Last updated: 2022-07-04

Checks: 6 1

Knit directory: humanCardiacFibroblasts/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown is untracked by Git. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210903) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 9fc92e5. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/humanFibroblast/

Untracked files:
    Untracked:  analysis/integrateAcrossPatientsGZplusSG.Rmd

Unstaged changes:
    Modified:   analysis/mergeHumanSamplesPlusGraz.Rmd
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 0-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 0-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 1-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 1-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 10-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 10-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 11-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 11-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 12-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 12-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 13-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 13-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 14-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 14-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 15-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 15-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 16-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 16-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 17-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 17-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 18-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 18-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 19-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 19-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 2-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 2-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 3-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 3-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 4-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 4-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 5-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 5-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 6-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 6-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 7-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 7-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 8-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 8-1.png
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 9-1.pdf
    Modified:   figure/mergeHumanSamplesPlusGraz.Rmd/top marker 9-1.png
    Modified:   metadata2.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


There are no past versions. Publish this analysis with wflow_publish() to start tracking its development.


load packages

suppressPackageStartupMessages({
  library(SingleCellExperiment)
  library(tidyverse)
  library(Seurat)
  library(magrittr)
  library(dplyr)
  library(purrr)
  library(ggplot2)
  library(here)
  library(runSeurat3)
  library(ggsci)
  library(ggpubr)
  library(pheatmap)
  library(viridis)
  library(sctransform)
})

integrate data

basedir <- here()
seurat <- readRDS(file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_merged_seurat.rds"))

## integrate data across patients
Idents(seurat) <- seurat$ID

seurat.list <- SplitObject(object = seurat, split.by = "ID")
for (i in 1:length(x = seurat.list)) {
    seurat.list[[i]] <- NormalizeData(object = seurat.list[[i]],
                                      verbose = FALSE)
    seurat.list[[i]] <- FindVariableFeatures(object = seurat.list[[i]], 
        selection.method = "vst", nfeatures = 2000, verbose = FALSE)
}

seurat.anchors <- FindIntegrationAnchors(object.list = seurat.list, dims = 1:15)
seurat.int <- IntegrateData(anchorset = seurat.anchors, dims = 1:15)
DefaultAssay(object = seurat.int) <- "integrated"

# rerun seurat
seurat.int <- ScaleData(object = seurat.int, verbose = FALSE,
                        features = rownames(seurat.int))
seurat.int <- RunPCA(object = seurat.int, npcs = 20, verbose = FALSE)
seurat.int <- RunTSNE(object = seurat.int, reduction = "pca", dims = 1:20)
seurat.int <- RunUMAP(object = seurat.int, reduction = "pca", dims = 1:20)

seurat.int <- FindNeighbors(object = seurat.int, reduction = "pca", dims = 1:20)
res <- c(0.6,0.8,0.4,0.25)
for(i in 1:length(res)){
  seurat.int <- FindClusters(object = seurat.int, resolution = res[i],
                             random.seed = 1234)
}
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1870500

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9237
Number of communities: 21
Elapsed time: 9 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1870500

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9069
Number of communities: 24
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1870500

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9419
Number of communities: 19
Elapsed time: 8 seconds
Modularity Optimizer version 1.3.0 by Ludo Waltman and Nees Jan van Eck

Number of nodes: 41081
Number of edges: 1870500

Running Louvain algorithm...
Maximum modularity in 10 random starts: 0.9585
Number of communities: 14
Elapsed time: 9 seconds
DefaultAssay(object = seurat.int) <- "RNA"
seurat <- seurat.int
remove(seurat.int)
seurat$seurat_clusters <- seurat$integrated_snn_res.0.25
Idents(seurat) <- seurat$seurat_clusters

save int object

saveRDS(seurat, file = paste0(basedir, 
                              "/data/humanHeartsPlusGraz_intPatients_merged", 
                              "_seurat.rds"))

color vectors

colPal <- pal_igv()(length(levels(seurat)))
colTec <- pal_jama()(length(unique(seurat$technique)))
colSmp <- c(pal_uchicago()(8), pal_npg()(8), pal_aaas()(10))[1:length(unique(seurat$dataset))]
colCond <- pal_npg()(length(unique(seurat$cond)))
colID <- c(pal_jco()(10), pal_npg()(10))[1:length(unique(seurat$ID))]
colOrig <- pal_aaas()(length(unique(seurat$origin)))
colIso <- pal_nejm()(length(unique(seurat$isolation)))
colProc <- pal_aaas()(length(unique(seurat$processing)))

names(colPal) <- levels(seurat)
names(colTec) <- unique(seurat$technique)
names(colSmp) <- unique(seurat$dataset)
names(colCond) <- unique(seurat$cond)
names(colID) <- unique(seurat$ID)
names(colOrig) <- unique(seurat$origin)
names(colIso) <- unique(seurat$isolation)
names(colProc) <- unique(seurat$processing)

vis data

clusters

DimPlot(seurat, reduction = "umap", cols=colPal)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

technique

DimPlot(seurat, reduction = "umap", group.by = "technique", cols=colTec)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Sample

DimPlot(seurat, reduction = "umap", group.by = "dataset", cols=colSmp)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

ID

DimPlot(seurat, reduction = "umap", group.by = "ID", cols=colID)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

Origin

DimPlot(seurat, reduction = "umap", group.by = "origin", cols=colOrig)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

isolation

DimPlot(seurat, reduction = "umap", group.by = "isolation", cols=colIso)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

cond

DimPlot(seurat, reduction = "umap", group.by = "cond", cols=colCond)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

processing

DimPlot(seurat, reduction = "umap", group.by = "processing", cols=colProc)+
  theme_bw() +
  theme(axis.text = element_blank(), axis.ticks = element_blank(), 
        panel.grid.minor = element_blank()) +
  xlab("UMAP1") +
  ylab("UMAP2")

marker genes

seurat_markers_all <- FindAllMarkers(object = seurat, assay ="RNA",
                                     only.pos = TRUE, min.pct = 0.25,
                                     logfc.threshold = 0.25,
                                     test.use = "wilcox")

top 15 marker genes per cluster

cluster <- levels(seurat)
selGenesAll <- seurat_markers_all %>% group_by(cluster) %>% 
  top_n(-15, p_val_adj) %>% 
  top_n(15, avg_log2FC)
selGenesAll <- selGenesAll %>% mutate(geneIDval=gsub("^.*\\.", "", gene)) %>% filter(nchar(geneIDval)>1)

template_hm <- c(
    "#### {{cl}}\n",
    "```{r top marker {{cl}}, fig.height=8, fig.width=6, echo = FALSE}\n",
    "selGenes <- selGenesAll %>% filter(cluster=='{{cl}}')",
    "pOut <- avgHeatmap(seurat = seurat, selGenes = selGenes,
                  colVecIdent = colPal, 
                  ordVec=levels(seurat),
                  gapVecR=NULL, gapVecC=NULL,cc=FALSE,
                  cr=T, condCol=F)\n",
    "```\n",
    "\n"
  )

plots_gp <- lapply(cluster, 
  function(cl) knitr::knit_expand(text = template_hm)
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

save objects

write.table(seurat_markers_all,
            file=paste0(basedir,
                        "/data/humanHeartsPlusGraz_intPatients_merged", 
                        "_markerGenes.txt"),
            row.names = FALSE, col.names = TRUE, quote = FALSE, sep = "\t")

session info

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] sctransform_0.3.3           viridis_0.6.2              
 [3] viridisLite_0.4.0           pheatmap_1.0.12            
 [5] ggpubr_0.4.0                ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              sp_1.4-7                   
[11] SeuratObject_4.1.0          Seurat_4.1.1               
[13] forcats_0.5.1               stringr_1.4.0              
[15] dplyr_1.0.9                 purrr_0.3.4                
[17] readr_2.1.2                 tidyr_1.2.0                
[19] tibble_3.1.7                ggplot2_3.3.6              
[21] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[23] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[25] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[27] IRanges_2.26.0              S4Vectors_0.30.2           
[29] BiocGenerics_0.38.0         MatrixGenerics_1.4.3       
[31] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.24        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.25.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.10.0      
 [16] highr_0.9              knitr_1.39             rstudioapi_0.13       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.6 polyclip_1.10-0        farver_2.1.0          
 [28] rprojroot_2.0.3        parallelly_1.31.1      vctrs_0.4.1           
 [31] generics_0.1.2         xfun_0.30              R6_2.5.1              
 [34] bitops_1.0-7           spatstat.utils_2.3-1   DelayedArray_0.18.0   
 [37] assertthat_0.2.1       promises_1.2.0.1       scales_1.2.0          
 [40] rgeos_0.5-9            gtable_0.3.0           globals_0.15.0        
 [43] goftest_1.2-3          workflowr_1.7.0        rlang_1.0.2           
 [46] splines_4.1.0          rstatix_0.7.0          lazyeval_0.2.2        
 [49] spatstat.geom_2.4-0    broom_0.8.0            yaml_2.3.5            
 [52] reshape2_1.4.4         abind_1.4-5            modelr_0.1.8          
 [55] backports_1.4.1        httpuv_1.6.5           tools_4.1.0           
 [58] ellipsis_0.3.2         spatstat.core_2.4-2    jquerylib_0.1.4       
 [61] RColorBrewer_1.1-3     ggridges_0.5.3         Rcpp_1.0.8.3          
 [64] plyr_1.8.7             zlibbioc_1.38.0        RCurl_1.98-1.6        
 [67] rpart_4.1.16           deldir_1.0-6           pbapply_1.5-0         
 [70] cowplot_1.1.1          zoo_1.8-10             haven_2.5.0           
 [73] ggrepel_0.9.1          cluster_2.1.3          fs_1.5.2              
 [76] data.table_1.14.2      RSpectra_0.16-1        scattermore_0.8       
 [79] lmtest_0.9-40          reprex_2.0.1           RANN_2.6.1            
 [82] fitdistrplus_1.1-8     hms_1.1.1              patchwork_1.1.1       
 [85] mime_0.12              evaluate_0.15          xtable_1.8-4          
 [88] readxl_1.4.0           gridExtra_2.3          compiler_4.1.0        
 [91] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.2       
 [94] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
 [97] lubridate_1.8.0        DBI_1.1.2              dbplyr_2.1.1          
[100] MASS_7.3-57            Matrix_1.4-1           car_3.0-13            
[103] cli_3.3.0              igraph_1.3.1           pkgconfig_2.0.3       
[106] plotly_4.10.0          spatstat.sparse_2.1-1  xml2_1.3.3            
[109] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[112] digest_0.6.29          RcppAnnoy_0.0.19       spatstat.data_2.2-0   
[115] rmarkdown_2.14         cellranger_1.1.0       leiden_0.3.10         
[118] uwot_0.1.11            shiny_1.7.1            lifecycle_1.0.1       
[121] nlme_3.1-157           jsonlite_1.8.0         carData_3.0-5         
[124] limma_3.48.3           fansi_1.0.3            pillar_1.7.0          
[127] lattice_0.20-45        fastmap_1.1.0          httr_1.4.3            
[130] survival_3.3-1         glue_1.6.2             png_0.1-7             
[133] stringi_1.7.6          sass_0.4.1             irlba_2.3.5           
[136] future.apply_1.9.0    
date()
[1] "Mon Jul  4 18:17:28 2022"

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] sctransform_0.3.3           viridis_0.6.2              
 [3] viridisLite_0.4.0           pheatmap_1.0.12            
 [5] ggpubr_0.4.0                ggsci_2.9                  
 [7] runSeurat3_0.1.0            here_1.0.1                 
 [9] magrittr_2.0.3              sp_1.4-7                   
[11] SeuratObject_4.1.0          Seurat_4.1.1               
[13] forcats_0.5.1               stringr_1.4.0              
[15] dplyr_1.0.9                 purrr_0.3.4                
[17] readr_2.1.2                 tidyr_1.2.0                
[19] tibble_3.1.7                ggplot2_3.3.6              
[21] tidyverse_1.3.1             SingleCellExperiment_1.14.1
[23] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[25] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[27] IRanges_2.26.0              S4Vectors_0.30.2           
[29] BiocGenerics_0.38.0         MatrixGenerics_1.4.3       
[31] matrixStats_0.62.0         

loaded via a namespace (and not attached):
  [1] utf8_1.2.2             reticulate_1.24        tidyselect_1.1.2      
  [4] htmlwidgets_1.5.4      grid_4.1.0             Rtsne_0.16            
  [7] munsell_0.5.0          codetools_0.2-18       ica_1.0-2             
 [10] future_1.25.0          miniUI_0.1.1.1         withr_2.5.0           
 [13] spatstat.random_2.2-0  colorspace_2.0-3       progressr_0.10.0      
 [16] highr_0.9              knitr_1.39             rstudioapi_0.13       
 [19] ROCR_1.0-11            ggsignif_0.6.3         tensor_1.5            
 [22] listenv_0.8.0          labeling_0.4.2         git2r_0.30.1          
 [25] GenomeInfoDbData_1.2.6 polyclip_1.10-0        farver_2.1.0          
 [28] rprojroot_2.0.3        parallelly_1.31.1      vctrs_0.4.1           
 [31] generics_0.1.2         xfun_0.30              R6_2.5.1              
 [34] bitops_1.0-7           spatstat.utils_2.3-1   DelayedArray_0.18.0   
 [37] assertthat_0.2.1       promises_1.2.0.1       scales_1.2.0          
 [40] rgeos_0.5-9            gtable_0.3.0           globals_0.15.0        
 [43] goftest_1.2-3          workflowr_1.7.0        rlang_1.0.2           
 [46] splines_4.1.0          rstatix_0.7.0          lazyeval_0.2.2        
 [49] spatstat.geom_2.4-0    broom_0.8.0            yaml_2.3.5            
 [52] reshape2_1.4.4         abind_1.4-5            modelr_0.1.8          
 [55] backports_1.4.1        httpuv_1.6.5           tools_4.1.0           
 [58] ellipsis_0.3.2         spatstat.core_2.4-2    jquerylib_0.1.4       
 [61] RColorBrewer_1.1-3     ggridges_0.5.3         Rcpp_1.0.8.3          
 [64] plyr_1.8.7             zlibbioc_1.38.0        RCurl_1.98-1.6        
 [67] rpart_4.1.16           deldir_1.0-6           pbapply_1.5-0         
 [70] cowplot_1.1.1          zoo_1.8-10             haven_2.5.0           
 [73] ggrepel_0.9.1          cluster_2.1.3          fs_1.5.2              
 [76] data.table_1.14.2      RSpectra_0.16-1        scattermore_0.8       
 [79] lmtest_0.9-40          reprex_2.0.1           RANN_2.6.1            
 [82] fitdistrplus_1.1-8     hms_1.1.1              patchwork_1.1.1       
 [85] mime_0.12              evaluate_0.15          xtable_1.8-4          
 [88] readxl_1.4.0           gridExtra_2.3          compiler_4.1.0        
 [91] KernSmooth_2.23-20     crayon_1.5.1           htmltools_0.5.2       
 [94] mgcv_1.8-40            later_1.3.0            tzdb_0.3.0            
 [97] lubridate_1.8.0        DBI_1.1.2              dbplyr_2.1.1          
[100] MASS_7.3-57            Matrix_1.4-1           car_3.0-13            
[103] cli_3.3.0              igraph_1.3.1           pkgconfig_2.0.3       
[106] plotly_4.10.0          spatstat.sparse_2.1-1  xml2_1.3.3            
[109] bslib_0.3.1            XVector_0.32.0         rvest_1.0.2           
[112] digest_0.6.29          RcppAnnoy_0.0.19       spatstat.data_2.2-0   
[115] rmarkdown_2.14         cellranger_1.1.0       leiden_0.3.10         
[118] uwot_0.1.11            shiny_1.7.1            lifecycle_1.0.1       
[121] nlme_3.1-157           jsonlite_1.8.0         carData_3.0-5         
[124] limma_3.48.3           fansi_1.0.3            pillar_1.7.0          
[127] lattice_0.20-45        fastmap_1.1.0          httr_1.4.3            
[130] survival_3.3-1         glue_1.6.2             png_0.1-7             
[133] stringi_1.7.6          sass_0.4.1             irlba_2.3.5           
[136] future.apply_1.9.0