Last updated: 2019-10-28
Checks: 5 2
Knit directory: fgf_alldata/
This reproducible R Markdown analysis was created with workflowr (version 1.4.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish
to commit the R Markdown file and build the HTML.
The global environment had objects present when the code in the R Markdown file was run. These objects can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment. Use wflow_publish
or wflow_build
to ensure that the code is always run in an empty environment.
The following objects were defined in the global environment when these results were created:
Name | Class | Size |
---|---|---|
data | environment | 56 bytes |
env | environment | 56 bytes |
The command set.seed(20191021)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rproj.user/
Ignored: test_files/
Untracked files:
Untracked: code/sc_functions.R
Untracked: data/fgf_filtered_nuclei.RDS
Untracked: data/filtglia.RDS
Untracked: data/glia/
Untracked: data/lps1.txt
Untracked: data/mcao1.txt
Untracked: data/mcao_d3.txt
Untracked: data/mcaod7.txt
Untracked: data/neur_astro_induce.xlsx
Untracked: data/neuron/
Untracked: data/synaptic_activity_induced.xlsx
Untracked: docs/figure/
Untracked: olig_ttest_padj.csv
Untracked: output/agrp_pcgenes.csv
Untracked: output/all_wc_markers.csv
Untracked: output/allglia_wgcna_genemodules.csv
Untracked: output/glia/
Untracked: output/glial_markergenes.csv
Untracked: output/integrated_all_markergenes.csv
Untracked: output/integrated_neuronmarkers.csv
Untracked: output/neuron/
Unstaged changes:
Modified: analysis/10_wc_pseudobulk.Rmd
Modified: analysis/7_ventricular_wgcna.Rmd
Modified: analysis/8_astro_wgcna.Rmd
Modified: analysis/9_wc_processing.Rmd
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | a4ac5aa | Full Name | 2019-10-28 | wflow_git_commit(“analysis/*.Rmd“) |
library(Seurat)
library(WGCNA)
library(cluster)
library(genefilter)
library(tidyverse)
library(tidygraph)
library(ggraph)
library(reshape2)
library(parallelDist)
library(ggsci)
library(emmeans)
library(lme4)
library(ggbeeswarm)
library(ggpubr)
library(igraph)
library(RColorBrewer)
library(gProfileR)
library(here)
library(eulerr)
library(ggExtra)
library(cowplot)
enableWGCNAThreads()
Allowing parallel execution with up to 79 working processes.
datExpr <- as.matrix(t(astro[["SCT"]]@scale.data[astro[["SCT"]]@var.features,]))
gsg <- goodSamplesGenes(datExpr, verbose = 3)
Flagging genes and samples with too many missing values...
..step 1
gsg$allOK
[1] TRUE
sampleTree2 <- hclust(parDist(datExpr), method = "average")
plot(sampleTree2, label = F)
powers <- c(c(1:10), seq(from = 12, to = 40, by = 2))
sft <- pickSoftThreshold(datExpr,
dataIsExpr = TRUE, powerVector = powers, corOptions = list(use = "p"),
networkType = "signed"
)
Power SFT.R.sq slope truncated.R.sq mean.k. median.k. max.k.
1 1 0.15300 105.00 0.626 2.50e+03 2.50e+03 2520.000
2 2 0.00719 -13.00 0.916 1.25e+03 1.25e+03 1280.000
3 3 0.49400 -62.20 0.691 6.29e+02 6.28e+02 658.000
4 4 0.76800 -48.60 0.749 3.16e+02 3.15e+02 349.000
5 5 0.96800 -34.90 0.963 1.59e+02 1.58e+02 190.000
6 6 0.97600 -23.30 0.988 8.05e+01 7.96e+01 107.000
7 7 0.95800 -15.70 0.974 4.07e+01 4.00e+01 62.600
8 8 0.94600 -11.40 0.951 2.07e+01 2.02e+01 38.300
9 9 0.48400 -13.50 0.347 1.06e+01 1.02e+01 24.600
10 10 0.48700 -10.40 0.358 5.41e+00 5.14e+00 16.500
11 12 0.48800 -6.67 0.376 1.45e+00 1.31e+00 8.350
12 14 0.96000 -3.21 0.951 4.03e-01 3.38e-01 4.770
13 16 0.93900 -2.50 0.922 1.20e-01 8.73e-02 2.950
14 18 0.97900 -2.00 0.973 3.99e-02 2.27e-02 1.940
15 20 0.97200 -1.65 0.964 1.55e-02 5.95e-03 1.330
16 22 0.91200 -1.49 0.891 7.22e-03 1.57e-03 0.949
17 24 0.31500 -2.03 0.122 3.97e-03 4.18e-04 0.768
18 26 0.94700 -1.27 0.941 2.48e-03 1.12e-04 0.630
19 28 0.40600 -1.58 0.302 1.68e-03 3.04e-05 0.521
20 30 0.40500 -1.50 0.299 1.21e-03 8.32e-06 0.434
21 32 0.40800 -1.44 0.297 9.15e-04 2.30e-06 0.363
22 34 0.37200 -1.33 0.192 7.10e-04 6.44e-07 0.305
23 36 0.37300 -1.32 0.195 5.65e-04 1.82e-07 0.256
24 38 0.35400 -1.59 0.224 4.58e-04 5.22e-08 0.216
25 40 0.33900 -1.85 0.153 3.77e-04 1.52e-08 0.190
cex1 <- 0.9
plot(sft$fitIndices[, 1], -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2], xlab = "Soft Threshold (power)", ylab = "Scale Free Topology Model Fit, signed R^2", type = "n", main = paste("Scale independence"))
text(sft$fitIndices[, 1], -sign(sft$fitIndices[, 3]) * sft$fitIndices[, 2], labels = powers, cex = cex1, col = "red")
abline(h = 0.80, col = "red")
# Mean Connectivity Plot
plot(sft$fitIndices[, 1], sft$fitIndices[, 5], xlab = "Soft Threshold (power)", ylab = "Mean Connectivity", type = "n", main = paste("Mean connectivity"))
text(sft$fitIndices[, 1], sft$fitIndices[, 5], labels = powers, cex = cex1, col = "red")
softPower <- 5
SubGeneNames <- colnames(datExpr)
adj <- adjacency(datExpr, type = "signed", power = softPower)
diag(adj) <- 0
TOM <- TOMsimilarityFromExpr(datExpr, networkType = "signed", TOMType = "signed", power = softPower, maxPOutliers = 0.05)
TOM calculation: adjacency..
..will use 79 parallel threads.
Fraction of slow calculations: 0.000000
..connectivity..
..matrix multiplication (system BLAS)..
..normalization..
..done.
colnames(TOM) <- rownames(TOM) <- SubGeneNames
dissTOM <- 1 - TOM
geneTree <- hclust(as.dist(dissTOM), method = "average") # use complete for method rather than average (gives better results)
plot(geneTree, xlab = "", sub = "", cex = .5, main = "Gene clustering", hang = .001)
minModuleSize <- 15
x <- 4
dynamicMods <- cutreeDynamic(
dendro = geneTree, distM = as.matrix(dissTOM),
method = "hybrid", pamStage = F, deepSplit = x,
minClusterSize = minModuleSize
)
..cutHeight not given, setting it to 0.968 ===> 99% of the (truncated) height range in dendro.
..done.
dynamicColors <- labels2colors(dynamicMods) # label each module with a unique color
plotDendroAndColors(geneTree, dynamicColors, "Dynamic Tree Cut",
dendroLabels = FALSE, hang = 0.03, addGuide = TRUE, guideHang = 0.05,
main = "Gene dendrogram and module colors"
) # plot the modules with colors
MEs <- moduleEigengenes(datExpr, dynamicColors)$eigengenes # this matrix gives correlations between cells and module eigengenes (a high value indicates that the cell is highly correlated with the genes in that module)
ME1 <- MEs
row.names(ME1) <- row.names(datExpr)
# Calculate dissimilarity of module eigengenes
MEDiss <- 1 - cor(MEs)
# Cluster module eigengenes
METree <- hclust(as.dist(MEDiss), method = "average")
# Plot the result
plot(METree, main = "Clustering of module eigengenes", xlab = "", sub = "")
MEDissThres <- 0.2
# Plot the cut line into the dendrogram
abline(h = MEDissThres, col = "red")
merge <- mergeCloseModules(datExpr, dynamicColors, cutHeight = MEDissThres, verbose = 3)
mergeCloseModules: Merging modules whose distance is less than 0.2
multiSetMEs: Calculating module MEs.
Working on set 1 ...
moduleEigengenes: Calculating 9 module eigengenes in given set.
Calculating new MEs...
multiSetMEs: Calculating module MEs.
Working on set 1 ...
moduleEigengenes: Calculating 9 module eigengenes in given set.
mergedColors <- merge$colors
mergedMEs <- merge$newMEs
moduleColors <- mergedColors
MEs <- mergedMEs
modulekME <- signedKME(datExpr, MEs)
plotDendroAndColors(geneTree, cbind(dynamicColors, mergedColors),
c("Dynamic Tree Cut", "Merged dynamic"),
dendroLabels = FALSE, hang = 0.03,
addGuide = TRUE, guideHang = 0.05
)
# Rename to moduleColors
moduleColors <- mergedColors
# Construct numerical labels corresponding to the colors
# colorOrder = c("grey", standardColors(50));
# moduleLabels = match(moduleColors, colorOrder)-1
MEs <- mergedMEs
modulekME <- signedKME(datExpr, MEs)
# type gene name, prints out gene names also in that module
modules <- MEs
c_modules <- data.frame(moduleColors)
row.names(c_modules) <- colnames(datExpr) # assign gene names as row names
module.list.set1 <- substring(colnames(modules), 3) # removes ME from start of module names
index.set1 <- 0
Network <- list() # create lists of genes for each module
for (i in 1:length(module.list.set1)) {
index.set1 <- which(c_modules == module.list.set1[i])
Network[[i]] <- row.names(c_modules)[index.set1]
}
names(Network) <- module.list.set1
lookup <- function(gene, network) {
return(network[names(network)[grep(gene, network)]])
} # load function
hubgenes <- lapply(seq_len(length(Network)), function(x) {
dat <- modulekME[Network[[x]], ]
dat <- dat[order(-dat[paste0("kME", names(Network)[x])]), ]
gene <- data.frame(gene=rownames(dat),kme=dat[,x])
return(gene)
})
names(hubgenes) <- names(Network)
d <- bind_rows(hubgenes, .id="id")
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
write_csv(d, path = here("output/glia/wgcna/astro_wgcna_genemodules.csv"))
MEs %>% select(-MEgrey) -> MEs
data <- data.frame(MEs,
day = astro$day, trt = astro$trt,
sample = as.factor(astro$sample), group = astro$group,
batch = astro$batch, celltype = Idents(astro),
groupall = paste0(Idents(astro), astro$group)
)
mod<-lapply(colnames(MEs), function(me) {
mod<-lmer(MEs[[me]] ~ group + (1|batch) + (1|sample), data=data)
pairwise<-emmeans(mod, pairwise ~ group)
plot<-data.frame(plot(pairwise, plotIt=F)$data)
sig<-as.data.frame(pairwise$contrasts)
sig%>%separate(contrast, c("start", "end"), sep = " - ") -> sig
yvals<-unlist(lapply(unique(sig$celltype), function(x) {
x<-as.character(x)
y<-data[data$celltype==x,]
z<-max(as.numeric(y[[me]]))
names(z)<-x
return(z)
}))
sig$yvals<-yvals[match(sig$celltype, names(yvals))]
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
sig$yvals[duplicated(sig$yvals)]<-sig$yvals[duplicated(sig$yvals)]+.004
return(sig)
})
names(mod) <- colnames(MEs)
sig <- bind_rows(mod, .id="id")
sig$symbol <- sig$p.value
sig$symbol[findInterval(sig$symbol, c(0.1,2)) == 1L] <-NA
sig$symbol[findInterval(sig$symbol, c(0.01,0.1)) == 1L] <- "*"
sig$symbol[findInterval(sig$symbol, c(0.001,0.01)) == 1L] <- "**"
Warning in findInterval(sig$symbol, c(0.001, 0.01)): NAs introduced by
coercion
sig$symbol[findInterval(sig$symbol, c(1e-200,0.001)) == 1L] <- "***"
Warning in findInterval(sig$symbol, c(1e-200, 0.001)): NAs introduced by
coercion
lapply(unique(colnames(MEs)), function(me) {
tryCatch({
print(ggplot(data = data[sample(nrow(data)), ], aes(x = group, y = get(me))) +
geom_quasirandom(aes(fill = sample), shape = 21, size = 2, alpha = .75) +
scale_fill_manual(values = pal_jco()(10)) + ylab(NULL) + xlab(NULL) +
theme_pubr() + theme(
axis.text.x = element_text(angle = 45, hjust = 1, face = "bold"),
plot.title = element_text(hjust = 0.5)
) +
scale_y_continuous(aes(name = "", limits = c(min(get(me)) - .02, max(get(me))) + .02)) +
ggtitle(me))
},
error = function(err) {
print(err)
}
)
})
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
# moddat <- bind_rows(mod, .id="id")
write_csv(sig, path=here("output/glia/wgcna/astro_wgcna_linearmodel_testing.csv"))
nGenes <- ncol(datExpr)
nSamples <- nrow(datExpr) # datExpr[,c((nrow(datExpr)-9):nrow(datExpr))]
# Recalculate MEs with color labels
MEs <- orderMEs(MEs)
astro$group <- paste0(astro$trt, "_", astro$day)
var <- model.matrix(~ 0 + astro$group)
# colnames(var)<-c("DV","FGF1","FGF19", "V")
moduleTraitCor <- cor(MEs, var, use = "p")
moduleTraitPvalue <- corPvalueStudent(moduleTraitCor, nSamples)
cor <- melt(moduleTraitCor)
cor$Var2 <- str_split(cor$Var2, "group", n = 2, simplify = T)[, 2]
MEs %>%
as.data.frame() %>%
mutate(sample = astro$sample, day = astro$day) %>%
melt() %>%
dplyr::group_by(sample, variable) %>%
dplyr::summarise(mean_mod = median(value)) %>%
filter(variable != "MEgrey") -> me_heatmap
me_heatmap %>%
dplyr::group_by(variable) %>%
mutate(scaled_mod = scale(mean_mod)) -> me_heatmap
me_heatmap$day <- as.character(astro$day[match(me_heatmap$sample, astro$sample)])
me_heatmap$trt <- as.character(astro$trt[match(me_heatmap$sample, astro$sample)])
me_heatmap$sample <- fct_relevel(me_heatmap$sample, "1_FGF", "2_FGF", "3_FGF", "1_PF", "2_PF", "3_PF", "37_FGF", "45_FGF", "28_PF", "38_PF")
me_heatmap <- me_heatmap[me_heatmap$variable %in% c("MEgreen", "MEred", "MEblue", "MEblack"), ]
me_heatmap$variable <- as.factor(as.character(me_heatmap$variable))
me_heatmap$variable <- str_to_title(sapply(strsplit(as.character(me_heatmap$variable), "ME"),"[", 2))
me_heatmap$variable <- fct_relevel(me_heatmap$variable, "Red", "Black", "Green", "Blue")
diffmod_heatmap <- ggplot(me_heatmap, aes(sample, variable)) +
geom_tile(aes(fill = scaled_mod), colour = "white", size=.5) + ylab(NULL) + xlab(NULL) +
scale_fill_gsea(limits=c(-2,3), name="Scaled\nExpression") +
facet_grid(. ~ day + trt, scales = "free_x") + theme_pubr(border = T, legend="right") + ggpubr::labs_pubr() +
theme(axis.text.x = element_blank(), panel.spacing = unit(.25, "lines"), axis.ticks.x = element_blank())
diffmod_heatmap
goterms <- lapply(hubgenes[c("red", "green", "blue", "black")], function(x) {
x <- gprofiler(x,
ordered_query = T, organism = "mmusculus", significant = T, custom_bg = colnames(datExpr),
src_filter = c("GO:BP", "GO:MF", "REAC", "KEGG"), hier_filtering = "strong",
min_isect_size = 2,
sort_by_structure = T, exclude_iea = T,
min_set_size = 10, max_set_size = 300, correction_method = "fdr"
)
x <- x[order(x$p.value), ]
return(x)
})
goterms %>% bind_rows(.id="id") %>%
mutate(padj=p.adjust(p.value, "fdr")) -> godat
write_csv(godat, path=here("output/glia/wgcna/astrocyte_wgcna_goterms.csv"))
goterms %>%
bind_rows(.id = "id") %>%
mutate(padj = p.adjust(p.value, "fdr")) %>%
group_by(id) %>%
top_n(5, -padj) %>%
select(p.value, padj, term.name, domain, id) %>%
arrange(id) -> goplot
goplot$id <- str_to_title(fct_relevel(goplot$id, "red", "green", "black"," blue"))
Warning: Unknown levels in `f`: blue
goterm <- ggplot(goplot, aes(x = str_to_title(str_wrap(term.name, 15)), y = -log10(padj), fill = domain)) +
geom_col() + scale_fill_npg() +
facet_wrap(. ~ id, scales = "free_x", ncol = 2) +
theme_pubr(legend = "right") +
theme(
text = element_text(size = 8),
legend.text = element_text(size=8, face="bold"),
legend.title = element_text(size=12, face="bold"),
axis.text.x = element_text(angle = 45, hjust = 1),
strip.text.x = element_text(face="bold", size=8)
) +
xlab(NULL) + geom_hline(yintercept = -log10(0.05), linetype = "dashed", size = .75)
color <- c("red","green","blue","black")
lapply(color, function(col) {
maxsize <- 15
hubs <- data.frame(genes=hubgenes[[col]]$gene[1:maxsize], kme = hubgenes[[col]]$kme[1:maxsize], mod = rep(col,15))
}) %>% bind_rows() -> hub_plot
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): Unequal factor levels: coercing to character
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
Warning in bind_rows_(x, .id): binding character and factor vector,
coercing into character vector
adj[hub_plot$genes, hub_plot$genes] %>%
graph.adjacency(mode = "undirected", weighted = T, diag = FALSE) %>%
as_tbl_graph(g1) %>% upgrade_graph() %>% activate(nodes) %>% dplyr::mutate(mod=hub_plot$mod) %>%
dplyr::mutate(kme=hub_plot$kme) %>% activate(edges) %>% dplyr::filter(weight>.15) %>% activate(nodes) %>% filter(!node_is_isolated()) -> hub_plot
geneplot <- ggraph(hub_plot, layout = 'kk') +
geom_edge_link(color="darkgrey", aes(alpha = weight), show.legend = F) +
scale_edge_width(range = c(0.2, 1)) + geom_node_text(aes(label = name), fontface="bold", size=3) +
geom_node_point(aes(fill=mod, size=kme), shape=21, alpha=0.5) +
scale_size(range = c(2,15), name = "kME") +
scale_fill_manual(values = c("black","blue","green","red"), name = "Module") +
guides(fill = guide_legend(override.aes = list(size=5)),
size = guide_legend(override.aes = list(size=c(5,7,9,11)))) +
theme_graph() + theme(legend.title.align=0.5,
legend.box = "horizontal", legend.position = c(0.8, 0.3))
ggsave(geneplot, filename=here("output/mod_graph.png"), h=7, w=7)
lps1 <- read_tsv(here("data/lps1.txt"))
mcao1 <- read_tsv(here("data/mcao1.txt"))
mcao3 <- read_tsv(here("data/mcao_d3.txt"))
mcao7 <- read_tsv(here("data/mcaod7.txt"))
nr <- readxl::read_xlsx(here("data/neur_astro_induce.xlsx"))
sr <- readxl::read_xlsx(here("data/synaptic_activity_induced.xlsx"))
nr %>%
select(gene_name, `Fold Change`, padj_deseq2) %>%
filter(`Fold Change` > 2, padj_deseq2 < 0.05) -> nr
sr %>%
select(gene_name, Fold_Change, DESeq2_padj) %>%
filter(Fold_Change > 2, DESeq2_padj < 0.05) -> sr
mcao1 %>%
filter(logFC < (-2)) %>%
arrange(logFC) %>%
distinct(Gene.symbol) %>%
filter(!grepl("///", Gene.symbol)) -> mcao_gene
lps1 %>%
filter(logFC < (-2)) %>%
arrange(logFC) %>%
distinct(Gene.symbol) %>%
filter(!grepl("///", Gene.symbol)) -> lps_gene
mcao3 %>%
filter(logFC < (-2)) %>%
arrange(logFC) %>%
distinct(Gene.symbol) %>%
filter(!grepl("///", Gene.symbol)) -> mcao3_gene
mcao7 %>%
filter(logFC < (-2)) %>%
arrange(logFC) %>%
distinct(Gene.symbol) %>%
filter(!grepl("///", Gene.symbol)) -> mcao7_gene
intersect(lps_gene$Gene.symbol, mcao_gene$Gene.symbol) -> panreact
lps_uniq <- lps_gene$Gene.symbol[!lps_gene$Gene.symbol %in% mcao_gene$Gene.symbol]
mcao_uniq <- mcao_gene$Gene.symbol[!mcao_gene$Gene.symbol %in% lps_gene$Gene.symbol]
mcao3_uniq <- mcao3_gene$Gene.symbol[!mcao3_gene$Gene.symbol %in% lps_gene$Gene.symbol]
mcao7_uniq <- mcao7_gene$Gene.symbol[!mcao7_gene$Gene.symbol %in% lps_gene$Gene.symbol]
d %>%
filter(id %in% c("red", "green","blue","black")) %>%
group_by(id) -> astro_mod
astro_mod %>%
group_split() %>%
map("gene") -> astro_gene
group_keys(astro_mod) %>% pull(id) -> mod_names
lapply(astro_gene, function(x) {
a <- 1 - phyper(sum(x %in% lps_uniq), length(lps_uniq), 5000, length(x), log.p = F)
b <- 1 - phyper(sum(x %in% mcao_uniq), length(mcao_uniq), 5000, length(x), log.p = F)
c <- 1 - phyper(sum(x %in% mcao3_uniq), length(mcao3_uniq), 5000, length(x), log.p = F)
d <- 1 - phyper(sum(x %in% mcao7_uniq), length(mcao7_uniq), 5000, length(x), log.p = F)
e <- 1 - phyper(sum(x %in% panreact), length(panreact), 5000, length(x), log.p = F)
f <- 1 - phyper(sum(x %in% nr$gene_name), length(nr$gene_name), 5000, length(x), log.p = F)
g <- 1 - phyper(sum(x %in% sr$gene_name), length(sr$gene_name), 5000, length(x), log.p = F)
return(data.frame(A1 = a, A2 = b, PAN = e, NR = f, SR = g))
}) %>% bind_rows() -> overlap_test
as.data.frame(sapply(overlap_test, function(x) p.adjust(x, n = dim(overlap_test)[1] * dim(overlap_test)[2]))) -> overlap_test
overlap_test$mod <- mod_names
overlap_pval <- reshape2::melt(overlap_test)
set_plot <- ggplot(overlap_pval, aes(x = fct_relevel(mod, "red", "black", "green","blue"), y = variable)) + geom_tile(size = 1, color = "white", fill="grey99") +
geom_point(aes(size = if_else(-log10(value)<1.3,true = 0, false = -log10(value)), fill = if_else(-log10(value)<1.3,true = "black", false = "red")), shape=21) +
scale_size(name= expression(-log[10] ~ pvalue)) +
scale_fill_manual(values=c("black","red"), guide=F) + coord_flip() + theme_pubr(legend = "right") + xlab(NULL) + ylab(NULL) + labs_pubr() +
theme(axis.text.y = element_blank(), axis.ticks.y = element_blank(), axis.text.x = element_text(angle=45, hjust=1))
set_plot
plot_grid(diffmod_heatmap, set_plot, align = "hv", axis="tb", rel_widths = c(1.5,1))
ggsave(here("output/astro_charact.png"), h=3,w=10)
sessionInfo()
R version 3.5.3 (2019-03-11)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Storage
Matrix products: default
BLAS/LAPACK: /usr/lib64/libopenblas-r0.3.3.so
locale:
[1] LC_CTYPE=en_DK.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_DK.UTF-8 LC_COLLATE=en_DK.UTF-8
[5] LC_MONETARY=en_DK.UTF-8 LC_MESSAGES=en_DK.UTF-8
[7] LC_PAPER=en_DK.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_DK.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] cowplot_1.0.0 ggExtra_0.9 eulerr_5.1.0
[4] here_0.1 gProfileR_0.6.7 RColorBrewer_1.1-2
[7] igraph_1.2.4.1 ggpubr_0.2.1 magrittr_1.5
[10] ggbeeswarm_0.6.0 lme4_1.1-21 Matrix_1.2-17
[13] emmeans_1.3.5.1 ggsci_2.9 parallelDist_0.2.4
[16] reshape2_1.4.3 ggraph_1.0.2 tidygraph_1.1.2
[19] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.3
[22] purrr_0.3.2 readr_1.3.1.9000 tidyr_0.8.3
[25] tibble_2.1.3 ggplot2_3.2.1 tidyverse_1.2.1
[28] genefilter_1.64.0 cluster_2.1.0 WGCNA_1.68
[31] fastcluster_1.1.25 dynamicTreeCut_1.63-1 Seurat_3.0.3.9036
loaded via a namespace (and not attached):
[1] estimability_1.3 R.methodsS3_1.7.1 coda_0.19-3
[4] acepack_1.4.1 bit64_0.9-7 knitr_1.23
[7] irlba_2.3.3 multcomp_1.4-10 R.utils_2.9.0
[10] data.table_1.12.2 rpart_4.1-15 RCurl_1.95-4.12
[13] doParallel_1.0.14 generics_0.0.2 metap_1.1
[16] BiocGenerics_0.28.0 preprocessCore_1.44.0 TH.data_1.0-10
[19] RSQLite_2.1.1 RANN_2.6.1 future_1.14.0
[22] bit_1.1-14 xml2_1.2.0 lubridate_1.7.4
[25] httpuv_1.5.1 assertthat_0.2.1 viridis_0.5.1
[28] xfun_0.8 hms_0.5.0 evaluate_0.14
[31] promises_1.0.1 DEoptimR_1.0-8 caTools_1.17.1.2
[34] readxl_1.3.1 DBI_1.0.0 htmlwidgets_1.3
[37] stats4_3.5.3 backports_1.1.4 annotate_1.60.1
[40] gbRd_0.4-11 RcppParallel_4.4.3 vctrs_0.2.0
[43] Biobase_2.42.0 ROCR_1.0-7 withr_2.1.2
[46] ggforce_0.3.0.9000 robustbase_0.93-5 checkmate_1.9.4
[49] sctransform_0.2.0 ape_5.3 lazyeval_0.2.2
[52] crayon_1.3.4 labeling_0.3 pkgconfig_2.0.2
[55] tweenr_1.0.1 nlme_3.1-140 vipor_0.4.5
[58] nnet_7.3-12 rlang_0.4.0 globals_0.12.4
[61] miniUI_0.1.1.1 sandwich_2.5-1 modelr_0.1.4
[64] rsvd_1.0.2 cellranger_1.1.0 rprojroot_1.3-2
[67] polyclip_1.10-0 matrixStats_0.54.0 lmtest_0.9-37
[70] boot_1.3-22 zoo_1.8-6 base64enc_0.1-3
[73] beeswarm_0.2.3 whisker_0.3-2 ggridges_0.5.1
[76] png_0.1-7 viridisLite_0.3.0 bitops_1.0-6
[79] R.oo_1.22.0 KernSmooth_2.23-15 blob_1.1.1
[82] workflowr_1.4.0 robust_0.4-18.1 S4Vectors_0.20.1
[85] ggsignif_0.5.0 scales_1.0.0 memoise_1.1.0
[88] plyr_1.8.4 ica_1.0-2 gplots_3.0.1.1
[91] bibtex_0.4.2 gdata_2.18.0 compiler_3.5.3
[94] lsei_1.2-0 rrcov_1.4-7 fitdistrplus_1.0-14
[97] cli_1.1.0 listenv_0.7.0 pbapply_1.4-1
[100] htmlTable_1.13.1 Formula_1.2-3 MASS_7.3-51.4
[103] tidyselect_0.2.5 stringi_1.4.3 highr_0.8
[106] yaml_2.2.0 latticeExtra_0.6-28 ggrepel_0.8.1
[109] grid_3.5.3 tools_3.5.3 future.apply_1.3.0
[112] parallel_3.5.3 rstudioapi_0.10 foreach_1.4.4
[115] foreign_0.8-71 git2r_0.25.2 gridExtra_2.3
[118] farver_1.1.0 Rtsne_0.15 digest_0.6.20
[121] shiny_1.3.2 Rcpp_1.0.2 broom_0.5.2
[124] SDMTools_1.1-221.1 later_0.8.0 RcppAnnoy_0.0.12
[127] httr_1.4.1 AnnotationDbi_1.44.0 npsurv_0.4-0
[130] Rdpack_0.11-0 colorspace_1.4-1 rvest_0.3.4
[133] XML_3.98-1.20 fs_1.3.1 reticulate_1.13
[136] IRanges_2.16.0 splines_3.5.3 uwot_0.1.3
[139] plotly_4.9.0 fit.models_0.5-14 xtable_1.8-4
[142] jsonlite_1.6 nloptr_1.2.1 zeallot_0.1.0
[145] R6_2.4.0 Hmisc_4.2-0 pillar_1.4.2
[148] htmltools_0.3.6 mime_0.7 glue_1.3.1
[151] minqa_1.2.4 codetools_0.2-16 tsne_0.1-3
[154] pcaPP_1.9-73 mvtnorm_1.0-11 lattice_0.20-38
[157] pbkrtest_0.4-7 leiden_0.3.1 gtools_3.8.1
[160] GO.db_3.7.0 survival_2.44-1.1 rmarkdown_1.13
[163] munsell_0.5.0 iterators_1.0.10 impute_1.56.0
[166] haven_2.1.0 gtable_0.3.0