Last updated: 2025-08-21

Checks: 7 0

Knit directory: DXR_continue/

This reproducible R Markdown analysis was created with workflowr (version 1.7.1). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20250701) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 7e4a4f4. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    data/Cormotif_data/
    Ignored:    data/DER_data/
    Ignored:    data/alignment_summary.txt
    Ignored:    data/all_peak_final_dataframe.txt
    Ignored:    data/cell_line_info_.tsv
    Ignored:    data/full_summary_QC_metrics.txt
    Ignored:    data/number_frag_peaks_summary.txt

Untracked files:
    Untracked:  analysis/Cormotif_analysis.Rmd
    Untracked:  code/corMotifcustom.R
    Untracked:  code/making_analysis_file_summary.R

Unstaged changes:
    Modified:   analysis/multiQC_cut_tag.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/final_analysis.Rmd) and HTML (docs/final_analysis.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 7e4a4f4 reneeisnowhere 2025-08-21 wflow_publish(c("analysis/Outlier_removal.Rmd", "analysis/final_analysis.Rmd"))
html aa92650 reneeisnowhere 2025-08-12 Build site.
html fda033f reneeisnowhere 2025-08-12 fix index pages
Rmd b3a5d2e reneeisnowhere 2025-08-12 removing chrX from analysis
html 6c6c7f4 infurnoheat 2025-08-04 Build site.
Rmd fad9b2f infurnoheat 2025-08-04 wflow_publish("analysis/final_analysis.Rmd")
html f4826e1 infurnoheat 2025-08-01 Build site.
Rmd f9fe741 infurnoheat 2025-08-01 wflow_publish("analysis/final_analysis.Rmd")

Final Anaylsis

Loading Packages

library(tidyverse)
library(readr)
library(edgeR)
library(ComplexHeatmap)
library(data.table)
library(dplyr)
library(stringr)
library(ggplot2)
library(viridis)
library(DT)
library(kableExtra)
library(genomation)
library(GenomicRanges)
library(chromVAR) ## For FRiP analysis and differential analysis
library(DESeq2) ## For differential analysis section
library(ggpubr) ## For customizing figures
library(corrplot) ## For correlation plot
library(ggpmisc)
library(gcplyr)
library(Rsubread)
library(limma)
library(ggrastr)
library(cowplot)
library(smplot2)
library(ggVennDiagram)

Data Initialization

sampleinfo <- read_delim("data/sample_info.tsv", delim = "\t")

Functions

drug_pal <- c("#8B006D","#DF707E","#F1B72B", "#3386DD","#707031","#41B333")
pca_plot <-
  function(df,
           col_var = NULL,
           shape_var = NULL,
           text_var = NULL,
           title = "") {
    ggplot(df, aes_string(x = "PC1", y = "PC2")) +
      geom_point(aes_string(color = col_var, shape = shape_var), size = 5) +
      labs(title = title, x = "PC 1", y = "PC 2") +
      ggrepel::geom_text_repel(label = text_var, vjust = -.5, max.overlaps = 30) +
      scale_color_manual(values = c(
        "#8B006D",
        "#DF707E",
        "#F1B72B",
        "#3386DD",
        "#707031",
        "#41B333"
      ))
  }
pca_var_plot <- function(pca) {
  # x: class == prcomp
  pca.var <- pca$sdev ^ 2
  pca.prop <- pca.var / sum(pca.var)
  var.plot <-
    qplot(PC, prop, data = data.frame(PC = 1:length(pca.prop),
                                      prop = pca.prop)) +
    labs(title = 'Variance contributed by each PC',
         x = 'PC', y = 'Proportion of variance')
  plot(var.plot)
}

calc_pca <- function(x) {
  # Performs principal components analysis with prcomp
  # x: a sample-by-gene numeric matrix
  prcomp(x, scale. = TRUE, retx = TRUE)
}

get_regr_pval <- function(mod) {
  # Returns the p-value for the Fstatistic of a linear model
  # mod: class lm
  stopifnot(class(mod) == "lm")
  fstat <- summary(mod)$fstatistic
  pval <- 1 - pf(fstat[1], fstat[2], fstat[3])
  return(pval)
}

plot_versus_pc <- function(df, pc_num, fac) {
  # df: data.frame
  # pc_num: numeric, specific PC for plotting
  # fac: column name of df for plotting against PC
  pc_char <- paste0("PC", pc_num)
  # Calculate F-statistic p-value for linear model
  pval <- get_regr_pval(lm(df[, pc_char] ~ df[, fac]))
  if (is.numeric(df[, f])) {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_point() +
      geom_smooth(method = "lm") + labs(title = sprintf("p-val: %.2f", pval))
  } else {
    ggplot(df, aes_string(x = f, y = pc_char)) + geom_boxplot() +
      labs(title = sprintf("p-val: %.2f", pval))
  }
}
x_axis_labels = function(labels, every_nth = 1, ...) {
  axis(side = 1,
       at = seq_along(labels),
       labels = F)
  text(
    x = (seq_along(labels))[seq_len(every_nth) == 1],
    y = par("usr")[3] - 0.075 * (par("usr")[4] - par("usr")[3]),
    labels = labels[seq_len(every_nth) == 1],
    xpd = TRUE,
    ...
  )
}

volcanosig <- function(df, psig.lvl) {
    df <- df %>% 
    mutate(threshold = ifelse(adj.P.Val > psig.lvl, "A", ifelse(adj.P.Val <= psig.lvl & logFC<=0,"B","C")))
      # ifelse(adj.P.Val <= psig.lvl & logFC >= 0,"B", "C")))
    ##This is where I could add labels, but I have taken out
    # df <- df %>% mutate(genelabels = "")
    # df$genelabels[1:topg] <- df$rownames[1:topg]
    
  ggplot(df, aes(x=logFC, y=-log10(P.Value))) + 
    ggrastr::geom_point_rast(aes(color=threshold))+
    # geom_text_repel(aes(label = genelabels), segment.curvature = -1e-20,force = 1,size=2.5,
    # arrow = arrow(length = unit(0.015, "npc")), max.overlaps = Inf) +
    #geom_hline(yintercept = -log10(psig.lvl))+
    xlab(expression("Log"[2]*" FC"))+
    ylab(expression("-log"[10]*"P Value"))+
    scale_color_manual(values = c("black", "red","blue"))+
    theme_cowplot()+
    ylim(0,25)+
    xlim(-6,6)+
    theme(legend.position = "none",
              plot.title = element_text(size = rel(1.5), hjust = 0.5),
              axis.title = element_text(size = rel(0.8))) 
}

Final Analysis

peak_ct <- read_delim("data/peaks/peaks_cts_FINAL.txt", delim = "\t")
H3K27ac_peaks <- read_delim("data/peaks/H3K27ac_FINAl_results.tsv",delim = "\t")
H3K27me3_peaks <- read_delim("data/peaks/H3K27me3_FINAL_results.tsv",delim = "\t")
H3K36me3_peaks <- read_delim("data/peaks/H3K36me3_FINAL_results.tsv",delim = "\t")
H3K9me3_peaks <- read_delim("data/peaks/H3K9me3_FINAL_results.tsv",delim = "\t")

all_peak_final <- rbind(H3K27ac_peaks, H3K27me3_peaks, H3K36me3_peaks, H3K9me3_peaks)

all_peak_final <- all_peak_final %>%
  dplyr::select(Sample, Total_Reads, Fragments, Reads_in_Peaks, FRiP) %>%
  left_join(.,sampleinfo, by=c("Sample"="Library ID")) %>%
  left_join(.,peak_ct, by=c("Sample"="Sample"))
all_peak_final <- all_peak_final[(!all_peak_final$Treatment %in% "5FU"),]
# write_delim(all_peak_final,"data/all_peak_final_dataframe.txt",delim = "\t")
all_peak_final %>% 
   ggplot(.,aes(x=Sample, y=Count,fill=Histone_Mark))+
   geom_col()+
   ylab("Count")+
   theme_classic()+
  # facet_wrap(~histone)+
  ggtitle("Peak number for all samples")+ 
  theme(axis.text.x=element_text(vjust = .2,angle=90))+
  scale_y_continuous( expand = expansion(mult = c(0, .1)))

Version Author Date
f4826e1 infurnoheat 2025-08-01
all_peak_final %>% 
  ggplot(., aes (x=Treatment, y = Count, fill = Histone_Mark))+
  geom_boxplot()+
   ylab("Count")+
   theme_classic()+
  # facet_wrap(~histone)+
  ggtitle("Peak count across histones")

Version Author Date
f4826e1 infurnoheat 2025-08-01
all_peak_final %>% 
  ggplot(., aes (x=Timepoint, y = Count, fill = Histone_Mark))+
  geom_boxplot()+
   ylab("Count")+
   theme_classic()+
  # facet_wrap(~histone)+
  ggtitle("Peak count across histones")

Version Author Date
f4826e1 infurnoheat 2025-08-01

Tagging Questionable Libraries by FRiP

questionable_frip = all_peak_final[(all_peak_final$FRiP < 0.02),]
questionable_frip
# A tibble: 0 × 10
# ℹ 10 variables: Sample <chr>, Total_Reads <dbl>, Fragments <dbl>,
#   Reads_in_Peaks <dbl>, FRiP <dbl>, Histone_Mark <chr>, Individual <chr>,
#   Treatment <chr>, Timepoint <chr>, Count <dbl>

Feature Counts

H3K27ac_merged <- read_delim("data/peaks/H3K27ac_FINAL_counts.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE, skip = 1)
H3K27me3_merged <- read_delim("data/peaks/H3K27me3_FINAL_counts.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE, skip = 1)
H3K36me3_merged <- read_delim("data/peaks/H3K36me3_FINAL_counts.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE, skip = 1)
H3K9me3_merged <- read_delim("data/peaks/H3K9me3_FINAL_counts.txt", 
    delim = "\t", escape_double = FALSE, 
    trim_ws = TRUE, skip = 1)
rename_list <- sampleinfo %>% 
  mutate(stem= "_nobl.bam") %>% 
  mutate(prefix=paste0("/scratch/10819/styu/MW_multiQC/peaks/",Histone_Mark,"/",Treatment,"/",Timepoint,"/")) %>%
  mutate(oldname=paste0(prefix,`Library ID`,"/",`Library ID`,stem)) %>% 
  mutate(newname=paste0(Individual,"_",Treatment,"_",Timepoint)) %>% 
  dplyr::select(oldname,newname)
rename_vec <- setNames(rename_list$newname, rename_list$oldname)
names(H3K27ac_merged)[names(H3K27ac_merged) %in% names(rename_vec)] <- rename_vec[names(H3K27ac_merged)[names(H3K27ac_merged) %in% names(rename_vec)]]
names(H3K27me3_merged)[names(H3K27me3_merged) %in% names(rename_vec)] <- rename_vec[names(H3K27me3_merged)[names(H3K27me3_merged) %in% names(rename_vec)]]
names(H3K36me3_merged)[names(H3K36me3_merged) %in% names(rename_vec)] <- rename_vec[names(H3K36me3_merged)[names(H3K36me3_merged) %in% names(rename_vec)]]
names(H3K9me3_merged)[names(H3K9me3_merged) %in% names(rename_vec)] <- rename_vec[names(H3K9me3_merged)[names(H3K9me3_merged) %in% names(rename_vec)]]

H3K27ac Count Analysis

H3K27ac_merged_raw <- H3K27ac_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  as.matrix()

H3K27ac_merged_lcpm <- H3K27ac_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  cpm(., log = TRUE)
H3K27ac_merged_cor <- H3K27ac_merged_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K27ac_merged_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_first <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K27ac_merged_cor, 
        top_annotation = heatmap_first,
        column_title="Unfiltered log2cpm H3K27ac with Standard Merging")

Version Author Date
f4826e1 infurnoheat 2025-08-01

H3K27me3 Count Analysis

H3K27me3_merged_raw <- H3K27me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  as.matrix()

H3K27me3_merged_lcpm <- H3K27me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  cpm(., log = TRUE)
H3K27me3_merged_cor <- H3K27me3_merged_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K27me3_merged_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_first <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K27me3_merged_cor, 
        top_annotation = heatmap_first,
        column_title="Unfiltered log2cpm H3K27me3 with Standard Merging")

Version Author Date
f4826e1 infurnoheat 2025-08-01

H3K36me3 Count Analysis

H3K36me3_merged_raw <- H3K36me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  as.matrix()

H3K36me3_merged_lcpm <- H3K36me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  cpm(., log = TRUE)
H3K36me3_merged_cor <- H3K36me3_merged_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K36me3_merged_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_first <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K36me3_merged_cor, 
        top_annotation = heatmap_first,
        column_title="Unfiltered log2cpm H3K36me3 with Standard Merging")

Version Author Date
f4826e1 infurnoheat 2025-08-01

H3K9me3 Count Analysis

H3K9me3_merged_raw <- H3K9me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  as.matrix()

H3K9me3_merged_lcpm <- H3K9me3_merged %>% 
  dplyr::select(Geneid,contains("Ind")) %>% 
  column_to_rownames("Geneid") %>% 
  cpm(., log = TRUE)
H3K9me3_merged_cor <- H3K9me3_merged_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K9me3_merged_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_first <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K9me3_merged_cor, 
        top_annotation = heatmap_first,
        column_title="Unfiltered log2cpm H3K9me3 with Standard Merging")

Version Author Date
f4826e1 infurnoheat 2025-08-01

Fragment Analysis

all_peak_final %>%
  mutate(Fragments=Fragments/1000000) %>% 
  ggplot(., aes(x=interaction(Individual,Treatment,Timepoint), y=Fragments, fill=Treatment, group = Treatment))+
  geom_col()+
  geom_text(aes(y = 0,label = Sample), vjust = 0.2, size = 3, angle = 90)+
  theme_classic()+
  facet_wrap(~Histone_Mark)+
  ggtitle("Fragment count by histone and sample")+
  ylab("Count of Fragments * 10^6")+
  xlab("Samples")+
  theme(axis.text.x=element_text(vjust = .2,angle=90))+
  scale_y_continuous( expand = expansion(mult = c(0, .1)))

Version Author Date
f4826e1 infurnoheat 2025-08-01
all_peak_final %>%
  mutate(FRiP=FRiP * 100) %>% 
  ggplot(., aes(x=interaction(Individual,Treatment,Timepoint), y=FRiP, fill=Treatment, group = Treatment))+
  geom_col()+
  geom_text(aes(y = 0,label = Sample), vjust = 0.2, size = 3, angle = 90)+
  theme_classic()+
  facet_wrap(~Histone_Mark)+
  ggtitle("Frip Percent by histone and sample")+
  ylab("Frip %")+
  xlab("Samples")+
  theme(axis.text.x=element_text(vjust = .2,angle=90))+
  scale_y_continuous( expand = expansion(mult = c(0, .1)))

Version Author Date
f4826e1 infurnoheat 2025-08-01

Differential Analysis

Filtering Sex Chromosomes

Removing chrX and chrY

H3K27ac_merged_raw <- H3K27ac_merged_raw[rowMeans(H3K27ac_merged_cor)>0,]
H3K27ac_merged_raw <- H3K27ac_merged_raw[!grepl("chrY",rownames(H3K27ac_merged_raw)),]
H3K27ac_merged_raw <- H3K27ac_merged_raw[!grepl("chrX",rownames(H3K27ac_merged_raw)),]

H3K27me3_merged_raw <- H3K27me3_merged_raw[rowMeans(H3K27me3_merged_cor)>0,]
H3K27me3_merged_raw <- H3K27me3_merged_raw[!grepl("chrY",rownames(H3K27me3_merged_raw)),]
H3K27me3_merged_raw <- H3K27me3_merged_raw[!grepl("chrX",rownames(H3K27me3_merged_raw)),]


H3K36me3_merged_raw <- H3K36me3_merged_raw[rowMeans(H3K36me3_merged_cor)>0,]
H3K36me3_merged_raw <- H3K36me3_merged_raw[!grepl("chrY",rownames(H3K36me3_merged_raw)),]
H3K36me3_merged_raw <- H3K36me3_merged_raw[!grepl("chrX",rownames(H3K36me3_merged_raw)),]

H3K9me3_merged_raw <- H3K9me3_merged_raw[rowMeans(H3K9me3_merged_cor)>0,]
H3K9me3_merged_raw <- H3K9me3_merged_raw[!grepl("chrY",rownames(H3K9me3_merged_raw)),]
H3K9me3_merged_raw <- H3K9me3_merged_raw[!grepl("chrX",rownames(H3K9me3_merged_raw)),]

Setting up Matrix

H3K27ac_annomat <- data.frame(timeset=colnames(H3K27ac_merged_raw)) %>% 
  mutate(sample=timeset) %>% 
  separate(timeset, into = c("ind","tx","time")) %>% 
  mutate(tx=factor(tx, levels = c("VEH", "DOX")),
         time=factor(time, levels =c("24T","24R","144R"))) %>%
  mutate(ind = gsub("Ind", "", ind)) %>%
  mutate(txtime = paste0(tx, "_", time)) %>%
  mutate(group = txtime)
H3K27ac_annomat$group <- H3K27ac_annomat$group %>%
  gsub("DOX_24T", "1", .) %>%
  gsub("DOX_24R", "2", .) %>%
  gsub("DOX_144R", "3", .) %>%
  gsub("VEH_24T", "4", .) %>%
  gsub("VEH_24R", "5", .) %>%
  gsub("VEH_144R", "6", .)

H3K27me3_annomat <- data.frame(timeset=colnames(H3K27me3_merged_raw)) %>% 
  mutate(sample=timeset) %>% 
  separate(timeset, into = c("ind","tx","time")) %>% 
  mutate(tx=factor(tx, levels = c("VEH", "DOX")),
         time=factor(time, levels =c("24T","24R","144R"))) %>%
  mutate(ind = gsub("Ind", "", ind)) %>%
  mutate(txtime = paste0(tx, "_", time)) %>%
  mutate(group = txtime)
H3K27me3_annomat$group <- H3K27me3_annomat$group %>%
  gsub("DOX_24T", "1", .) %>%
  gsub("DOX_24R", "2", .) %>%
  gsub("DOX_144R", "3", .) %>%
  gsub("VEH_24T", "4", .) %>%
  gsub("VEH_24R", "5", .) %>%
  gsub("VEH_144R", "6", .)

H3K36me3_annomat <- data.frame(timeset=colnames(H3K36me3_merged_raw)) %>% 
  mutate(sample=timeset) %>% 
  separate(timeset, into = c("ind","tx","time")) %>% 
  mutate(tx=factor(tx, levels = c("VEH", "DOX")),
         time=factor(time, levels =c("24T","24R","144R"))) %>%
  mutate(ind = gsub("Ind", "", ind)) %>%
  mutate(txtime = paste0(tx, "_", time)) %>%
  mutate(group = txtime)
H3K36me3_annomat$group <- H3K36me3_annomat$group %>%
  gsub("DOX_24T", "1", .) %>%
  gsub("DOX_24R", "2", .) %>%
  gsub("DOX_144R", "3", .) %>%
  gsub("VEH_24T", "4", .) %>%
  gsub("VEH_24R", "5", .) %>%
  gsub("VEH_144R", "6", .)

H3K9me3_annomat <- data.frame(timeset=colnames(H3K9me3_merged_raw)) %>% 
  mutate(sample=timeset) %>% 
  separate(timeset, into = c("ind","tx","time")) %>% 
  mutate(tx=factor(tx, levels = c("VEH", "DOX")),
         time=factor(time, levels =c("24T","24R","144R"))) %>%
  mutate(ind = gsub("Ind", "", ind)) %>%
  mutate(txtime = paste0(tx, "_", time)) %>%
  mutate(group = txtime)
H3K9me3_annomat$group <- H3K9me3_annomat$group %>%
  gsub("DOX_24T", "1", .) %>%
  gsub("DOX_24R", "2", .) %>%
  gsub("DOX_144R", "3", .) %>%
  gsub("VEH_24T", "4", .) %>%
  gsub("VEH_24R", "5", .) %>%
  gsub("VEH_144R", "6", .)

dge_H3K27ac <- edgeR::DGEList(counts = H3K27ac_merged_raw, group = H3K27ac_annomat$group, genes = row.names(H3K27ac_merged_raw))
dge_H3K27me3 <- edgeR::DGEList(counts = H3K27me3_merged_raw, group = H3K27me3_annomat$group, genes = row.names(H3K27me3_merged_raw))
dge_H3K36me3 <- edgeR::DGEList(counts = H3K36me3_merged_raw, group = H3K36me3_annomat$group, genes = row.names(H3K36me3_merged_raw))
dge_H3K9me3 <- edgeR::DGEList(counts = H3K9me3_merged_raw, group = H3K9me3_annomat$group, genes = row.names(H3K9me3_merged_raw))

dge_H3K27ac <- edgeR::calcNormFactors(dge_H3K27ac)
dge_H3K27me3 <- edgeR::calcNormFactors(dge_H3K27me3)
dge_H3K36me3 <- edgeR::calcNormFactors(dge_H3K36me3)
dge_H3K9me3 <- edgeR::calcNormFactors(dge_H3K9me3)

mm_H3K27ac <- model.matrix(~0 + H3K27ac_annomat$txtime)
colnames(mm_H3K27ac) <- H3K27ac_annomat$txtime %>% unique()

mm_H3K27me3 <- model.matrix(~0 + H3K27me3_annomat$txtime)
colnames(mm_H3K27me3) <- H3K27me3_annomat$txtime %>% unique()

mm_H3K36me3 <- model.matrix(~0 + H3K36me3_annomat$txtime)
colnames(mm_H3K36me3) <- H3K36me3_annomat$txtime %>% unique()

mm_H3K9me3 <- model.matrix(~0 + H3K9me3_annomat$txtime)
colnames(mm_H3K9me3) <- H3K9me3_annomat$txtime %>% unique()

Volcano Plots

H3K27ac

y <- voom(dge_H3K27ac, mm_H3K27ac, plot = FALSE)
corfit <- duplicateCorrelation(y, mm_H3K27ac, block = H3K27ac_annomat$ind)
v <- voom(dge_H3K27ac, mm_H3K27ac, block = H3K27ac_annomat$ind, correlation = corfit$consensus.correlation)
fit <- lmFit(v, mm_H3K27ac, block = H3K27ac_annomat$ind, correlation = corfit$consensus.correlation)
cm <- makeContrasts(
  DOX_24T.VEH_24T = DOX_24T-VEH_24T,
  DOX_24R.VEH_24R = DOX_24R-VEH_24R,
  DOX_144R.VEH_144R = DOX_144R-VEH_144R,
  levels = mm_H3K27ac)

fit2<- contrasts.fit(fit, contrasts=cm)
efit2 <- eBayes(fit2)

results = decideTests(efit2)

summary(results)
       DOX_24T.VEH_24T DOX_24R.VEH_24R DOX_144R.VEH_144R
Down             14729            6921                17
NotSig          190397          201986            216822
Up               11715            7934                 2
plotSA(efit2, main="Mean-Variance trend for final model for H3K27ac")

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01
V.24T.top= topTable(efit2, coef=1, adjust.method="BH", number=Inf, sort.by="p")
V.24R.top= topTable(efit2, coef=2, adjust.method="BH", number=Inf, sort.by="p")
V.144R.top= topTable(efit2, coef=3, adjust.method="BH", number=Inf, sort.by="p")

H3K27ac_24T <- volcanosig(V.24T.top, 0.05)+ ggtitle("DOX 24T")
H3K27ac_24R <- volcanosig(V.24R.top, 0.05)+ ggtitle("DOX 24R")+ylab("")
H3K27ac_144R <- volcanosig(V.144R.top, 0.05)+ ggtitle("DOX 144R")+ylab("")
plot_grid(H3K27ac_24T, H3K27ac_24R, H3K27ac_144R, rel_widths =c(1,1,1))

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01

H3K27me3

y <- voom(dge_H3K27me3, mm_H3K27me3, plot = FALSE)
corfit <- duplicateCorrelation(y, mm_H3K27me3, block = H3K27me3_annomat$ind)
v <- voom(dge_H3K27me3, mm_H3K27me3, block = H3K27me3_annomat$ind, correlation = corfit$consensus.correlation)
fit <- lmFit(v, mm_H3K27me3, block = H3K27me3_annomat$ind, correlation = corfit$consensus.correlation)
cm <- makeContrasts(
  DOX_24T.VEH_24T = DOX_24T-VEH_24T,
  DOX_24R.VEH_24R = DOX_24R-VEH_24R,
  DOX_144R.VEH_144R = DOX_144R-VEH_144R,
  levels = mm_H3K27me3)

fit2<- contrasts.fit(fit, contrasts=cm)
efit2 <- eBayes(fit2)

results = decideTests(efit2)

summary(results)
       DOX_24T.VEH_24T DOX_24R.VEH_24R DOX_144R.VEH_144R
Down                20               5                 0
NotSig          160535          160600            160611
Up                  56               6                 0
plotSA(efit2, main="Mean-Variance trend for final model for H3K27me3")

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01
V.24T.top= topTable(efit2, coef=1, adjust.method="BH", number=Inf, sort.by="p")
V.24R.top= topTable(efit2, coef=2, adjust.method="BH", number=Inf, sort.by="p")
V.144R.top= topTable(efit2, coef=3, adjust.method="BH", number=Inf, sort.by="p")

H3K27me3_24T <- volcanosig(V.24T.top, 0.05)+ ggtitle("DOX 24T")
H3K27me3_24R <- volcanosig(V.24R.top, 0.05)+ ggtitle("DOX 24R")+ylab("")
H3K27me3_144R <- volcanosig(V.144R.top, 0.05)+ ggtitle("DOX 144R")+ylab("")
plot_grid(H3K27me3_24T, H3K27me3_24R, H3K27me3_144R, rel_widths =c(1,1,1))

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01

H3K36me3

y <- voom(dge_H3K36me3, mm_H3K36me3, plot = FALSE)
corfit <- duplicateCorrelation(y, mm_H3K36me3, block = H3K36me3_annomat$ind)
v <- voom(dge_H3K36me3, mm_H3K36me3, block = H3K36me3_annomat$ind, correlation = corfit$consensus.correlation)
fit <- lmFit(v, mm_H3K36me3, block = H3K36me3_annomat$ind, correlation = corfit$consensus.correlation)
cm <- makeContrasts(
  DOX_24T.VEH_24T = DOX_24T-VEH_24T,
  DOX_24R.VEH_24R = DOX_24R-VEH_24R,
  DOX_144R.VEH_144R = DOX_144R-VEH_144R,
  levels = mm_H3K36me3)

fit2<- contrasts.fit(fit, contrasts=cm)
efit2 <- eBayes(fit2)

results = decideTests(efit2)

summary(results)
       DOX_24T.VEH_24T DOX_24R.VEH_24R DOX_144R.VEH_144R
Down              1455             186                 0
NotSig          184217          186246            186724
Up                1052             292                 0
plotSA(efit2, main="Mean-Variance trend for final model for H3K36me3")

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01
V.24T.top= topTable(efit2, coef=1, adjust.method="BH", number=Inf, sort.by="p")
V.24R.top= topTable(efit2, coef=2, adjust.method="BH", number=Inf, sort.by="p")
V.144R.top= topTable(efit2, coef=3, adjust.method="BH", number=Inf, sort.by="p")

H3K36me3_24T <- volcanosig(V.24T.top, 0.05)+ ggtitle("DOX 24T")
H3K36me3_24R <- volcanosig(V.24R.top, 0.05)+ ggtitle("DOX 24R")+ylab("")
H3K36me3_144R <- volcanosig(V.144R.top, 0.05)+ ggtitle("DOX 144R")+ylab("")
plot_grid(H3K36me3_24T, H3K36me3_24R, H3K36me3_144R, rel_widths =c(1,1,1))

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01

H3K9me3

y <- voom(dge_H3K9me3, mm_H3K9me3, plot = FALSE)
corfit <- duplicateCorrelation(y, mm_H3K9me3, block = H3K9me3_annomat$ind)
v <- voom(dge_H3K9me3, mm_H3K9me3, block = H3K9me3_annomat$ind, correlation = corfit$consensus.correlation)
fit <- lmFit(v, mm_H3K9me3, block = H3K9me3_annomat$ind, correlation = corfit$consensus.correlation)
cm <- makeContrasts(
  DOX_24T.VEH_24T = DOX_24T-VEH_24T,
  DOX_24R.VEH_24R = DOX_24R-VEH_24R,
  DOX_144R.VEH_144R = DOX_144R-VEH_144R,
  levels = mm_H3K9me3)

fit2<- contrasts.fit(fit, contrasts=cm)
efit2 <- eBayes(fit2)

results = decideTests(efit2)

summary(results)
       DOX_24T.VEH_24T DOX_24R.VEH_24R DOX_144R.VEH_144R
Down               793               1                 0
NotSig          208703          218530            218647
Up                9151             116                 0
plotSA(efit2, main="Mean-Variance trend for final model for H3K9me3")

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01
V.24T.top= topTable(efit2, coef=1, adjust.method="BH", number=Inf, sort.by="p")
V.24R.top= topTable(efit2, coef=2, adjust.method="BH", number=Inf, sort.by="p")
V.144R.top= topTable(efit2, coef=3, adjust.method="BH", number=Inf, sort.by="p")

H3K9me3_24T <- volcanosig(V.24T.top, 0.05)+ ggtitle("DOX 24T")
H3K9me3_24R <- volcanosig(V.24R.top, 0.05)+ ggtitle("DOX 24R")+ylab("")
H3K9me3_144R <- volcanosig(V.144R.top, 0.05)+ ggtitle("DOX 144R")+ylab("")
plot_grid(H3K9me3_24T, H3K9me3_24R, H3K9me3_144R, rel_widths =c(1,1,1))

Version Author Date
fda033f reneeisnowhere 2025-08-12
f4826e1 infurnoheat 2025-08-01

PCA Plots

H3K27ac

pca_H3K27ac <- calc_pca(t(H3K27ac_merged_lcpm))
pca_var_plot(pca_H3K27ac)

Version Author Date
6c6c7f4 infurnoheat 2025-08-04
pca_H3K27ac <- pca_H3K27ac$x %>% cbind(., H3K27ac_annomat)
pca_plot(pca_H3K27ac, col_var = "time", shape_var = "tx", text_var = pca_H3K27ac$ind, title = "H3K27ac lcpm PCA")

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04
H3K27ac_merged_raw_lcpm <- H3K27ac_merged_raw %>% 
  cpm(., log = TRUE)

H3K27ac_merged_filt_cor <- H3K27ac_merged_raw_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K27ac_merged_filt_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_second <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K27ac_merged_filt_cor, 
        top_annotation = heatmap_second,
        column_title="Filtered log2cpm H3K27ac with Standard Merging")

#### H3K27me3

pca_H3K27me3 <- calc_pca(t(H3K27me3_merged_lcpm))
pca_var_plot(pca_H3K27me3)

Version Author Date
6c6c7f4 infurnoheat 2025-08-04
pca_H3K27me3 <- pca_H3K27me3$x %>% cbind(., H3K27me3_annomat)
pca_plot(pca_H3K27me3, col_var = "time", shape_var = "tx", text_var = pca_H3K27me3$ind, title = "H3K27me3 lcpm PCA")

Version Author Date
6c6c7f4 infurnoheat 2025-08-04
H3K27me3_merged_raw_lcpm <- H3K27me3_merged_raw %>% 
  cpm(., log = TRUE)

H3K27me3_merged_filt_cor <- H3K27me3_merged_raw_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K27me3_merged_filt_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_second <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K27me3_merged_filt_cor, 
        top_annotation = heatmap_second,
        column_title="Filtered log2cpm H3K27me3 with Standard Merging")

#### H3K36me3

pca_H3K36me3 <- calc_pca(t(H3K36me3_merged_lcpm))
pca_var_plot(pca_H3K36me3)

Version Author Date
6c6c7f4 infurnoheat 2025-08-04
pca_H3K36me3 <- pca_H3K36me3$x %>% cbind(., H3K36me3_annomat)
pca_plot(pca_H3K36me3, col_var = "time", shape_var = "tx", text_var = pca_H3K36me3$ind, title = "H3K36me3 lcpm PCA")

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04
H3K36me3_merged_raw_lcpm <- H3K36me3_merged_raw %>% 
  cpm(., log = TRUE)

H3K36me3_merged_filt_cor <- H3K36me3_merged_raw_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K36me3_merged_filt_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_second <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K36me3_merged_filt_cor, 
        top_annotation = heatmap_second,
        column_title="Filtered log2cpm H3K36me3")

#### H3K9me3

pca_H3K9me3 <- calc_pca(t(H3K9me3_merged_lcpm))
pca_var_plot(pca_H3K9me3)

Version Author Date
6c6c7f4 infurnoheat 2025-08-04
pca_H3K9me3 <- pca_H3K9me3$x %>% cbind(., H3K9me3_annomat)
pca_plot(pca_H3K9me3, col_var = "time", shape_var = "tx", text_var = pca_H3K9me3$ind, title = "H3K9me3 lcpm PCA")

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04
H3K9me3_merged_raw_lcpm <- H3K9me3_merged_raw %>% 
  cpm(., log = TRUE)

H3K9me3_merged_filt_cor <- H3K9me3_merged_raw_lcpm %>% 
  cor()

annomat <- data.frame(sample=colnames(H3K9me3_merged_filt_cor)) %>% 
  separate_wider_delim(sample,delim="_",names=c("Ind","Treatment","Timepoint"),cols_remove = FALSE) %>% 
  mutate(Treatment=factor(Treatment, levels = c("VEH","5FU","DOX")),
         Timepoint=factor(Timepoint, levels =c("24T","24R","144R"))) %>% 
  column_to_rownames("sample")
heatmap_second <- ComplexHeatmap::HeatmapAnnotation(df = annomat)

Heatmap(H3K9me3_merged_filt_cor, 
        top_annotation = heatmap_second,
        column_title="Filtered log2cpm H3K9me3 with Standard Merging")

Venn Diagrams

Venn Set Up

genes_H3K27ac_24T <- H3K27ac_24T$data$genes[(H3K27ac_24T$data$adj.P.Val < 0.05)]
genes_H3K27ac_24R <- H3K27ac_24R$data$genes[(H3K27ac_24R$data$adj.P.Val < 0.05)]
genes_H3K27ac_144R <- H3K27ac_144R$data$genes[(H3K27ac_144R$data$adj.P.Val < 0.05)]

genes_H3K27me3_24T <- H3K27me3_24T$data$genes[(H3K27me3_24T$data$adj.P.Val < 0.05)]
genes_H3K27me3_24R <- H3K27me3_24R$data$genes[(H3K27me3_24R$data$adj.P.Val < 0.05)]
genes_H3K27me3_144R <- H3K27me3_144R$data$genes[(H3K27me3_144R$data$adj.P.Val < 0.05)]

genes_H3K36me3_24T <- H3K36me3_24T$data$genes[(H3K36me3_24T$data$adj.P.Val < 0.05)]
genes_H3K36me3_24R <- H3K36me3_24R$data$genes[(H3K36me3_24R$data$adj.P.Val < 0.05)]
genes_H3K36me3_144R <- H3K36me3_144R$data$genes[(H3K36me3_144R$data$adj.P.Val < 0.05)]

genes_H3K9me3_24T <- H3K9me3_24T$data$genes[(H3K9me3_24T$data$adj.P.Val < 0.05)]
genes_H3K9me3_24R <- H3K9me3_24R$data$genes[(H3K9me3_24R$data$adj.P.Val < 0.05)]
genes_H3K9me3_144R <- H3K9me3_144R$data$genes[(H3K9me3_144R$data$adj.P.Val < 0.05)]

H3K27ac Venn Diagrams

ggVennDiagram(list("24T regions"=genes_H3K27ac_24T,"24R regions"=genes_H3K27ac_24R, "144R regions"=genes_H3K27ac_144R))

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04

H3K27me3 Venn Diagrams

ggVennDiagram(list("24T regions"=genes_H3K27me3_24T,"24R regions"=genes_H3K27me3_24R, "144R regions"=genes_H3K27me3_144R))

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04

H3K36me3 Venn Diagrams

ggVennDiagram(list("24T regions"=genes_H3K36me3_24T,"24R regions"=genes_H3K36me3_24R, "144R regions"=genes_H3K36me3_144R))

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04

H3K9me3 Venn Diagrams

ggVennDiagram(list("24T regions"=genes_H3K9me3_24T,"24R regions"=genes_H3K9me3_24R, "144R regions"=genes_H3K9me3_144R))

Version Author Date
fda033f reneeisnowhere 2025-08-12
6c6c7f4 infurnoheat 2025-08-04
H3K27ac_toplist <- list("H3K27ac_24T"=H3K27ac_24T$data,"H3K27ac_24R"= H3K27ac_24R$data, "H3K27ac_144R"= H3K27ac_144R$data)
saveRDS(H3K27ac_toplist, "data/DER_data/H3K27ac_toplist.RDS")

H3K27me3_toplist <- list("H3K27me3_24T"=H3K27me3_24T$data,"H3K27me3_24R"= H3K27me3_24R$data, "H3K27me3_144R"= H3K27me3_144R$data)
saveRDS(H3K27me3_toplist,"data/DER_data/H3K27me3_toplist.RDS")


H3K36me3_toplist <- list("H3K36me3_24T"=H3K36me3_24T$data,"H3K36me3_24R"= H3K36me3_24R$data, "H3K36me3_144R"= H3K36me3_144R$data)
saveRDS(H3K36me3_toplist,"data/DER_data/H3K36me3_toplist.RDS")

H3K9me3_toplist <- list("H3K9me3_24T"=H3K9me3_24T$data,"H3K9me3_24R"= H3K9me3_24R$data, "H3K9me3_144R"= H3K9me3_144R$data)

saveRDS(H3K9me3_toplist, "data/DER_data/H3K9me3_toplist.RDS")

sessionInfo()
R version 4.4.2 (2024-10-31 ucrt)
Platform: x86_64-w64-mingw32/x64
Running under: Windows 11 x64 (build 26100)

Matrix products: default


locale:
[1] LC_COLLATE=English_United States.utf8 
[2] LC_CTYPE=English_United States.utf8   
[3] LC_MONETARY=English_United States.utf8
[4] LC_NUMERIC=C                          
[5] LC_TIME=English_United States.utf8    

time zone: America/Chicago
tzcode source: internal

attached base packages:
[1] stats4    grid      stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] ggVennDiagram_1.5.4         smplot2_0.2.5              
 [3] cowplot_1.2.0               ggrastr_1.0.2              
 [5] Rsubread_2.20.0             gcplyr_1.12.0              
 [7] ggpmisc_0.6.2               ggpp_0.5.9                 
 [9] corrplot_0.95               ggpubr_0.6.1               
[11] DESeq2_1.46.0               SummarizedExperiment_1.36.0
[13] Biobase_2.66.0              MatrixGenerics_1.18.1      
[15] matrixStats_1.5.0           chromVAR_1.28.0            
[17] GenomicRanges_1.58.0        GenomeInfoDb_1.42.3        
[19] IRanges_2.40.1              S4Vectors_0.44.0           
[21] BiocGenerics_0.52.0         genomation_1.38.0          
[23] kableExtra_1.4.0            DT_0.33                    
[25] viridis_0.6.5               viridisLite_0.4.2          
[27] data.table_1.17.8           ComplexHeatmap_2.22.0      
[29] edgeR_4.4.2                 limma_3.62.2               
[31] lubridate_1.9.4             forcats_1.0.0              
[33] stringr_1.5.1               dplyr_1.1.4                
[35] purrr_1.1.0                 readr_2.1.5                
[37] tidyr_1.3.1                 tibble_3.3.0               
[39] ggplot2_3.5.2               tidyverse_2.0.0            
[41] workflowr_1.7.1            

loaded via a namespace (and not attached):
  [1] fs_1.6.6                    bitops_1.0-9               
  [3] DirichletMultinomial_1.48.0 TFBSTools_1.44.0           
  [5] httr_1.4.7                  RColorBrewer_1.1-3         
  [7] doParallel_1.0.17           tools_4.4.2                
  [9] backports_1.5.0             R6_2.6.1                   
 [11] lazyeval_0.2.2              GetoptLong_1.0.5           
 [13] withr_3.0.2                 gridExtra_2.3              
 [15] quantreg_6.1                cli_3.6.5                  
 [17] textshaping_1.0.1           Cairo_1.6-5                
 [19] labeling_0.4.3              sass_0.4.10                
 [21] Rsamtools_2.22.0            systemfonts_1.2.3          
 [23] foreign_0.8-90              svglite_2.2.1              
 [25] R.utils_2.13.0              dichromat_2.0-0.1          
 [27] plotrix_3.8-4               BSgenome_1.74.0            
 [29] pwr_1.3-0                   rstudioapi_0.17.1          
 [31] impute_1.80.0               RSQLite_2.4.3              
 [33] generics_0.1.4              shape_1.4.6.1              
 [35] BiocIO_1.16.0               vroom_1.6.5                
 [37] gtools_3.9.5                car_3.1-3                  
 [39] GO.db_3.20.0                Matrix_1.7-3               
 [41] ggbeeswarm_0.7.2            abind_1.4-8                
 [43] R.methodsS3_1.8.2           lifecycle_1.0.4            
 [45] whisker_0.4.1               yaml_2.3.10                
 [47] carData_3.0-5               SparseArray_1.6.2          
 [49] blob_1.2.4                  promises_1.3.3             
 [51] crayon_1.5.3                pwalign_1.2.0              
 [53] miniUI_0.1.2                lattice_0.22-7             
 [55] annotate_1.84.0             KEGGREST_1.46.0            
 [57] magick_2.8.7                pillar_1.11.0              
 [59] knitr_1.50                  rjson_0.2.23               
 [61] codetools_0.2-20            glue_1.8.0                 
 [63] getPass_0.2-4               vctrs_0.6.5                
 [65] png_0.1-8                   gtable_0.3.6               
 [67] poweRlaw_1.0.0              cachem_1.1.0               
 [69] xfun_0.52                   S4Arrays_1.6.0             
 [71] mime_0.13                   survival_3.8-3             
 [73] iterators_1.0.14            statmod_1.5.0              
 [75] bit64_4.6.0-1               rprojroot_2.1.0            
 [77] bslib_0.9.0                 vipor_0.4.7                
 [79] KernSmooth_2.23-26          rpart_4.1.24               
 [81] colorspace_2.1-1            seqLogo_1.72.0             
 [83] DBI_1.2.3                   Hmisc_5.2-3                
 [85] seqPattern_1.38.0           nnet_7.3-20                
 [87] tidyselect_1.2.1            processx_3.8.6             
 [89] bit_4.6.0                   compiler_4.4.2             
 [91] curl_7.0.0                  git2r_0.36.2               
 [93] htmlTable_2.4.3             SparseM_1.84-2             
 [95] xml2_1.4.0                  DelayedArray_0.32.0        
 [97] plotly_4.11.0               rtracklayer_1.66.0         
 [99] checkmate_2.3.3             scales_1.4.0               
[101] caTools_1.18.3              callr_3.7.6                
[103] digest_0.6.37               rmarkdown_2.29             
[105] XVector_0.46.0              htmltools_0.5.8.1          
[107] pkgconfig_2.0.3             base64enc_0.1-3            
[109] fastmap_1.2.0               rlang_1.1.6                
[111] GlobalOptions_0.1.2         htmlwidgets_1.6.4          
[113] UCSC.utils_1.2.0            shiny_1.11.1               
[115] farver_2.1.2                jquerylib_0.1.4            
[117] zoo_1.8-14                  jsonlite_2.0.0             
[119] BiocParallel_1.40.2         R.oo_1.27.1                
[121] RCurl_1.98-1.17             magrittr_2.0.3             
[123] polynom_1.4-1               Formula_1.2-5              
[125] GenomeInfoDbData_1.2.13     patchwork_1.3.1            
[127] Rcpp_1.1.0                  stringi_1.8.7              
[129] zlibbioc_1.52.0             MASS_7.3-65                
[131] plyr_1.8.9                  ggrepel_0.9.6              
[133] parallel_4.4.2              CNEr_1.42.0                
[135] Biostrings_2.74.1           splines_4.4.2              
[137] hms_1.1.3                   circlize_0.4.16            
[139] locfit_1.5-9.12             ps_1.9.1                   
[141] ggsignif_0.6.4              reshape2_1.4.4             
[143] TFMPvalue_0.0.9             XML_3.99-0.18              
[145] evaluate_1.0.4              tzdb_0.5.0                 
[147] foreach_1.5.2               httpuv_1.6.16              
[149] MatrixModels_0.5-4          clue_0.3-66                
[151] gridBase_0.4-7              broom_1.0.9                
[153] xtable_1.8-4                restfulr_0.0.16            
[155] rstatix_0.7.2               later_1.4.2                
[157] memoise_2.0.1               beeswarm_0.4.0             
[159] AnnotationDbi_1.68.0        GenomicAlignments_1.42.0   
[161] cluster_2.1.8.1             timechange_0.3.0