Last updated: 2023-06-07

Checks: 7 0

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0ecede3. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/figure/
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/Arr_geneset.RDS
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/CAD_geneset.RDS
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/DRC48hoursdata.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/Ep24counts.txt
    Ignored:    data/GOIsig.csv
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/HF_geneset.RDS
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/avgLD50.RDS
    Ignored:    data/backGL.txt
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/crispr_genes.csv
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/gene_corr_frame.RDS
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_DRC48.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/knowles56.GMT
    Ignored:    data/knowlesGMT.GMT
    Ignored:    data/mymatrix.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/plan2plot.png
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/table3a.omar
    Ignored:    data/toplistall.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  analysis/further_analysis_GOI.Rmd
    Untracked:  cormotif_probability_genelist.csv
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/DNRmeQTLs.RDS
    Untracked:  output/DNRreQTLs.RDS
    Untracked:  output/DOXmeQTLs.RDS
    Untracked:  output/DOXreQTLs.RDS
    Untracked:  output/EPImeQTLs.RDS
    Untracked:  output/EPIreQTLs.RDS
    Untracked:  output/GWAS_goi.csv
    Untracked:  output/MTXmeQTLs.RDS
    Untracked:  output/MTXreQTLs.RDS
    Untracked:  output/Sup4seoane.csv
    Untracked:  output/figure_1.Rmd
    Untracked:  output/knowles4.RDS
    Untracked:  output/knowles5.RDS
    Untracked:  output/output-old/
    Untracked:  output/plan2plot.png
    Untracked:  output/plan48ldh.png
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   analysis/DRC_analysis.Rmd
    Modified:   code/eQTLcodes.R

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/other_analysis.Rmd) and HTML (docs/other_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0ecede3 reneeisnowhere 2023-06-07 data with CRispr set added and heatmap changes
html 9a62d7c reneeisnowhere 2023-06-06 Build site.
Rmd 232d3b0 reneeisnowhere 2023-06-06 Finally tested chisquare between knowles data
Rmd 10bcf05 reneeisnowhere 2023-06-06 updating the k4/k5 analysis of DEG
html b4dd015 reneeisnowhere 2023-06-02 Build site.
Rmd 652d7e8 reneeisnowhere 2023-06-02 updated heatmap Seoane Chisqure for cormotif
html 5aeda27 reneeisnowhere 2023-06-02 Build site.
Rmd 6524ecd reneeisnowhere 2023-06-02 Adding in heatmaps of chi values
html 5dd9ddb reneeisnowhere 2023-06-02 Build site.
Rmd 8eaea47 reneeisnowhere 2023-06-02 chi square updates
html e4d118c reneeisnowhere 2023-06-01 Build site.
Rmd 573a477 reneeisnowhere 2023-06-01 Updateing supplement 1 seoan chi results
html cc3dfc3 reneeisnowhere 2023-06-01 Build site.
Rmd 522cce8 reneeisnowhere 2023-06-01 Adding chisquare and other analysis
html 4723cdd reneeisnowhere 2023-05-31 Build site.
Rmd 07a6e06 reneeisnowhere 2023-05-31 adding in more data including Cormotif enrichment numbers
html 6fd877b reneeisnowhere 2023-05-31 Build site.
Rmd b2ba055 reneeisnowhere 2023-05-31 adding Seoane data with cormotif things
html 4c0812e reneeisnowhere 2023-05-26 Build site.
Rmd c7e0fcc reneeisnowhere 2023-05-26 adding in Gtex and chisquare values
html e1bcef0 reneeisnowhere 2023-05-26 Build site.
Rmd 0f512c3 reneeisnowhere 2023-05-26 adding in Gtex and chisquare values
Rmd 1f8c483 reneeisnowhere 2023-05-26 updating code with gtex and chisq
Rmd 25d32da reneeisnowhere 2023-05-26 Adding 3 hour and chisq test to populations
html 5610749 reneeisnowhere 2023-05-22 Build site.
Rmd 889832a reneeisnowhere 2023-05-22 add Seoane data again
html 36cbdab reneeisnowhere 2023-05-22 Build site.
Rmd de54fd5 reneeisnowhere 2023-05-22 add Seoane data
html 7243a18 reneeisnowhere 2023-05-22 Build site.
Rmd e2b3215 reneeisnowhere 2023-05-22 add Seoane data
html c3481d8 reneeisnowhere 2023-05-22 Build site.
Rmd acbd0a8 reneeisnowhere 2023-05-22 updates on GWAS enrichment
Rmd e8c82ec reneeisnowhere 2023-05-18 adding other_analysis and genes of interest log2cpm

Data set comparison order:

Knowles data:
meQTLS(aka K4 supp)
reQTLS(aka K5 supp)
ArrGWAS
HFGWAS
CADGWAS
GTEx enrichment
Seaone 2019
Supplemental 1 (408 genes)
Supplemental 4 (54 genes)

Pairwise Data enrichment

Knowles Comparison data:

[1] 521
[1] 218
[1] "number of unique genes expressed in pairwise DE set"

Determining the genetic basis of anthracycline-cardiotoxicity by molecular response QTL mapping in induced cardiomyocytes David A Knowles, Courtney K Burrows†, John D Blischak, Kristen M Patterson, Daniel J Serie, Nadine Norton, Carole Ober, Jonathan K Pritchard, Yoav Gilad

Knowles \(~~et~ al.~\) eLife 2018;7:e33480. DOI: https://doi.org/10.7554/eLife.33480 My first question was about transcription response at the 24 hour mark with my treatments. 3 hour RNA-seq had low levels of DEGs,so my focus is at 24 hours. This also happens to be when the Knowles paper collected their RNA-seq data

Supplementary 4 contains a list of 518 SNPs within 1 Mb of TSS, which had a detectable marginal effect on expression (5% FDR). When converted from ensembl gene id to entrez gene id, my list of unique Entrezgeneids = 521. I will call these meQTLS for marginal effect QTLs.

In the meQTLs, 503 are expressed out of 14084. Using an adj. P value of 0.05, There are 199/6864 in 24 hour daunorubicin, 184/6516 in 24 hour doxorubicin, 182/6202 in 24 hour epirubicin, 30/1327 in 24 hour mitoxantrone and 0 in Trastuzumb.

Supplementary 5 contains a list of 376 response eQTLs (reQTLs). These are variants that were associated with modulation of transcriptomic response to doxorubicin treatment. After database name conversion, I have 377 unique Entregene ids.

Of the reQTLs list, 374 are expressed out of all 14084 expressed genes. Using an adj. P value of 0.05, There are 187/6864 in 24 hour daunorubicin, 180/6516 in 24 hour doxorubicin, 176/6202 in 24 hour epirubicin, 40/1327 in 24 hour mitoxantrone and 0 in Trastuzumb.

Significant DEG by treatment by (adj. P value of <0.05
time id n K4 K5
24_hours Daunorubicin 6864 199 187
24_hours Doxorubicin 6516 184 180
24_hours Epirubicin 6202 172 176
24_hours Mitoxantrone 1327 30 40
total number of meQTLS and reQTLS in expressed genes
time id n K4 K5
24_hours Daunorubicin 14084 503 374
24_hours Doxorubicin 14084 503 374
24_hours Epirubicin 14084 503 374
24_hours Mitoxantrone 14084 503 374
24_hours Trastuzumab 14084 503 374
meQTLs (mininmally expressed QTLS) chi-squared pvalues
id time pvalue
Daunorubicin 24_hours 0.0000338
Daunorubicin 3_hours 0.0018777
Doxorubicin 24_hours 0.0000113
Doxorubicin 3_hours 0.9232984
Epirubicin 24_hours 0.0000074
Epirubicin 3_hours 0.2189641
Mitoxantrone 24_hours 0.0086490
Mitoxantrone 3_hours 0.6853643
reQTLS in knowles data (reQTLS) chi-squared pvalues
id time pvalue
Daunorubicin 24_hours 0.6576304
Daunorubicin 3_hours 0.7387684
Doxorubicin 24_hours 0.4965954
Doxorubicin 3_hours 1.0000000
Epirubicin 24_hours 0.2539396
Epirubicin 3_hours 0.5705567
Mitoxantrone 24_hours 0.4445513
Mitoxantrone 3_hours 0.3946217

enrichment comparison

Chi Square p. values between proportions of meQTLs and reQTLS by time and treatment
treatment chi_p.value
DNR_3 0.0205682
DNR_24 0.0014217
DOX_3 NaN
DOX_24 0.0004405
EPI_3 0.6641977
EPI_24 0.0000770
MTX_3 0.3908069
MTX_24 0.0095036

ArrGWAS to 24 hour DEG genes p < 0.05

24 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 24 hour GWAS
id sigcount ARR ARRcount
Daunorubicin notsig no 7169
Daunorubicin notsig y 51
Daunorubicin sig no 6795
Daunorubicin sig y 69
Doxorubicin notsig no 7512
Doxorubicin notsig y 56
Doxorubicin sig no 6452
Doxorubicin sig y 64
Epirubicin notsig no 7827
Epirubicin notsig y 55
Epirubicin sig no 6137
Epirubicin sig y 65
Mitoxantrone notsig no 12650
Mitoxantrone notsig y 107
Mitoxantrone sig no 1314
Mitoxantrone sig y 13
Trastuzumab notsig no 13964
Trastuzumab notsig y 120

3 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 3 hour GWAS
id sigcount ARR ARRcount
Daunorubicin notsig no 13419
Daunorubicin notsig y 110
Daunorubicin sig no 545
Daunorubicin sig y 10
Doxorubicin notsig no 13948
Doxorubicin notsig y 120
Doxorubicin sig no 16
Epirubicin notsig no 13747
Epirubicin notsig y 117
Epirubicin sig no 217
Epirubicin sig y 3
Mitoxantrone notsig no 13909
Mitoxantrone notsig y 117
Mitoxantrone sig no 55
Mitoxantrone sig y 3
Trastuzumab notsig no 13964
Trastuzumab notsig y 120

chi square test ARR

chi_funarr <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(ARR=if_else(ENTREZID %in%Arr_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(ARR, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funarr
# A tibble: 8 × 3
# Groups:   id [4]
  id           time      pvalue
  <fct>        <chr>      <dbl>
1 Daunorubicin 24_hours 0.0662 
2 Daunorubicin 3_hours  0.0246 
3 Doxorubicin  24_hours 0.142  
4 Doxorubicin  3_hours  1.00   
5 Epirubicin   24_hours 0.0313 
6 Epirubicin   3_hours  0.644  
7 Mitoxantrone 24_hours 0.708  
8 Mitoxantrone 3_hours  0.00409

HFGWAS

24 hours HF

Significant (adj. P value of <0.05) and non-sig gene counts in HFhythmia GWAS
id sigcount HF HFcount
Daunorubicin notsig no 7209
Daunorubicin notsig y 11
Daunorubicin sig no 6842
Daunorubicin sig y 22
Doxorubicin notsig no 7556
Doxorubicin notsig y 12
Doxorubicin sig no 6495
Doxorubicin sig y 21
Epirubicin notsig no 7868
Epirubicin notsig y 14
Epirubicin sig no 6183
Epirubicin sig y 19
Mitoxantrone notsig no 12728
Mitoxantrone notsig y 29
Mitoxantrone sig no 1323
Mitoxantrone sig y 4
Trastuzumab notsig no 14051
Trastuzumab notsig y 33

3 hours HF

Significant (adj. P value of <0.05) and non-sig gene counts in Three hour HFhythmia GWAS
id sigcount HF HFcount
Daunorubicin notsig no 13498
Daunorubicin notsig y 31
Daunorubicin sig no 553
Daunorubicin sig y 2
Doxorubicin notsig no 14035
Doxorubicin notsig y 33
Doxorubicin sig no 16
Epirubicin notsig no 13831
Epirubicin notsig y 33
Epirubicin sig no 220
Mitoxantrone notsig no 13993
Mitoxantrone notsig y 33
Mitoxantrone sig no 58
Trastuzumab notsig no 14051
Trastuzumab notsig y 33

chi square test HF

chi_funhf <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(HF=if_else(ENTREZID %in%HF_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(HF, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funhf
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours 0.0589
2 Daunorubicin 3_hours  0.858 
3 Doxorubicin  24_hours 0.0674
4 Doxorubicin  3_hours  1.00  
5 Epirubicin   24_hours 0.164 
6 Epirubicin   3_hours  0.983 
7 Mitoxantrone 24_hours 0.816 
8 Mitoxantrone 3_hours  1.00  

## CAD GWAS

24 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in CAD GWAS
id sigcount CAD CADcount
Daunorubicin notsig no 7107
Daunorubicin notsig y 113
Daunorubicin sig no 6748
Daunorubicin sig y 116
Doxorubicin notsig no 7447
Doxorubicin notsig y 121
Doxorubicin sig no 6408
Doxorubicin sig y 108
Epirubicin notsig no 7762
Epirubicin notsig y 120
Epirubicin sig no 6093
Epirubicin sig y 109
Mitoxantrone notsig no 12547
Mitoxantrone notsig y 210
Mitoxantrone sig no 1308
Mitoxantrone sig y 19
Trastuzumab notsig no 13855
Trastuzumab notsig y 229

3 hour data set

Significant (adj. P value of <0.05) and non-sig gene counts in 3 hour CAD GWAS
id sigcount CAD CADcount
Daunorubicin notsig no 13317
Daunorubicin notsig y 212
Daunorubicin sig no 538
Daunorubicin sig y 17
Doxorubicin notsig no 13839
Doxorubicin notsig y 229
Doxorubicin sig no 16
Epirubicin notsig no 13643
Epirubicin notsig y 221
Epirubicin sig no 212
Epirubicin sig y 8
Mitoxantrone notsig no 13798
Mitoxantrone notsig y 228
Mitoxantrone sig no 57
Mitoxantrone sig y 1
Trastuzumab notsig no 13855
Trastuzumab notsig y 229

chi square test CAD

chi_funCAD <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(CAD=if_else(ENTREZID %in%CAD_geneset$entrezgene_id,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(CAD, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_funCAD
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours 0.604 
2 Daunorubicin 3_hours  0.0105
3 Doxorubicin  24_hours 0.836 
4 Doxorubicin  3_hours  1.00  
5 Epirubicin   24_hours 0.304 
6 Epirubicin   3_hours  0.0351
7 Mitoxantrone 24_hours 0.636 
8 Mitoxantrone 3_hours  1.00  

## GTEx V8 heart-left ventrical egenes

####chi square
Significant (adj. P value of <0.05) and non-sig gene counts in Arrhythmia 24 hour GWAS
id time sigcount no y
Daunorubicin 24_hours notsig 866 6354
Daunorubicin 24_hours sig 797 6067
Daunorubicin 3_hours notsig 1628 11901
Daunorubicin 3_hours sig 35 520
Doxorubicin 24_hours notsig 920 6648
Doxorubicin 24_hours sig 743 5773
Doxorubicin 3_hours notsig 1662 12406
Doxorubicin 3_hours sig 1 15
Epirubicin 24_hours notsig 953 6929
Epirubicin 24_hours sig 710 5492
Epirubicin 3_hours notsig 1651 12213
Epirubicin 3_hours sig 12 208
Mitoxantrone 24_hours notsig 1503 11254
Mitoxantrone 24_hours sig 160 1167
Mitoxantrone 3_hours notsig 1660 12366
Mitoxantrone 3_hours sig 3 55
Trastuzumab 24_hours notsig 1663 12421
Trastuzumab 3_hours notsig 1663 12421
[1] "after performing chi square test between DEgenes, and non DE genes"
# A tibble: 8 × 3
# Groups:   id [4]
  id           time        pvalue
  <fct>        <chr>        <dbl>
1 Daunorubicin 24_hours 0.498    
2 Daunorubicin 3_hours  0.0000556
3 Doxorubicin  24_hours 0.175    
4 Doxorubicin  3_hours  0.763    
5 Epirubicin   24_hours 0.251    
6 Epirubicin   3_hours  0.00454  
7 Mitoxantrone 24_hours 0.802    
8 Mitoxantrone 3_hours  0.172    

Seaone 2019

Seoane, Jose Chromatin gene comparison: comes from supp data NAT. MED 2019 ### 24 hours in Pairwise with supplemental data 1

Significant (adj. P value of <0.05) and non-sig gene counts in Seoane geneset
id notsig_no notsig_y sig_no sig_y
Daunorubicin 7065 155 6689 175
Doxorubicin 7407 161 6347 169
Epirubicin 7717 165 6037 165
Mitoxantrone 12483 274 1271 56
Trastuzumab 13754 330 NA NA
# A tibble: 4 × 2
  id               pvalue
  <fct>             <dbl>
1 Daunorubicin 0.128     
2 Doxorubicin  0.0771    
3 Epirubicin   0.0314    
4 Mitoxantrone 0.00000326

3 hours data Pairwise

Significant (adj. P value of <0.05) and non-sig gene counts in 3 hours Seoane geneset
id notsig_no notsig_y sig_no sig_y
Daunorubicin 13227 302 527 28
Doxorubicin 13738 330 16 NA
Epirubicin 13551 313 203 17
Mitoxantrone 13698 328 56 2
Trastuzumab 13754 330 NA NA

chi square test Seaone

##remove Trastuzumab in order to perform chi square tests by time and drug between  DE and non DE enrichment
chi_fun <-  toplistall %>% 
  mutate(id = as.factor(id)) %>%
  dplyr::filter(id!="Trastuzumab") %>% 
  mutate(sigcount = if_else(adj.P.Val <0.05,'sig','notsig'))%>%
  mutate(chrom=if_else(ENTREZID %in%chrom_genes,"y","no")) %>% 
  group_by(id,time) %>% 
  summarise(pvalue= chisq.test(chrom, sigcount)$p.value) 
print("after performing chi square test between DEgenes, and non DE genes")
[1] "after performing chi square test between DEgenes, and non DE genes"
chi_fun
# A tibble: 8 × 3
# Groups:   id [4]
  id           time          pvalue
  <fct>        <chr>          <dbl>
1 Daunorubicin 24_hours 0.128      
2 Daunorubicin 3_hours  0.0000332  
3 Doxorubicin  24_hours 0.0771     
4 Doxorubicin  3_hours  1.00       
5 Epirubicin   24_hours 0.0314     
6 Epirubicin   3_hours  0.000000346
7 Mitoxantrone 24_hours 0.00000326 
8 Mitoxantrone 3_hours  0.902      

Supplemental 4 Seoane 3 hours followed by 24 hours

List of Seoane Supplemental 4 genes
entrez gene pval.exp pval.anthr pval.expAnth adjpval
11176 BAZ2A 0.0020064 0.0000768 0.0004553 0.1299006
10284 SAP18 0.0013141 0.0000648 0.0006081 0.1299006
8819 SAP30 0.0023742 0.0000576 0.0007455 0.1299006
23522 KAT6B 0.0050327 0.0001601 0.0012776 0.1343691
7786 MAP3K12 0.0062822 0.0001296 0.0014816 0.1343691
2146 EZH2 0.0075650 0.0001626 0.0020478 0.1343691
4297 KMT2A 0.0096126 0.0001301 0.0023292 0.1343691
79913 ACTR5 0.0087568 0.0001883 0.0035210 0.1373866
8242 KDM5C 0.0139853 0.0001783 0.0036176 0.1373866
51780 KDM3B 0.0155602 0.0001675 0.0039239 0.1373866
6872 TAF1 0.0105527 0.0001952 0.0043619 0.1447734
23135 KDM6B 0.0074796 0.0001950 0.0047811 0.1514738
6877 TAF5 0.0233826 0.0002047 0.0067329 0.1624738
23030 KDM4B 0.0239951 0.0004270 0.0069023 0.1624738
64324 NSD1 0.0164702 0.0003839 0.0069286 0.1624738
79885 HDAC11 0.0256039 0.0002383 0.0071964 0.1624738
10847 SRCAP 0.0174738 0.0003660 0.0077132 0.1624738
7404 UTY 0.0114041 0.0002112 0.0078450 0.1624738
51773 RSF1 0.0283587 0.0001948 0.0080182 0.1624738
5253 PHF2 0.0119978 0.0002989 0.0093089 0.1624738
9126 SMC3 0.0347884 0.0002127 0.0095907 0.1624738
3054 HCFC1 0.0317868 0.0003159 0.0097354 0.1624738
9734 HDAC9 0.0353794 0.0001985 0.0103307 0.1649465
53335 BCL11A 0.0063102 0.0004723 0.0105391 0.1649465
83444 INO80B 0.0255912 0.0003477 0.0112276 0.1701220
27350 APOBEC3C 0.0051330 0.0004220 0.0122160 0.1745980
6601 SMARCC2 0.0336512 0.0003435 0.0122745 0.1745980
1108 CHD4 0.0238388 0.0003994 0.0127656 0.1778779
8289 ARID1A 0.0492112 0.0004149 0.0146053 0.1870798
890 CCNA2 0.0444477 0.0004539 0.0147624 0.1870798
64151 NCAPG 0.0003946 0.0003956 0.0154184 0.1919043
10445 MCRS1 0.0185317 0.0003143 0.0162352 0.1977683
7150 TOP1 0.0468031 0.0003256 0.0175446 0.2072644
8110 DPF3 0.0612773 0.0004235 0.0182917 0.2124890
54531 MIER2 0.0244962 0.0004771 0.0198964 0.2273412
51409 HEMK1 0.0718548 0.0004890 0.0223436 0.2395917
27097 TAF5L 0.0450661 0.0003586 0.0237889 0.2512251
9739 SETD1A 0.0590016 0.0005136 0.0245980 0.2558930
6595 SMARCA2 0.0491644 0.0005485 0.0267793 0.2645703
9555 H2AFY 0.0852250 0.0004323 0.0277200 0.2645703
22823 MTF2 0.0823105 0.0005160 0.0278843 0.2645703
54556 ING3 0.0701823 0.0004542 0.0280892 0.2645703
10592 SMC2 0.0788583 0.0006366 0.0286097 0.2658792
8360 HIST1H4D 0.0801302 0.0004891 0.0300157 0.2715200
7528 YY1 0.1017709 0.0005254 0.0342873 0.2836505
9031 BAZ1B 0.1069563 0.0005045 0.0354054 0.2836505
51377 UCHL5 0.1048249 0.0005627 0.0372967 0.2954064
7799 PRDM2 0.0130131 0.0006154 0.0382200 0.2993182
6602 SMARCD1 0.1110653 0.0006993 0.0446426 0.3241241
8202 NCOA3 0.1179716 0.0006899 0.0454845 0.3251323
51564 HDAC7 0.1331938 0.0007507 0.0463305 0.3251323
26038 CHD5 0.0624026 0.0005717 0.0477023 0.3265622
79858 NEK11 0.1358428 0.0006363 0.0490482 0.3265622
10856 RUVBL2 0.1277997 0.0007652 0.0498579 0.3278390

[1] "These are the chisquare values from the 54 genes"
# A tibble: 8 × 3
# Groups:   id [4]
  id           time     pvalue
  <fct>        <chr>     <dbl>
1 Daunorubicin 24_hours 0.546 
2 Daunorubicin 3_hours  0.732 
3 Doxorubicin  24_hours 0.501 
4 Doxorubicin  3_hours  1.00  
5 Epirubicin   24_hours 0.320 
6 Epirubicin   3_hours  0.748 
7 Mitoxantrone 24_hours 0.0202
8 Mitoxantrone 3_hours  1.00  

Mitoxantrone is significantly enriched at 24 hours in the 54 genes from supplemental 4 Seoane.

Using Baysian gene sets to look at enrichment of Seoane data

Seoane Supplemental 4

<environment: R_GlobalEnv>
Summary of genes from Cormotif that are also in Seoane Supp4
chrom none ER TI LR NR
no 63 7482 5525 525 439
y NA 22 20 3 5

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("NR", "LR")]
X-squared = 0.36327, df = 1, p-value = 0.5467

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("NR", "ER")]
X-squared = 6.3065, df = 1, p-value = 0.01203

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("NR", "TI")]
X-squared = 4.099, df = 1, p-value = 0.04291

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("ER", "TI")]
X-squared = 0.26698, df = 1, p-value = 0.6054

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("ER", "LR")]
X-squared = 0.47936, df = 1, p-value = 0.4887

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list4[, c("TI", "LR")]
X-squared = 0.13763, df = 1, p-value = 0.7107

Seoane Supplemental 1

Summary of genes from Cormotif that are also in Seoane Supp1
chrom none ER TI LR NR
no 61 7363 5406 514 410
y 2 141 139 14 34

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("NR", "LR")]
X-squared = 11.832, df = 1, p-value = 0.0005824

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("NR", "ER")]
X-squared = 62.351, df = 1, p-value = 2.873e-15

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("NR", "TI")]
X-squared = 37.066, df = 1, p-value = 1.142e-09

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("ER", "TI")]
X-squared = 5.6896, df = 1, p-value = 0.01707

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("ER", "LR")]
X-squared = 1.1741, df = 1, p-value = 0.2786

    Pearson's Chi-squared test with Yates' continuity correction

data:  chi_list1[, c("TI", "LR")]
X-squared = 0.003306, df = 1, p-value = 0.9541

chi square heatmap

Crispr list

[1] " number of unique crispr_genes after conversion from hgnc symbol to entrezid"
[1] 154
chi square test p.values for encrichment of Doxcrispr gene sets in motif sets
one two p.value
LR NR 0.861985991471947
ER NR 0.402681880154749
TI NR 0.309642007916355

Summary of genes found in both sigDE and non sigDE by treatment
time id sigcount crisp n
3_hours Daunorubicin notsig no 13414
3_hours Daunorubicin notsig y 115
3_hours Daunorubicin sig no 553
3_hours Daunorubicin sig y 2
3_hours Doxorubicin notsig no 13951
3_hours Doxorubicin notsig y 117
3_hours Doxorubicin sig no 16
3_hours Epirubicin notsig no 13749
3_hours Epirubicin notsig y 115
3_hours Epirubicin sig no 218
3_hours Epirubicin sig y 2
3_hours Mitoxantrone notsig no 13909
3_hours Mitoxantrone notsig y 117
3_hours Mitoxantrone sig no 58
24_hours Daunorubicin notsig no 7165
24_hours Daunorubicin notsig y 55
24_hours Daunorubicin sig no 6802
24_hours Daunorubicin sig y 62
24_hours Doxorubicin notsig no 7512
24_hours Doxorubicin notsig y 56
24_hours Doxorubicin sig no 6455
24_hours Doxorubicin sig y 61
24_hours Epirubicin notsig no 7825
24_hours Epirubicin notsig y 57
24_hours Epirubicin sig no 6142
24_hours Epirubicin sig y 60
24_hours Mitoxantrone notsig no 12652
24_hours Mitoxantrone notsig y 105
24_hours Mitoxantrone sig no 1315
24_hours Mitoxantrone sig y 12
Summary of chisqure values between numbers of sigDE and non sigDE by treatment
time id pvalue
3_hours Daunorubicin 0.2128915
3_hours Doxorubicin 0.7141341
3_hours Epirubicin 0.8973055
3_hours Mitoxantrone 0.4848796
24_hours Daunorubicin 0.3551194
24_hours Doxorubicin 0.2008692
24_hours Epirubicin 0.1128575
24_hours Mitoxantrone 0.7563882


R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] readxl_1.4.2          ComplexHeatmap_2.12.1 broom_1.0.3          
 [4] kableExtra_1.3.4      sjmisc_2.8.9          scales_1.2.1         
 [7] ggpubr_0.6.0          cowplot_1.1.1         RColorBrewer_1.1-3   
[10] biomaRt_2.52.0        ggsignif_0.6.4        lubridate_1.9.2      
[13] forcats_1.0.0         stringr_1.5.0         dplyr_1.1.0          
[16] purrr_1.0.1           readr_2.1.4           tidyr_1.3.0          
[19] tibble_3.1.8          ggplot2_3.4.1         tidyverse_2.0.0      
[22] limma_3.52.4          workflowr_1.7.0      

loaded via a namespace (and not attached):
  [1] backports_1.4.1        circlize_0.4.15        BiocFileCache_2.4.0   
  [4] systemfonts_1.0.4      GenomeInfoDb_1.32.4    digest_0.6.31         
  [7] foreach_1.5.2          htmltools_0.5.4        fansi_1.0.4           
 [10] magrittr_2.0.3         memoise_2.0.1          cluster_2.1.4         
 [13] doParallel_1.0.17      tzdb_0.3.0             Biostrings_2.64.1     
 [16] matrixStats_0.63.0     vroom_1.6.1            svglite_2.1.1         
 [19] timechange_0.2.0       prettyunits_1.1.1      RVenn_1.1.0           
 [22] colorspace_2.1-0       blob_1.2.3             rvest_1.0.3           
 [25] rappdirs_0.3.3         xfun_0.37              callr_3.7.3           
 [28] crayon_1.5.2           RCurl_1.98-1.10        jsonlite_1.8.4        
 [31] iterators_1.0.14       glue_1.6.2             gtable_0.3.1          
 [34] zlibbioc_1.42.0        XVector_0.36.0         webshot_0.5.4         
 [37] GetoptLong_1.0.5       car_3.1-1              shape_1.4.6           
 [40] BiocGenerics_0.42.0    abind_1.4-5            futile.options_1.0.1  
 [43] DBI_1.1.3              rstatix_0.7.2          Rcpp_1.0.10           
 [46] viridisLite_0.4.1      progress_1.2.2         units_0.8-1           
 [49] clue_0.3-64            proxy_0.4-27           bit_4.0.5             
 [52] stats4_4.2.2           httr_1.4.5             ellipsis_0.3.2        
 [55] farver_2.1.1           pkgconfig_2.0.3        XML_3.99-0.13         
 [58] sass_0.4.5             dbplyr_2.3.1           utf8_1.2.3            
 [61] labeling_0.4.2         tidyselect_1.2.0       rlang_1.0.6           
 [64] later_1.3.0            AnnotationDbi_1.58.0   cellranger_1.1.0      
 [67] munsell_0.5.0          tools_4.2.2            cachem_1.0.7          
 [70] cli_3.6.0              generics_0.1.3         RSQLite_2.3.0         
 [73] ggVennDiagram_1.2.2    sjlabelled_1.2.0       evaluate_0.20         
 [76] fastmap_1.1.1          yaml_2.3.7             processx_3.8.0        
 [79] knitr_1.42             bit64_4.0.5            fs_1.6.1              
 [82] KEGGREST_1.36.3        whisker_0.4.1          formatR_1.14          
 [85] xml2_1.3.3             compiler_4.2.2         rstudioapi_0.14       
 [88] filelock_1.0.2         curl_5.0.0             png_0.1-8             
 [91] e1071_1.7-13           bslib_0.4.2            stringi_1.7.12        
 [94] highr_0.10             ps_1.7.2               futile.logger_1.4.3   
 [97] classInt_0.4-9         vctrs_0.5.2            pillar_1.8.1          
[100] lifecycle_1.0.3        jquerylib_0.1.4        GlobalOptions_0.1.2   
[103] bitops_1.0-7           insight_0.19.0         httpuv_1.6.9          
[106] R6_2.5.1               promises_1.2.0.1       KernSmooth_2.23-20    
[109] IRanges_2.30.1         codetools_0.2-19       lambda.r_1.2.4        
[112] rprojroot_2.0.3        rjson_0.2.21           withr_2.5.0           
[115] S4Vectors_0.34.0       GenomeInfoDbData_1.2.8 parallel_4.2.2        
[118] hms_1.1.2              VennDiagram_1.7.3      class_7.3-21          
[121] rmarkdown_2.20         carData_3.0-5          git2r_0.31.0          
[124] sf_1.0-9               getPass_0.2-2          Biobase_2.56.0