Last updated: 2023-06-26

Checks: 7 0

Knit directory: Cardiotoxicity/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20230109) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d7b9ff1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/41588_2018_171_MOESM3_ESMeQTL_ST2_for paper.csv
    Ignored:    data/Arr_GWAS.txt
    Ignored:    data/Arr_geneset.RDS
    Ignored:    data/BC_cell_lines.csv
    Ignored:    data/CADGWASgene_table.csv
    Ignored:    data/CAD_geneset.RDS
    Ignored:    data/Clamp_Summary.csv
    Ignored:    data/Cormotif_24_k1-5_raw.RDS
    Ignored:    data/DAgostres24.RDS
    Ignored:    data/DAtable1.csv
    Ignored:    data/DDEMresp_list.csv
    Ignored:    data/DDE_reQTL.txt
    Ignored:    data/DDEresp_list.csv
    Ignored:    data/DEG-GO/
    Ignored:    data/DEG_cormotif.RDS
    Ignored:    data/DF_Plate_Peak.csv
    Ignored:    data/DRC48hoursdata.csv
    Ignored:    data/Da24counts.txt
    Ignored:    data/Dx24counts.txt
    Ignored:    data/Dx_reQTL_specific.txt
    Ignored:    data/Ep24counts.txt
    Ignored:    data/GOIsig.csv
    Ignored:    data/GOplots.R
    Ignored:    data/GTEX_setsimple.csv
    Ignored:    data/GTEx_gene_list.csv
    Ignored:    data/HFGWASgene_table.csv
    Ignored:    data/HF_geneset.RDS
    Ignored:    data/Heart_Left_Ventricle.v8.egenes.txt
    Ignored:    data/Hf_GWAS.txt
    Ignored:    data/K_cluster
    Ignored:    data/K_cluster_kisthree.csv
    Ignored:    data/K_cluster_kistwo.csv
    Ignored:    data/LD50_05via.csv
    Ignored:    data/LDH48hoursdata.csv
    Ignored:    data/Mt24counts.txt
    Ignored:    data/RINsamplelist.txt
    Ignored:    data/Seonane2019supp1.txt
    Ignored:    data/TOP2Bi-24hoursGO_analysis.csv
    Ignored:    data/TR24counts.txt
    Ignored:    data/Top2biresp_cluster24h.csv
    Ignored:    data/Viabilitylistfull.csv
    Ignored:    data/allexpressedgenes.txt
    Ignored:    data/allgenes.txt
    Ignored:    data/allmatrix.RDS
    Ignored:    data/averageviabilitytable.RDS
    Ignored:    data/avgLD50.RDS
    Ignored:    data/backGL.txt
    Ignored:    data/cormotif_3hk1-8.RDS
    Ignored:    data/cormotif_initalK5.RDS
    Ignored:    data/cormotif_initialK5.RDS
    Ignored:    data/cormotif_initialall.RDS
    Ignored:    data/counts24hours.RDS
    Ignored:    data/cpmcount.RDS
    Ignored:    data/cpmnorm_counts.csv
    Ignored:    data/crispr_genes.csv
    Ignored:    data/ctnnt_results.txt
    Ignored:    data/cvd_GWAS.txt
    Ignored:    data/dat_cpm.RDS
    Ignored:    data/data_outline.txt
    Ignored:    data/efit2.RDS
    Ignored:    data/efit2_final.RDS
    Ignored:    data/efit2results.RDS
    Ignored:    data/ensembl_backup.RDS
    Ignored:    data/ensgtotal.txt
    Ignored:    data/filcpm_counts.RDS
    Ignored:    data/filenameonly.txt
    Ignored:    data/filtered_cpm_counts.csv
    Ignored:    data/filtered_raw_counts.csv
    Ignored:    data/filtermatrix_x.RDS
    Ignored:    data/folder_05top/
    Ignored:    data/geneDoxonlyQTL.csv
    Ignored:    data/gene_corr_df.RDS
    Ignored:    data/gene_corr_frame.RDS
    Ignored:    data/gene_prob_tran3h.RDS
    Ignored:    data/gene_probabilityk5.RDS
    Ignored:    data/gostresTop2bi_ER.RDS
    Ignored:    data/gostresTop2bi_LR
    Ignored:    data/gostresTop2bi_LR.RDS
    Ignored:    data/gostresTop2bi_TI.RDS
    Ignored:    data/gostrescoNR
    Ignored:    data/gtex/
    Ignored:    data/heartgenes.csv
    Ignored:    data/individualDRCfile.RDS
    Ignored:    data/individual_DRC48.RDS
    Ignored:    data/individual_LDH48.RDS
    Ignored:    data/knowfig4.csv
    Ignored:    data/knowfig5.csv
    Ignored:    data/ld50_table.csv
    Ignored:    data/mymatrix.RDS
    Ignored:    data/nonresponse_cluster24h.csv
    Ignored:    data/norm_LDH.csv
    Ignored:    data/norm_counts.csv
    Ignored:    data/old_sets/
    Ignored:    data/plan2plot.png
    Ignored:    data/raw_counts.csv
    Ignored:    data/response_cluster24h.csv
    Ignored:    data/sigVDA24.txt
    Ignored:    data/sigVDA3.txt
    Ignored:    data/sigVDX24.txt
    Ignored:    data/sigVDX3.txt
    Ignored:    data/sigVEP24.txt
    Ignored:    data/sigVEP3.txt
    Ignored:    data/sigVMT24.txt
    Ignored:    data/sigVMT3.txt
    Ignored:    data/sigVTR24.txt
    Ignored:    data/sigVTR3.txt
    Ignored:    data/siglist.RDS
    Ignored:    data/siglist_final.RDS
    Ignored:    data/slope_table.csv
    Ignored:    data/supp_normLDH48.RDS
    Ignored:    data/supp_pca_all_anno.RDS
    Ignored:    data/table3a.omar
    Ignored:    data/toplistall.RDS
    Ignored:    data/tvl24hour.txt
    Ignored:    data/tvl24hourw.txt
    Ignored:    data/venn_code.R
    Ignored:    data/viability.RDS

Untracked files:
    Untracked:  .RDataTmp
    Untracked:  .RDataTmp1
    Untracked:  .RDataTmp2
    Untracked:  OmicNavigator_learn.R
    Untracked:  code/DRC_plotfigure1.png
    Untracked:  code/cpm_boxplot.R
    Untracked:  code/extracting_ggplot_data.R
    Untracked:  code/fig1plot.png
    Untracked:  code/figurelegeddrc.png
    Untracked:  cormotif_probability_genelist.csv
    Untracked:  individual-legenddark2.png
    Untracked:  installed_old.rda
    Untracked:  motif_ER.txt
    Untracked:  motif_LR.txt
    Untracked:  motif_NR.txt
    Untracked:  motif_TI.txt
    Untracked:  output/DNRvenn.RDS
    Untracked:  output/DOXvenn.RDS
    Untracked:  output/EPIvenn.RDS
    Untracked:  output/MTXvenn.RDS
    Untracked:  output/Volcanoplot_10
    Untracked:  output/Volcanoplot_10.RDS
    Untracked:  output/allfinal_sup10.RDS
    Untracked:  output/motif_ERrep.RDS
    Untracked:  output/motif_LRrep.RDS
    Untracked:  output/motif_NRrep.RDS
    Untracked:  output/motif_TI_rep.RDS
    Untracked:  output/output-old/
    Untracked:  output/supplementary_motif_list_GO.RDS
    Untracked:  output/toptablebydrug.RDS
    Untracked:  output/x_counts.RDS
    Untracked:  reneebasecode.R

Unstaged changes:
    Modified:   analysis/Cormotifcluster_analysis.Rmd
    Modified:   analysis/DEG-GO_analysis.Rmd
    Modified:   analysis/DRC_analysis.Rmd
    Modified:   analysis/Knowles2019.Rmd
    Modified:   analysis/LDH_analysis.Rmd
    Modified:   analysis/RNAseqanalysis.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/Supplementary_figures.Rmd) and HTML (docs/Supplementary_figures.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd d7b9ff1 reneeisnowhere 2023-06-26 Adding supplementary figures
html 537bc2e reneeisnowhere 2023-06-26 Build site.
Rmd 6e50959 reneeisnowhere 2023-06-26 Adding supplementary figures
html dace8ba reneeisnowhere 2023-06-23 Build site.
Rmd 2b109c3 reneeisnowhere 2023-06-23 adding some supp graphs
Rmd c1d667f reneeisnowhere 2023-06-23 updating the codes at Friday start.

library(tidyverse)
library(ggpubr)
library(rstatix)
library(zoo)
library(ggsignif)
library(RColorBrewer)
library(kableExtra)
library(ComplexHeatmap)
library(gridExtra)
library(cowplot)

Fig. S1

ctnnt <- read.csv("data/ctnnt_results.txt", row.names = 1)
ctnnt %>% 
  mutate(Individual=fct_inorder(Individual)) %>% 
  ggplot(., aes(Individual,Percent , fill=Individual))+
  geom_boxplot()+
  geom_point()+
  geom_hline(yintercept =70,linetype="dashed", alpha=0.75)+###adds a line indicating high positivity +
coord_cartesian(ylim = c(0,105))+ ##set those limits
  theme_bw()+  ##white background
  labs(title="Cardiomyocyte Purity")+ #subtitle = "from  n>3 differentiations")+
  geom_boxplot(color="black",alpha =0.2, fill=NA, fatten=0, show.legend = FALSE)+
  scale_fill_brewer(palette = "Dark2",name="" )+
  xlab(NULL)+ 
  ylab("% cTNNT+ ")+
  guides(fill = NULL)+
  theme(plot.title = element_text(hjust = 0.5, size =20, face= "bold"), 
        axis.title.x=element_blank(),
        axis.text.x=element_blank(),###removes all axis names and tick names etc.####
        axis.ticks.x=element_blank(),
        # legend.text=element_text(size=15), 
        axis.title.y=element_text(size=15),
        axis.ticks.y=element_line(size =2),
        axis.text.y=element_text(size=10, face = "bold"),
       panel.grid.major = element_line(colour = 'grey'),
       panel.border=element_rect(fill = NA, size = 3),
       plot.subtitle=element_text(size=18, hjust=0.5, face="italic", color="black")) 

(summary(ctnnt)) %>% 
  kable(., caption= "Stats summary of cTNNT+ FACs readings") %>% 
  kable_paper("striped", full_width = FALSE) %>%  
  kable_styling(full_width = FALSE,font_size = 18) #%>% 
Stats summary of cTNNT+ FACs readings
Percent Individual
Min. :63.10 Length:17
1st Qu.:91.80 Class :character
Median :96.65 Mode :character
Mean :92.80 NA
3rd Qu.:98.50 NA
Max. :99.90 NA
  # scroll_box(width = "60%", height = "400px")

Fig. S2

ld50_table <- read.csv("data/ld50_table.csv",row.names = 1)
ld_corr <- cor(ld50_table)
col_fun1 = circlize::colorRamp2(c(-1, 1), c("white", "purple"))

Heatmap(ld_corr, cluster_rows = FALSE,cluster_columns = FALSE, col = col_fun1,column_title = expression("LD "[50]*" correlation"),row_title=" ",row_split = factor(rep(c("1","2","3","4","5","6"),each=2)), column_split = 
    factor(rep(c("1","2","3","4","5","6"),each=2)))

Heatmap(ld_corr, cluster_rows = FALSE,cluster_columns = FALSE, column_title = expression("LD "[50]*" correlation"),row_title=" ",row_split = factor(rep(c("1","2","3","4","5","6"),each=2)), column_split = 
    factor(rep(c("1","2","3","4","5","6"),each=2)))

### Fig. S3

drug_pal_fact <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
viability <- readRDS("data/viability.RDS")
norm_LDH48 <- readRDS("data/supp_normLDH48.RDS")
viability %>% 
  full_join(., norm_LDH48,by = c("indv","Drug","Conc")) %>% 
  ggplot(., aes(x=per.live, y=ldh))+
  geom_point(aes(col=indv))+
  geom_smooth(method="lm")+
  facet_wrap("Drug")+
  theme_bw()+
  xlab("Average viability of cardiomyocytes/100") +
  ylab("Average LDH") +
  ggtitle("Relative viability and relative LDH release at 48 hours")+
  scale_color_brewer(palette = "Dark2",name = "Individual", label = c("1","2","3","4","5","6"))+
  stat_cor(method="pearson",aes(label = paste(..r.label.., ..p.label.., sep = "~`,`~")),
           color = "red")+
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5,face = "bold"),
        axis.title = element_text(size = 15, color = "black"),
        axis.ticks = element_line(size = 1.5),
        axis.text = element_text(size = 8, color = "black", angle = 20),
        strip.text.x = element_text(size = 15, color = "black", face = "bold"),
        strip.background = element_rect(fill = "white")) 

Fig. S4

viabilitytable <- readRDS("data/averageviabilitytable.RDS")
viabilitytable %>% 
  ungroup() %>% 
    mutate(indv=substr(SampleID,4,4)) %>% 
    mutate(indv=factor(as.numeric(indv))) %>%
    filter(Conc <5) %>% 
    mutate(Conc= factor(as.numeric(Conc))) %>% 
    group_by(indv,Drug,Conc,sDrug) %>% 
    dplyr::summarize(Viability=mean(Mean)) %>%
    ungroup() %>% 
    ggplot(.,  aes(x=sDrug, y= Viability*100 )) +
    geom_boxplot(position="dodge", outlier.colour = "transparent",
                 aes(fill=Drug))+
    geom_point(aes(color=indv))+
    guides(alpha = "none")+
    ylim(0,150.5)+
    scale_color_brewer(palette = "Dark2",
                       guide="legend",
                       name ="Individual", 
                       labels(c(1,2,3,4,5,6)))+
    scale_fill_manual(values=drug_pal_fact)+
    theme_classic() +
    # geom_hline(yintercept = 1,lty = 4)+
    ylab("Viability") +
  xlab("Treatment")+
    facet_wrap(~Conc)+ 
    ggtitle("Viablity across concentrations at 48 hours")+
    theme(axis.title=element_text(size=10),
          axis.ticks=element_line(size =2),
          axis.text=element_text(size=9, face = "bold"),
          panel.grid.major = element_line(colour = 'darkgrey'),
          panel.border=element_rect(fill = NA, size = 2),
          plot.title = element_text(hjust = 0.5, size =15, face = "bold"))

Fig. S5

library(limma)
library(edgeR)
library(cowplot)
x <- readRDS("data/filtermatrix_x.RDS")
ggplot(x$samples, aes(x = as.factor(time), y = RIN)) +
  geom_boxplot(aes(fill=as.factor(time)))+ 
  theme_bw()+
  ylim(c(0,10))+
  labs(x= "", fill ="Time in hours",y ="RNA Integrity Number")+ 
  ggtitle("Boxplot of RIN by time and drug")+
  facet_wrap(~drug)+
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5),
        axis.title = element_text(size = 15, color = "black"),
        axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
        axis.text.x = element_text(size =10, color = "black", angle = 0, hjust = 1, vjust = 0.2),
        strip.text.x = element_text(size = 15, color = "black", face = "bold"),
        strip.background = element_rect(fill = "white"))

seq_info <-read.csv("output/sequencing_info.txt", row.names = 1)
seq_info %>% 
  filter(type=="Total_reads") %>% 
  ggplot(., aes (x =drug, y=Total.Sequences, fill = drug))+
  geom_boxplot()+
  scale_fill_manual(values=drug_pal_fact)+
  ggtitle(expression("Total number of reads by treatment"))+
  xlab(" ")+
  ylab(expression("RNA -sequencing reads"))+
  theme_bw()+
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5),
        axis.title = element_text(size = 12, color = "black"),
        axis.ticks = element_line(linewidth = 1.5),
        axis.line = element_line(linewidth = 1.5),
        axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
        axis.text.x = element_text(size =10, color = "white"),
        #strip.text.x = element_text(size = 15, color = "black", face = "bold"),
        strip.text.y = element_text(color = "white"))

seq_info %>% 
  separate(samplenames, into=c(NA,NA,NA,"samplenames")) %>% 
  mutate(shortnames = paste("Sample",str_trim(samplenames))) %>% 
  filter(type=="Total_reads") %>% 
  ggplot(., aes (x =shortnames, y=Total.Sequences, fill = drug, group_by=indv))+
  geom_col()+
 geom_hline(aes(yintercept=20000000))+
 scale_fill_manual(values=drug_pal_fact)+
  ggtitle(expression("Total number of reads by sample"))+
  xlab("")+
  ylab(expression("RNA -sequencing reads"))+
  theme_bw()+
  theme(plot.title = element_text(size = rel(2), hjust = 0.5),
        axis.title = element_text(size = 15, color = "black"),
        axis.ticks = element_line(linewidth = 1.5),
        axis.line = element_line(linewidth = 1.5),
        axis.text.y = element_text(size =10, color = "black", angle = 0, hjust = 0.8, vjust = 0.5),
        axis.text.x = element_text(size =6, color = "black", angle = 90, hjust = 1, vjust = 0.2),
        #strip.text.x = element_text(size = 15, color = "black", face = "bold"),
        strip.text.y = element_text(color = "white"))

### Fig. S6

filcpm_matrix <- readRDS("data/filcpm_counts.RDS")

mcor <- cor(filcpm_matrix) 
# pheatmap::pheatmap(mcor)
Heatmap(mcor)

heatmap is pending a few changes! just not my focus today.

Fig. S7

pca_all_anno <- readRDS("data/supp_pca_all_anno.RDS")
pca_all_anno <- pca_all_anno %>% 
  mutate(drug = case_match(drug, "Daunorubicin"~"DNR","Doxorubicin"~"DOX", "Epirubicin"~"EPI","Mitoxantrone"~"MTX","Trastuzumab"~"TRX","Vehicle"~"VEH", .default = drug))


facs <- c("indv", "drug", "time")
names(facs) <- c("Individual", "Treatment", "Time")

get_regr_pval <- function(mod) {
  # Returns the p-value for the Fstatistic of a linear model
  # mod: class lm
  stopifnot(class(mod) == "lm")
  fstat <- summary(mod)$fstatistic
  pval <- 1 - pf(fstat[1], fstat[2], fstat[3])
  return(pval)
}

plot_versus_pc <- function(df, pc_num, fac) {
  # df: data.frame
  # pc_num: numeric, specific PC for plotting
  # fac: column name of df for plotting against PC
  pc_char <- paste0("PC", pc_num)
  # Calculate F-statistic p-value for linear model
  pval <- get_regr_pval(lm(df[, pc_char] ~ df[, fac]))
  if (is.numeric(df[, f])) {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_point() +
      geom_smooth(method = "lm") + labs(title = sprintf("p-val: %.2f", pval))
  } else {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_boxplot() +
      labs(title = sprintf("p-val: %.2f", pval))
  }
}

for (f in facs) {
    # Plot f versus PC1 and PC2
  f_v_pc1 <- arrangeGrob(plot_versus_pc(pca_all_anno, 1, f)+theme_bw())
  f_v_pc2 <- arrangeGrob(plot_versus_pc(pca_all_anno, 2, f)+theme_bw())
  grid.arrange(f_v_pc1, f_v_pc2, ncol = 2, top = names(facs)[which(facs == f)])
}

Fig. S8

Volcanoplots <- readRDS("output/Volcanoplot_10.RDS")
Volcanoplots

Fig. S9

toplistall <- readRDS("data/toplistall.RDS")
toplistall %>% 
  group_by(time, id) %>% 
  mutate(time=factor(time, levels=c("3_hours","24_hours"))) %>% 
  # mutate(sigcount = if_else(adj.P.Val < 0.05,'sig','notsig'))%>%
  ggplot(., aes(x=id, y=logFC))+
  geom_boxplot(aes(fill=id))+
  ggpubr::fill_palette(palette =drug_pal_fact)+
  guides(fill=guide_legend(title = "Treatment"))+
  facet_wrap(sigcount~time)+
  theme_bw()+
  xlab("")+
  ylab("Log Fold Change")+
  theme_bw()+
  facet_wrap(~time)+
  theme(plot.title = element_text(size = rel(1.5), hjust = 0.5),
        axis.title = element_text(size = 15, color = "black"),
        # axis.ticks = element_line(linewidth = 1.5),
        axis.line = element_line(linewidth = 1.5),
        strip.background = element_rect(fill = "transparent"),
        axis.text.x = element_text(size = 8, color = "white", angle = 0),
        strip.text.x = element_text(size = 12, color = "black", face = "bold"))

### Fig. S10

allfinal <- readRDS("output/allfinal_sup10.RDS")
allfinal

### Fig. S11

DNRvenn<- readRDS ("output/DNRvenn.RDS")
DOXvenn<- readRDS ("output/DOXvenn.RDS")
EPIvenn<- readRDS ("output/EPIvenn.RDS")
MTXvenn<- readRDS ("output/MTXvenn.RDS")

plot_grid(DNRvenn,DOXvenn,EPIvenn,MTXvenn,nrow=2, ncol = 2)

Fig. S12

cormotif_initial <- readRDS("data/cormotif_initialall.RDS")
Cormotif::plotIC(cormotif_initial)

motif_NRrep <-  readRDS("output/motif_NRrep.RDS")
motif_ERrep <-  readRDS("output/motif_ERrep.RDS")
motif_TIrep <-  readRDS("output/motif_TI_rep.RDS")
motif_LRrep <-  readRDS("output/motif_LRrep.RDS")
# motif_NRrep <- motif_NRrep+theme(axis.title.y = element_text(size=1))

plot_grid(motif_ERrep,motif_LRrep,motif_TIrep,motif_NRrep,nrow = 4,ncol = 1)

motif_NRrep 

motif_ERrep 

motif_TIrep

motif_LRrep

<environment: R_GlobalEnv>


sessionInfo()
R version 4.2.2 (2022-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 19045)

Matrix products: default

locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

attached base packages:
[1] grid      stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] edgeR_3.38.4          limma_3.52.4          cowplot_1.1.1        
 [4] gridExtra_2.3         ComplexHeatmap_2.12.1 kableExtra_1.3.4     
 [7] RColorBrewer_1.1-3    ggsignif_0.6.4        zoo_1.8-12           
[10] rstatix_0.7.2         ggpubr_0.6.0          lubridate_1.9.2      
[13] forcats_1.0.0         stringr_1.5.0         dplyr_1.1.2          
[16] purrr_1.0.1           readr_2.1.4           tidyr_1.3.0          
[19] tibble_3.2.1          ggplot2_3.4.2         tidyverse_2.0.0      
[22] workflowr_1.7.0      

loaded via a namespace (and not attached):
  [1] ggVennDiagram_1.2.2   colorspace_2.1-0      rjson_0.2.21         
  [4] class_7.3-22          rprojroot_2.0.3       circlize_0.4.15      
  [7] GlobalOptions_0.1.2   fs_1.6.2              proxy_0.4-27         
 [10] clue_0.3-64           rstudioapi_0.14       farver_2.1.1         
 [13] affyio_1.66.0         fansi_1.0.4           xml2_1.3.4           
 [16] codetools_0.2-19      splines_4.2.2         doParallel_1.0.17    
 [19] cachem_1.0.8          knitr_1.43            jsonlite_1.8.5       
 [22] broom_1.0.5           cluster_2.1.4         png_0.1-8            
 [25] BiocManager_1.30.21   compiler_4.2.2        httr_1.4.6           
 [28] backports_1.4.1       Matrix_1.5-4.1        fastmap_1.1.1        
 [31] cli_3.6.1             later_1.3.1           htmltools_0.5.5      
 [34] tools_4.2.2           affy_1.74.0           gtable_0.3.3         
 [37] glue_1.6.2            Rcpp_1.0.10           Biobase_2.56.0       
 [40] carData_3.0-5         jquerylib_0.1.4       vctrs_0.6.3          
 [43] preprocessCore_1.58.0 svglite_2.1.1         nlme_3.1-162         
 [46] iterators_1.0.14      Cormotif_1.42.0       xfun_0.39            
 [49] ps_1.7.5              rvest_1.0.3           timechange_0.2.0     
 [52] lifecycle_1.0.3       zlibbioc_1.42.0       getPass_0.2-2        
 [55] scales_1.2.1          hms_1.1.3             promises_1.2.0.1     
 [58] parallel_4.2.2        yaml_2.3.7            sass_0.4.6           
 [61] stringi_1.7.12        highr_0.10            S4Vectors_0.34.0     
 [64] foreach_1.5.2         e1071_1.7-13          BiocGenerics_0.42.0  
 [67] shape_1.4.6           rlang_1.1.1           pkgconfig_2.0.3      
 [70] systemfonts_1.0.4     matrixStats_1.0.0     evaluate_0.21        
 [73] lattice_0.21-8        sf_1.0-13             labeling_0.4.2       
 [76] processx_3.8.1        tidyselect_1.2.0      magrittr_2.0.3       
 [79] R6_2.5.1              IRanges_2.30.1        generics_0.1.3       
 [82] DBI_1.1.3             pillar_1.9.0          whisker_0.4.1        
 [85] withr_2.5.0           mgcv_1.8-42           units_0.8-2          
 [88] abind_1.4-5           crayon_1.5.2          car_3.1-2            
 [91] KernSmooth_2.23-21    utf8_1.2.3            RVenn_1.1.0          
 [94] tzdb_0.4.0            rmarkdown_2.22        GetoptLong_1.0.5     
 [97] locfit_1.5-9.8        data.table_1.14.8     callr_3.7.3          
[100] git2r_0.32.0          classInt_0.4-9        digest_0.6.31        
[103] webshot_0.5.4         httpuv_1.6.11         stats4_4.2.2         
[106] munsell_0.5.0         viridisLite_0.4.2     bslib_0.5.0