Last updated: 2020-11-04

Checks: 7 0

Knit directory: R_gene_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2.9000). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20200917) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 2d9c3db. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/

Untracked files:
    Untracked:  data/Brec_R1.txt
    Untracked:  data/Brec_R2.txt
    Untracked:  data/CR15_R1.txt
    Untracked:  data/CR15_R2.txt
    Untracked:  data/CR_14_R1.txt
    Untracked:  data/CR_14_R2.txt
    Untracked:  data/KS_R1.txt
    Untracked:  data/KS_R2.txt
    Untracked:  data/NBS_PAV.txt.gz
    Untracked:  data/NLR_PAV_GD.txt
    Untracked:  data/NLR_PAV_GM.txt
    Untracked:  data/PAVs_newick.txt
    Untracked:  data/PPR1.txt
    Untracked:  data/PPR2.txt
    Untracked:  data/SNPs_newick.txt
    Untracked:  data/bac.txt
    Untracked:  data/brown.txt
    Untracked:  data/cy3.txt
    Untracked:  data/cy5.txt
    Untracked:  data/early.txt
    Untracked:  data/flowerings.txt
    Untracked:  data/foregeye.txt
    Untracked:  data/height.txt
    Untracked:  data/late.txt
    Untracked:  data/mature.txt
    Untracked:  data/motting.txt
    Untracked:  data/mvp.kin.bin
    Untracked:  data/mvp.kin.desc
    Untracked:  data/oil.txt
    Untracked:  data/pdh.txt
    Untracked:  data/protein.txt
    Untracked:  data/rust_tan.txt
    Untracked:  data/salt.txt
    Untracked:  data/seedq.txt
    Untracked:  data/seedweight.txt
    Untracked:  data/stem_termination.txt
    Untracked:  data/sudden.txt
    Untracked:  data/virus.txt
    Untracked:  data/yield.txt

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/yield_link.Rmd) and HTML (docs/yield_link.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 2d9c3db Philipp Bayer 2020-11-04 wflow_publish(c(“analysis/index.Rmd”, “analysis/yield_link.Rmd”))
html f34dd48 Philipp Bayer 2020-11-02 Build site.
Rmd be2f299 Philipp Bayer 2020-11-02 wflow_publish(“analysis/yield_link.Rmd”)
html 58f8610 Philipp Bayer 2020-11-02 Build site.
Rmd 5166687 Philipp Bayer 2020-11-02 wflow_publish(“analysis/yield_link.Rmd”)
Rmd dae157b Philipp Bayer 2020-09-24 Update of analysis
html dae157b Philipp Bayer 2020-09-24 Update of analysis

knitr::opts_chunk$set(warning = FALSE, message = FALSE) 
library(tidyverse)
-- Attaching packages ------------------------------------------------------------------------------------------------------------------- tidyverse 1.3.0 --
v ggplot2 3.3.2     v purrr   0.3.4
v tibble  3.0.2     v dplyr   1.0.0
v tidyr   1.1.0     v stringr 1.4.0
v readr   1.3.1     v forcats 0.5.0
-- Conflicts ---------------------------------------------------------------------------------------------------------------------- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()    masks stats::lag()
library(patchwork)
library(ggsci)
library(dabestr)
Loading required package: magrittr

Attaching package: 'magrittr'
The following object is masked from 'package:purrr':

    set_names
The following object is masked from 'package:tidyr':

    extract
library(dabestr)
library(cowplot)

********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************

Attaching package: 'cowplot'
The following object is masked from 'package:patchwork':

    align_plots
library(ggsignif)
library(ggforce)
library(lme4)
Loading required package: Matrix

Attaching package: 'Matrix'
The following objects are masked from 'package:tidyr':

    expand, pack, unpack
library(lmerTest)

Attaching package: 'lmerTest'
The following object is masked from 'package:lme4':

    lmer
The following object is masked from 'package:stats':

    step
theme_set(theme_cowplot())

Data loading

npg_col = pal_npg("nrc")(9)
col_list <- c(`Wild-type`=npg_col[8],
   Landrace = npg_col[3],
  `Old cultivar`=npg_col[2],
  `Modern cultivar`=npg_col[4])

pav_table <- read_tsv('./data/soybean_pan_pav.matrix_gene.txt.gz')
nbs <- read_tsv('./data/Lee.NBS.candidates.lst', col_names = c('Name', 'Class'))
nbs
# A tibble: 486 x 2
   Name                   Class
   <chr>                  <chr>
 1 UWASoyPan00953.t1      CN   
 2 GlymaLee.13G222900.1.p CN   
 3 GlymaLee.18G227000.1.p CN   
 4 GlymaLee.18G080600.1.p CN   
 5 GlymaLee.20G036200.1.p CN   
 6 UWASoyPan01876.t1      CN   
 7 UWASoyPan04211.t1      CN   
 8 GlymaLee.19G105400.1.p CN   
 9 GlymaLee.18G085100.1.p CN   
10 GlymaLee.11G142600.1.p CN   
# ... with 476 more rows
# have to remove the .t1s 
nbs$Name <- gsub('.t1','', nbs$Name)
nbs_pav_table <- pav_table %>% filter(Individual %in% nbs$Name)
names <- c()
presences <- c()

for (i in seq_along(nbs_pav_table)){
  if ( i == 1) next
  thisind <- colnames(nbs_pav_table)[i]
  pavs <- nbs_pav_table[[i]]
  presents <- sum(pavs)
  names <- c(names, thisind)
  presences <- c(presences, presents)
}
nbs_res_tibb <- new_tibble(list(names = names, presences = presences))
groups <- read_csv('./data/Table_of_cultivar_groups.csv')
groups <- groups %>% 
  mutate(`Group in violin table` = str_replace_all(`Group in violin table`, 'landrace', 'Landrace')) %>%
  mutate(`Group in violin table` = str_replace_all(`Group in violin table`, 'Old_cultivar', 'Old cultivar')) %>%
  mutate(`Group in violin table` = str_replace_all(`Group in violin table`, 'Modern_cultivar', 'Modern cultivar'))

groups$`Group in violin table` <-
  factor(
    groups$`Group in violin table`,
    levels = c('Wild-type',
               'Landrace',
               'Old cultivar',
               'Modern cultivar')
  )

nbs_joined_groups <-
  inner_join(nbs_res_tibb, groups, by = c('names' = 'Data-storage-ID'))

Linking with yield

Can we link the trajectory of NLR genes with the trajectory of yield across the history of soybean breeding? let’s make a simple regression for now

Yield

yield <- read_tsv('./data/yield.txt')
yield_join <- inner_join(nbs_res_tibb, yield, by=c('names'='Line'))
yield_join %>% ggplot(aes(x=presences, y=Yield)) + geom_hex() + geom_smooth() +
  xlab('NLR gene count')

Protein

protein <- read_tsv('./data/protein_phenotype.txt')
protein_join <- left_join(nbs_res_tibb, protein, by=c('names'='Line')) %>% filter(!is.na(Protein))
protein_join %>% ggplot(aes(x=presences, y=Protein)) + geom_hex() + geom_smooth() +
  xlab('NLR gene count')

summary(lm(Protein ~ presences, data = protein_join))

Call:
lm(formula = Protein ~ presences, data = protein_join)

Residuals:
     Min       1Q   Median       3Q      Max 
-11.8479  -2.1274  -0.3336   1.9959  10.0949 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) -7.98158    7.24125  -1.102    0.271    
presences    0.11786    0.01624   7.258 8.07e-13 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.106 on 960 degrees of freedom
Multiple R-squared:  0.05203,   Adjusted R-squared:  0.05104 
F-statistic: 52.69 on 1 and 960 DF,  p-value: 8.075e-13

Seed weight

Let’s look at seed weight:

seed_weight <- read_tsv('./data/Seed_weight_Phenotype.txt', col_names = c('names', 'wt'))
seed_join <- left_join(nbs_res_tibb, seed_weight) %>% filter(!is.na(wt))
seed_join %>% filter(wt > 5) %>%  ggplot(aes(x=presences, y=wt)) + geom_hex() + geom_smooth() +
  ylab('Seed weight') +
  xlab('NLR gene count')

summary(lm(wt ~ presences, data = seed_join))

Call:
lm(formula = wt ~ presences, data = seed_join)

Residuals:
     Min       1Q   Median       3Q      Max 
-12.2910  -2.8692   0.1462   2.7771  19.6962 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 91.40656   14.67990   6.227 8.28e-10 ***
presences   -0.17636    0.03298  -5.348 1.21e-07 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.714 on 690 degrees of freedom
Multiple R-squared:  0.0398,    Adjusted R-squared:  0.0384 
F-statistic:  28.6 on 1 and 690 DF,  p-value: 1.213e-07

Oil content

And now let’s look at the oil phenotype:

oil <- read_tsv('./data/oil_phenotype.txt')
oil_join <- left_join(nbs_res_tibb, oil, by=c('names'='Line')) %>% filter(!is.na(Oil))
oil_join
# A tibble: 962 x 3
   names presences   Oil
   <chr>     <dbl> <dbl>
 1 AB-01       445  17.6
 2 AB-02       454  16.8
 3 BR-24       455  20.6
 4 ESS         454  20.9
 5 For         448  21  
 6 HN001       448  23.6
 7 HN002       444  18.5
 8 HN003       446  17.5
 9 HN004       442  18.9
10 HN005       440  15.5
# ... with 952 more rows
oil_join %>%  ggplot(aes(x=presences, y=Oil)) + geom_hex() + geom_smooth() +
  xlab('NLR gene count')

summary(lm(Oil ~ presences, data = oil_join))

Call:
lm(formula = Oil ~ presences, data = oil_join)

Residuals:
     Min       1Q   Median       3Q      Max 
-10.4376  -1.9081   0.4846   2.2401   9.0361 

Coefficients:
             Estimate Std. Error t value Pr(>|t|)    
(Intercept) 118.03941    7.31646   16.13   <2e-16 ***
presences    -0.22591    0.01641  -13.77   <2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.139 on 960 degrees of freedom
Multiple R-squared:  0.1649,    Adjusted R-squared:  0.1641 
F-statistic: 189.6 on 1 and 960 DF,  p-value: < 2.2e-16

OK there are many, many outliers here. Clearly I’ll have to do something fancier - for example, using the first two PCs as covariates might get rid of some of those outliers.

Boxplots per group

Yield

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(yield, by=c('names'='Line')) %>% 
  ggplot(aes(x=`Group in violin table`, y=Yield, fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE) +
  ylab('Protein') +
  xlab('Accession group')

And let’s check the dots:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(yield_join, by = 'names') %>% 
  ggplot(aes(y=presences.x, x=Yield, color=`Group in violin table`)) +
  geom_point() + 
  scale_color_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +  
  ylab('NLR gene count')

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(yield_join, by = 'names') %>% 
  filter(`Group in violin table` != 'Landrace') %>% 
  ggplot(aes(x=presences.x, y=Yield, color=`Group in violin table`)) +
  geom_point() + 
  scale_color_manual(values = col_list) + 
  theme_minimal_hgrid() +
  geom_smooth() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +  
  xlab('NLR gene count')

## Protein

protein vs. the four groups:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(protein, by=c('names'='Line')) %>% 
  ggplot(aes(x=`Group in violin table`, y=Protein, fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE) +
  ylab('Protein') +
  xlab('Accession group')

Seed weight

And seed weight:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(seed_join) %>% 
  ggplot(aes(x=`Group in violin table`, y=wt, fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE) +
  ylab('Seed weight') +
  xlab('Accession group')

Wow, that’s breeding!

Oil content

And finally, Oil content:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(oil_join, by = 'names') %>% 
  ggplot(aes(x=`Group in violin table`, y=Oil, fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE) +
  ylab('Oil content') +
  xlab('Accession group')

Oha, a single star. That’s p < 0.05!

Let’s redo the above hexplot, but also color the dots by group.

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(oil_join, by = 'names') %>% 
  ggplot(aes(x=presences.x, y=Oil, color=`Group in violin table`)) +
  geom_point() + 
  scale_color_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +  
  xlab('NLR gene count')

Oha, so it’s the wild-types that drag this out a lot.

Let’s remove them and see what it looks like:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(oil_join, by = 'names') %>% 
  filter(`Group in violin table` %in% c('Old cultivar', 'Modern cultivar')) %>% 
  ggplot(aes(x=presences.x, y=Oil, color=`Group in violin table`)) +
  geom_point() + 
  scale_color_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +  
  xlab('NLR gene count') +
  geom_smooth()

Let’s remove that one outlier:

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(oil_join, by = 'names') %>% 
  filter(`Group in violin table` %in% c('Old cultivar', 'Modern cultivar')) %>% 
  filter(Oil > 13) %>% 
  ggplot(aes(x=presences.x, y=Oil, color=`Group in violin table`)) +
  geom_point() + 
  scale_color_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +  
  xlab('NLR gene count') +
  geom_smooth()

Does the above oil content boxplot become different if we exclude the one outlier? I’d bet so

nbs_joined_groups %>% 
  filter(!is.na(`Group in violin table`)) %>% 
  inner_join(oil_join, by = 'names') %>% 
  filter(names != 'USB-393') %>% 
  ggplot(aes(x=`Group in violin table`, y=Oil, fill = `Group in violin table`)) + 
  geom_boxplot() +
  scale_fill_manual(values = col_list) + 
  theme_minimal_hgrid() +
  theme(axis.text.x = element_text(size=12),
        axis.text.y = element_text(size=12)) +
  geom_signif(comparisons = list(c('Wild-type', 'Landrace'),
                                 c('Old cultivar', 'Modern cultivar')), 
              map_signif_level = T) +
  guides(fill=FALSE) +
  ylab('Oil content') +
  xlab('Accession group')

Nope, still significantly higher in modern cultivars!

Mixed modeling

Alright here’s my hypothesis: There’s a link between cultivar status (Old, Wild, Landrace, Modern), r-gene count, and yield, but it’s ‘hidden’ by country differences.

Great tutorial here: https://ourcodingclub.github.io/tutorials/mixed-models

So we’ll have to build some lme4 models!

Oil

nbs_joined_groups$presences2 <- scale(nbs_joined_groups$presences, center=T, scale=T)
hist(nbs_joined_groups$presences2)

oil_nbs_joined_groups <- nbs_joined_groups %>% inner_join(oil_join, by = 'names') 
oil_nbs_joined_groups$Oil2 <- scale(oil_nbs_joined_groups$Oil, center=T, scale=T)
basic.lm <- lm(Oil2 ~ presences2, data=oil_nbs_joined_groups)
ggplot(oil_nbs_joined_groups, aes(x = presences2, y = Oil2)) +
  geom_point() +
  geom_smooth(method = "lm")

Hm looks messy, you can see two groups

plot(basic.lm, which = 1)

which is confirmed by the messy line

plot(basic.lm, which = 2)

and this garbage qqplot.

So let’s build an lmer model!

mixed.lmer <- lmer(Oil2 ~ presences2 + (1|`Group in violin table`), data=oil_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Oil2 ~ presences2 + (1 | `Group in violin table`)
   Data: oil_nbs_joined_groups

REML criterion at convergence: 1872.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.5879 -0.5672  0.0869  0.6631  3.2111 

Random effects:
 Groups                Name        Variance Std.Dev.
 Group in violin table (Intercept) 1.3349   1.1554  
 Residual                          0.4075   0.6384  
Number of obs: 951, groups:  Group in violin table, 4

Fixed effects:
             Estimate Std. Error        df t value Pr(>|t|)  
(Intercept)  -0.04360    0.57867   2.99844  -0.075   0.9447  
presences2   -0.05350    0.02394 947.27006  -2.234   0.0257 *
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
           (Intr)
presences2 -0.004

So the Variance for Group in violin table is 1.3349, that means it’s 1.3349/(1.3349+0.4075) *100 = 76% of the variance is explained by the four groups!

plot(mixed.lmer)

qqnorm(resid(mixed.lmer))
qqline(resid(mixed.lmer))

These still look fairly bad - better than before, but the QQ plot still isn’t on the line.

Let’s quickly check yield too

Yield

yield_nbs_joined_groups <- nbs_joined_groups %>% inner_join(yield_join, by = 'names') 
yield_nbs_joined_groups$Yield2 <-scale(yield_nbs_joined_groups$Yield, center=T, scale=T)
mixed.lmer <- lmer(Yield2 ~ presences2 + (1|`Group in violin table`), data=yield_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Yield2 ~ presences2 + (1 | `Group in violin table`)
   Data: yield_nbs_joined_groups

REML criterion at convergence: 2060.4

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.1643 -0.6819  0.0316  0.6948  2.8002 

Random effects:
 Groups                Name        Variance Std.Dev.
 Group in violin table (Intercept) 0.6466   0.8041  
 Residual                          0.8600   0.9274  
Number of obs: 761, groups:  Group in violin table, 3

Fixed effects:
             Estimate Std. Error        df t value Pr(>|t|)    
(Intercept)   0.23641    0.46910   1.98335   0.504 0.664692    
presences2   -0.15364    0.04172 757.46580  -3.683 0.000247 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
           (Intr)
presences2 0.025 

Percentage explained by breeding group: 0.6466 / (0.6466+0.8600)*100 = 42%

plot(mixed.lmer)

qqnorm(resid(mixed.lmer))
qqline(resid(mixed.lmer))

:O

p-value of 0.000247 for the normalised presences while accounting for the breeding group, that’s beautiful.

Adding country

We should also add the country the plant is from as a random effect, that definitely has an influence too (perhaps a stronger one???)

Yield

country <- read_csv('./data/Cultivar_vs_country.csv')

names(country) <- c('names', 'PI-ID', 'Country')

yield_country_nbs_joined_groups <- yield_nbs_joined_groups %>% inner_join(country)
mixed.lmer <- lmer(Yield2 ~ presences2 + (1|`Group in violin table`) + (1|Country), data=yield_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Yield2 ~ presences2 + (1 | `Group in violin table`) + (1 | Country)
   Data: yield_country_nbs_joined_groups

REML criterion at convergence: 1957

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.09429 -0.56737  0.03072  0.65680  2.89981 

Random effects:
 Groups                Name        Variance Std.Dev.
 Country               (Intercept) 0.3807   0.6170  
 Group in violin table (Intercept) 0.4178   0.6464  
 Residual                          0.7614   0.8726  
Number of obs: 741, groups:  Country, 40; Group in violin table, 3

Fixed effects:
             Estimate Std. Error        df t value Pr(>|t|)   
(Intercept)   0.07150    0.40194   2.28533   0.178  0.87336   
presences2   -0.11258    0.04116 726.98206  -2.735  0.00639 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
           (Intr)
presences2 0.051 

Nice! Yield is negatively correlated with the number of NLR genes when accounting for breeding group AND country

ggplot(yield_country_nbs_joined_groups, aes(x = presences2, y = Yield2, colour = Country)) +
      facet_wrap(~`Group in violin table`, nrow=2) +   # a panel for each mountain range
      geom_point(alpha = 0.5) +
      theme_classic() +
      geom_line(data = cbind(yield_country_nbs_joined_groups, pred = predict(mixed.lmer)), aes(y = pred), size = 1) + 
      theme_minimal_hgrid() +
      theme(legend.position = "none") +
      xlab('Scaled and centered NLR gene count') +
      ylab('Scaled and centered yield')

Some diagnostics:

plot(mixed.lmer)

qqnorm(resid(mixed.lmer))
qqline(resid(mixed.lmer))

Hm, the qqplot looks slightly worse than when I use maturity group alone, interesting!

BIG DISCLAIMER: Currently, I treat country and group not as nested variables, they’re independent. I think that is the way it should be in this case but I’m thinking.

Non-normalised yield

Let’s see whether the ‘raw’ values perform the same.

mixed.lmer <- lmer(Yield ~ presences.x + (1|`Group in violin table`) + (1|Country), data=yield_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Yield ~ presences.x + (1 | `Group in violin table`) + (1 | Country)
   Data: yield_country_nbs_joined_groups

REML criterion at convergence: 1679.6

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.09429 -0.56737  0.03072  0.65680  2.89981 

Random effects:
 Groups                Name        Variance Std.Dev.
 Country               (Intercept) 0.2602   0.5101  
 Group in violin table (Intercept) 0.2856   0.5345  
 Residual                          0.5205   0.7215  
Number of obs: 741, groups:  Country, 40; Group in violin table, 3

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)    
(Intercept)   9.011013   2.481360 677.994843   3.631 0.000303 ***
presences.x  -0.015192   0.005555 726.982171  -2.735 0.006389 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
            (Intr)
presences.x -0.991

Oh, lower p-values for the intercept

ggplot(yield_country_nbs_joined_groups, aes(x = presences.x, y = Yield, colour = Country)) +
      facet_wrap(~`Group in violin table`, nrow=2) +   # a panel for each mountain range
      geom_point(alpha = 0.5) +
      theme_classic() +
      geom_line(data = cbind(yield_country_nbs_joined_groups, pred = predict(mixed.lmer)), aes(y = pred), size = 1) + 
      theme_minimal_hgrid() +
      theme(legend.position = "none") +
      xlab('Raw NLR gene count') +
      ylab('Raw yield')

plot(mixed.lmer)

qqnorm(resid(mixed.lmer))
qqline(resid(mixed.lmer))

More complex models

If I add random slopes to either groups not much changes, I do get warnings indicating that there’s not much in the data:

mixed.lmer <- lmer(Yield2 ~ presences2 + (1 + presences2|`Group in violin table`) + (1|Country), data=yield_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Yield2 ~ presences2 + (1 + presences2 | `Group in violin table`) +  
    (1 | Country)
   Data: yield_country_nbs_joined_groups

REML criterion at convergence: 1954.8

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.09789 -0.56422  0.04471  0.67067  2.88976 

Random effects:
 Groups                Name        Variance Std.Dev. Corr
 Country               (Intercept) 0.3920   0.6261       
 Group in violin table (Intercept) 0.3858   0.6211       
                       presences2  0.0310   0.1761   0.30
 Residual                          0.7564   0.8697       
Number of obs: 741, groups:  Country, 40; Group in violin table, 3

Fixed effects:
            Estimate Std. Error       df t value Pr(>|t|)
(Intercept)  0.02964    0.38964  2.29148   0.076    0.945
presences2  -0.22515    0.12370  1.66243  -1.820    0.235

Correlation of Fixed Effects:
           (Intr)
presences2 0.269 
mixed.lmer <- lmer(Yield2 ~ presences2 + (1|`Group in violin table`) + (1 + presences2|Country), data=yield_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: 
Yield2 ~ presences2 + (1 | `Group in violin table`) + (1 + presences2 |  
    Country)
   Data: yield_country_nbs_joined_groups

REML criterion at convergence: 1956.7

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.10144 -0.57197  0.03398  0.65448  2.90193 

Random effects:
 Groups                Name        Variance Std.Dev. Corr
 Country               (Intercept) 0.399336 0.6319       
                       presences2  0.001875 0.0433   1.00
 Group in violin table (Intercept) 0.425089 0.6520       
 Residual                          0.761354 0.8726       
Number of obs: 741, groups:  Country, 40; Group in violin table, 3

Fixed effects:
            Estimate Std. Error       df t value Pr(>|t|)   
(Intercept)  0.07736    0.40600  2.31158   0.191  0.86434   
presences2  -0.11679    0.04281 34.37826  -2.728  0.00997 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Correlation of Fixed Effects:
           (Intr)
presences2 0.116 
convergence code: 0
boundary (singular) fit: see ?isSingular

Oh, a significant p-value, let’s plot plot that and compare with he previous plot:

ggplot(yield_country_nbs_joined_groups, aes(x = presences2, y = Yield2, colour = Country)) +
      facet_wrap(~`Group in violin table`, nrow=2) +   # a panel for each mountain range
      geom_point(alpha = 0.5) +
      theme_classic() +
      geom_line(data = cbind(yield_country_nbs_joined_groups, pred = predict(mixed.lmer)), aes(y = pred), size = 1) + 
      theme_minimal_hgrid() +
      theme(legend.position = "none") +
      xlab('Scaled and centered NLR gene count') +
      ylab('Scaled and centered yield')

Quite similar, mostly downwards trajectories for each country.

And now both random slopes:

mixed.lmer <- lmer(Yield2 ~ presences2 + (1 + presences2|`Group in violin table`) + (1 + presences2|Country), data=yield_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Yield2 ~ presences2 + (1 + presences2 | `Group in violin table`) +  
    (1 + presences2 | Country)
   Data: yield_country_nbs_joined_groups

REML criterion at convergence: 1953.7

Scaled residuals: 
     Min       1Q   Median       3Q      Max 
-3.11214 -0.56909  0.04459  0.66469  2.91084 

Random effects:
 Groups                Name        Variance Std.Dev. Corr
 Country               (Intercept) 0.42704  0.6535       
                       presences2  0.01045  0.1022   0.81
 Group in violin table (Intercept) 0.37523  0.6126       
                       presences2  0.04201  0.2050   0.18
 Residual                          0.75392  0.8683       
Number of obs: 741, groups:  Country, 40; Group in violin table, 3

Fixed effects:
            Estimate Std. Error       df t value Pr(>|t|)
(Intercept)  0.03595    0.38772  2.35869   0.093    0.933
presences2  -0.23848    0.14300  1.96304  -1.668    0.240

Correlation of Fixed Effects:
           (Intr)
presences2 0.231 
ggplot(yield_country_nbs_joined_groups, aes(x = presences2, y = Yield2, colour = Country)) +
      facet_wrap(~`Group in violin table`, nrow=2) +   # a panel for each mountain range
      geom_point(alpha = 0.5) +
      theme_classic() +
      geom_line(data = cbind(yield_country_nbs_joined_groups, pred = predict(mixed.lmer)), aes(y = pred), size = 1) + 
      theme_minimal_hgrid() +
      theme(legend.position = "none") +
      xlab('Scaled and centered NLR gene count') +
      ylab('Scaled and centered yield')

Yeah, nah

Oil

oil_country_nbs_joined_groups <- oil_nbs_joined_groups %>% inner_join(country)

mixed.lmer <- lmer(Oil2 ~ presences2 + (1|`Group in violin table`) + (1|Country), data=oil_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Oil2 ~ presences2 + (1 | `Group in violin table`) + (1 | Country)
   Data: oil_country_nbs_joined_groups

REML criterion at convergence: 1819

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-4.5279 -0.5602  0.1003  0.6459  3.2213 

Random effects:
 Groups                Name        Variance Std.Dev.
 Country               (Intercept) 0.07768  0.2787  
 Group in violin table (Intercept) 1.27074  1.1273  
 Residual                          0.39123  0.6255  
Number of obs: 929, groups:  Country, 41; Group in violin table, 4

Fixed effects:
              Estimate Std. Error         df t value Pr(>|t|)
(Intercept)  -0.003163   0.568721   3.072981  -0.006    0.996
presences2   -0.036823   0.024149 918.755975  -1.525    0.128

Correlation of Fixed Effects:
           (Intr)
presences2 0.004 

No significance here.

Protein

protein_nbs_joined_groups <- nbs_joined_groups %>% inner_join(protein_join, by = 'names') 
protein_nbs_joined_groups$Protein2 <- scale(protein_nbs_joined_groups$Protein, center=T, scale=T)
protein_country_nbs_joined_groups <- protein_nbs_joined_groups %>% inner_join(country)

mixed.lmer <- lmer(Protein2 ~ presences2 + (1|`Group in violin table`) + (1|Country), data=protein_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: Protein2 ~ presences2 + (1 | `Group in violin table`) + (1 |  
    Country)
   Data: protein_country_nbs_joined_groups

REML criterion at convergence: 2478.9

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-3.5808 -0.6773 -0.0416  0.6268  3.5102 

Random effects:
 Groups                Name        Variance Std.Dev.
 Country               (Intercept) 0.07188  0.2681  
 Group in violin table (Intercept) 0.28151  0.5306  
 Residual                          0.81194  0.9011  
Number of obs: 929, groups:  Country, 41; Group in violin table, 4

Fixed effects:
             Estimate Std. Error        df t value Pr(>|t|)
(Intercept)  -0.22283    0.28021   3.35396  -0.795    0.479
presences2    0.04764    0.03456 924.68350   1.378    0.168

Correlation of Fixed Effects:
           (Intr)
presences2 0.007 

No significance here.

Seed weight

seed_nbs_joined_groups <- nbs_joined_groups %>% inner_join(seed_join, by = 'names') 
seed_nbs_joined_groups$wt2 <- scale(seed_nbs_joined_groups$wt, center=T, scale=T)
seed_country_nbs_joined_groups <- seed_nbs_joined_groups %>% inner_join(country)
mixed.lmer <- lmer(wt2 ~ presences2 + (1|`Group in violin table`) + (1|Country), data=seed_country_nbs_joined_groups)
summary(mixed.lmer)
Linear mixed model fit by REML. t-tests use Satterthwaite's method [
lmerModLmerTest]
Formula: wt2 ~ presences2 + (1 | `Group in violin table`) + (1 | Country)
   Data: seed_country_nbs_joined_groups

REML criterion at convergence: 1687.6

Scaled residuals: 
    Min      1Q  Median      3Q     Max 
-2.9631 -0.6170  0.0050  0.5862  4.8133 

Random effects:
 Groups                Name        Variance Std.Dev.
 Country               (Intercept) 0.08584  0.2930  
 Group in violin table (Intercept) 1.73537  1.3173  
 Residual                          0.70080  0.8371  
Number of obs: 664, groups:  Country, 38; Group in violin table, 4

Fixed effects:
             Estimate Std. Error        df t value Pr(>|t|)
(Intercept)  -0.36704    0.66678   3.04810  -0.550    0.620
presences2   -0.01035    0.04049 658.64308  -0.256    0.798

Correlation of Fixed Effects:
           (Intr)
presences2 0.001 

Again, no significance here.


sessionInfo()
R version 3.6.3 (2020-02-29)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 17134)

Matrix products: default

locale:
[1] LC_COLLATE=English_Australia.1252  LC_CTYPE=English_Australia.1252   
[3] LC_MONETARY=English_Australia.1252 LC_NUMERIC=C                      
[5] LC_TIME=English_Australia.1252    

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lmerTest_3.1-2       lme4_1.1-21          Matrix_1.2-18       
 [4] ggforce_0.3.1        ggsignif_0.6.0       cowplot_1.0.0       
 [7] dabestr_0.3.0        magrittr_1.5         ggsci_2.9           
[10] patchwork_1.0.0      forcats_0.5.0        stringr_1.4.0       
[13] dplyr_1.0.0          purrr_0.3.4          readr_1.3.1         
[16] tidyr_1.1.0          tibble_3.0.2         ggplot2_3.3.2       
[19] tidyverse_1.3.0      workflowr_1.6.2.9000

loaded via a namespace (and not attached):
 [1] nlme_3.1-148        fs_1.5.0.9000       lubridate_1.7.9    
 [4] httr_1.4.2          rprojroot_1.3-2     numDeriv_2016.8-1.1
 [7] tools_3.6.3         backports_1.1.10    utf8_1.1.4         
[10] R6_2.4.1            DBI_1.1.0           mgcv_1.8-31        
[13] colorspace_1.4-1    withr_2.2.0         tidyselect_1.1.0   
[16] processx_3.4.4      compiler_3.6.3      git2r_0.27.1       
[19] cli_2.0.2           rvest_0.3.5         xml2_1.3.2         
[22] labeling_0.3        scales_1.1.1        hexbin_1.28.1      
[25] callr_3.4.4         digest_0.6.25       minqa_1.2.4        
[28] rmarkdown_2.3       pkgconfig_2.0.3     htmltools_0.5.0    
[31] dbplyr_1.4.4        rlang_0.4.7         readxl_1.3.1       
[34] rstudioapi_0.11     farver_2.0.3        generics_0.0.2     
[37] jsonlite_1.7.1      Rcpp_1.0.5          munsell_0.5.0      
[40] fansi_0.4.1         lifecycle_0.2.0     stringi_1.5.3      
[43] whisker_0.4         yaml_2.2.1          MASS_7.3-51.6      
[46] grid_3.6.3          blob_1.2.1          promises_1.1.1     
[49] crayon_1.3.4        lattice_0.20-41     haven_2.3.1        
[52] splines_3.6.3       hms_0.5.3           knitr_1.29         
[55] ps_1.3.4            pillar_1.4.4        boot_1.3-25        
[58] reprex_0.3.0        glue_1.4.2          evaluate_0.14      
[61] getPass_0.2-2       modelr_0.1.8        vctrs_0.3.1        
[64] nloptr_1.2.1        tweenr_1.0.1        httpuv_1.5.4       
[67] cellranger_1.1.0    gtable_0.3.0        polyclip_1.10-0    
[70] assertthat_0.2.1    xfun_0.17           broom_0.5.6        
[73] later_1.1.0.1       ellipsis_0.3.1