_2.23-20     crayon_1.4.2           htmltools_0.5.2       
 [94] mgcv_1.8-38            later_1.3.0            tzdb_0.2.0            
 [97] lubridate_1.8.0        DBI_1.1.1              dbplyr_2.1.1          
[100] MASS_7.3-54            Matrix_1.3-4           car_3.0-12            
[103] cli_3.1.0              igraph_1.2.8           pkgconfig_2.0.3       
[106] plotly_4.10.0          spatstat.sparse_2.0-0  xml2_1.3.2            
[109] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[112] digest_0.6.28          sctransform_0.3.2      RcppAnnoy_0.0.19      
[115] spatstat.data_2.1-0    rmarkdown_2.11         cellranger_1.1.0      
[118] leiden_0.3.9           uwot_0.1.10            shiny_1.7.1           
[121] lifecycle_1.0.1        nlme_3.1-153           jsonlite_1.7.2        
[124] carData_3.0-4          limma_3.48.3           viridisLite_0.4.0     
[127] fansi_0.5.0            pillar_1.6.4           lattice_0.20-45       
[130] fastmap_1.1.0          httr_1.4.2             survival_3.2-13       
[133] glue_1.5.0             png_0.1-7              bit_4.0.4             
[136] stringi_1.7.5          sass_0.4.0             irlba_2.3.3           
[139] future.apply_1.8.1    
date()
[1] "Wed Dec 15 10:48:33 2021"

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.7

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] pheatmap_1.0.12             ggpubr_0.4.0               
 [3] ggsci_2.9                   runSeurat3_0.1.0           
 [5] here_1.0.1                  magrittr_2.0.1             
 [7] SeuratObject_4.0.2          Seurat_4.0.5               
 [9] forcats_0.5.1               stringr_1.4.0              
[11] dplyr_1.0.7                 purrr_0.3.4                
[13] readr_2.0.2                 tidyr_1.1.4                
[15] tibble_3.1.6                ggplot2_3.3.5              
[17] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[19] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[21] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[23] IRanges_2.26.0              S4Vectors_0.30.2           
[25] BiocGenerics_0.38.0         MatrixGenerics_1.4.3       
[27] matrixStats_0.61.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.22        tidyselect_1.1.1      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.15            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.23.0          miniUI_0.1.1.1         withr_2.4.2           
 [13] colorspace_2.0-2       highr_0.9              knitr_1.36            
 [16] rstudioapi_0.13        ROCR_1.0-11            ggsignif_0.6.3        
 [19] tensor_1.5             listenv_0.8.0          labeling_0.4.2        
 [22] git2r_0.28.0           GenomeInfoDbData_1.2.6 polyclip_1.10-0       
 [25] farver_2.1.0           bit64_4.0.5            rprojroot_2.0.2       
 [28] parallelly_1.28.1      vctrs_0.3.8            generics_0.1.1        
 [31] xfun_0.28              R6_2.5.1               bitops_1.0-7          
 [34] spatstat.utils_2.2-0   DelayedArray_0.18.0    assertthat_0.2.1      
 [37] promises_1.2.0.1       scales_1.1.1           vroom_1.5.5           
 [40] gtable_0.3.0           globals_0.14.0         goftest_1.2-3         
 [43] workflowr_1.6.2        rlang_0.4.12           splines_4.1.0         
 [46] rstatix_0.7.0          lazyeval_0.2.2         spatstat.geom_2.3-0   
 [49] broom_0.7.10           yaml_2.2.1             reshape2_1.4.4        
 [52] abind_1.4-5            modelr_0.1.8           backports_1.3.0       
 [55] httpuv_1.6.3           tools_4.1.0            ellipsis_0.3.2        
 [58] spatstat.core_2.3-1    jquerylib_0.1.4        RColorBrewer_1.1-2    
 [61] ggridges_0.5.3         Rcpp_1.0.7             plyr_1.8.6            
 [64] zlibbioc_1.38.0        RCurl_1.98-1.5         rpart_4.1-15          
 [67] deldir_1.0-6           pbapply_1.5-0          cowplot_1.1.1         
 [70] zoo_1.8-9              haven_2.4.3            ggrepel_0.9.1         
 [73] cluster_2.1.2          fs_1.5.0               data.table_1.14.2     
 [76] RSpectra_0.16-0        scattermore_0.7        lmtest_0.9-39         
 [79] reprex_2.0.1           RANN_2.6.1             whisker_0.4           
 [82] fitdistrplus_1.1-6     hms_1.1.1              patchwork_1.1.1       
 [85] mime_0.12              evaluate_0.14          xtable_1.8-4          
 [88] readxl_1.3.1           gridExtra_2.3          compiler_4.1.0        
 [91] KernSmooth_2.23-20     crayon_1.4.2           htmltools_0.5.2       
 [94] mgcv_1.8-38            later_1.3.0            tzdb_0.2.0            
 [97] lubridate_1.8.0        DBI_1.1.1              dbplyr_2.1.1          
[100] MASS_7.3-54            Matrix_1.3-4           car_3.0-12            
[103] cli_3.1.0              igraph_1.2.8           pkgconfig_2.0.3       
[106] plotly_4.10.0          spatstat.sparse_2.0-0  xml2_1.3.2            
[109] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[112] digest_0.6.28          sctransform_0.3.2      RcppAnnoy_0.0.19      
[115] spatstat.data_2.1-0    rmarkdown_2.11         cellranger_1.1.0      
[118] leiden_0.3.9           uwot_0.1.10            shiny_1.7.1           
[121] lifecycle_1.0.1        nlme_3.1-153           jsonlite_1.7.2        
[124] carData_3.0-4          limma_3.48.3           viridisLite_0.4.0     
[127] fansi_0.5.0            pillar_1.6.4           lattice_0.20-45       
[130] fastmap_1.1.0          httr_1.4.2             survival_3.2-13       
[133] glue_1.5.0             png_0.1-7              bit_4.0.4             
[136] stringi_1.7.5          sass_0.4.0             irlba_2.3.3           
[139] future.apply_1.8.1