Last updated: 2019-08-28

workflowr checks: (Click a bullet for more information)
  • R Markdown file: up-to-date

    Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

  • Environment: empty

    Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

  • Seed: set.seed(20190513)

    The command set.seed(20190513) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

  • Session information: recorded

    Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

  • Repository version: 454b53b

    Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.

    Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
    
    Ignored files:
        Ignored:    .Rhistory
        Ignored:    .Rproj.user/
        Ignored:    LaTeX/SOM_node_summary.docx
        Ignored:    LaTeX/SOM_node_summary.pdf
        Ignored:    data/NAPA/NAPA_clim_U.Rda
        Ignored:    data/NAPA/NAPA_clim_V.Rda
        Ignored:    data/NAPA/NAPA_clim_W.Rda
        Ignored:    data/NAPA/NAPA_clim_emp_ice.Rda
        Ignored:    data/NAPA/NAPA_clim_emp_oce.Rda
        Ignored:    data/NAPA/NAPA_clim_fmmflx.Rda
        Ignored:    data/NAPA/NAPA_clim_mldkz5.Rda
        Ignored:    data/NAPA/NAPA_clim_mldr10_1.Rda
        Ignored:    data/NAPA/NAPA_clim_qemp_oce.Rda
        Ignored:    data/NAPA/NAPA_clim_qla_oce.Rda
        Ignored:    data/NAPA/NAPA_clim_qns.Rda
        Ignored:    data/NAPA/NAPA_clim_qsb_oce.Rda
        Ignored:    data/NAPA/NAPA_clim_qt.Rda
        Ignored:    data/NAPA/NAPA_clim_runoffs.Rda
        Ignored:    data/NAPA/NAPA_clim_ssh.Rda
        Ignored:    data/NAPA/NAPA_clim_sss.Rda
        Ignored:    data/NAPA/NAPA_clim_sst.Rda
        Ignored:    data/NAPA/NAPA_clim_taum.Rda
        Ignored:    data/NAPA/NAPA_clim_vars.Rda
        Ignored:    data/NAPA/NAPA_clim_vecs.Rda
        Ignored:    data/NAPA/synoptic_vec_states.Rda
        Ignored:    data/SOM/packet.Rda
        Ignored:    data/SOM/synoptic_states.Rda
        Ignored:    data/SOM/synoptic_states_other.Rda
        Ignored:    data/anom/ALL_anom.Rda
        Ignored:    data/anom/ALL_other.Rda
        Ignored:    data/anom/ERA5_mslp_anom.Rda
        Ignored:    data/anom/ERA5_qnet_anom.Rda
        Ignored:    data/anom/ERA5_t2m_anom.Rda
        Ignored:    data/anom/ERA5_u_anom.Rda
        Ignored:    data/anom/ERA5_v_anom.Rda
        Ignored:    data/anom/GLORYS_mld_anom.Rda
        Ignored:    data/anom/GLORYS_u_anom.Rda
        Ignored:    data/anom/GLORYS_v_anom.Rda
        Ignored:    data/anom/OISST_sst_anom.Rda
        Ignored:    data/base/ERA5_lhf.Rda
        Ignored:    data/base/ERA5_lwr.Rda
        Ignored:    data/base/ERA5_mslp.Rda
        Ignored:    data/base/ERA5_qnet.Rda
        Ignored:    data/base/ERA5_shf.Rda
        Ignored:    data/base/ERA5_swr.Rda
        Ignored:    data/base/ERA5_t2m.Rda
        Ignored:    data/base/ERA5_u.Rda
        Ignored:    data/base/ERA5_v.Rda
        Ignored:    data/base/GLORYS_mld.Rda
        Ignored:    data/base/GLORYS_u.Rda
        Ignored:    data/base/GLORYS_v.Rda
        Ignored:    data/base/OAFlux.Rda
        Ignored:    data/base/OISST_sst.Rda
        Ignored:    data/clim/ALL_clim.Rda
        Ignored:    data/clim/ERA5_mslp_clim.Rda
        Ignored:    data/clim/ERA5_qnet_clim.Rda
        Ignored:    data/clim/ERA5_t2m_clim.Rda
        Ignored:    data/clim/ERA5_u_clim.Rda
        Ignored:    data/clim/ERA5_v_clim.Rda
        Ignored:    data/clim/GLORYS_mld_clim.Rda
        Ignored:    data/clim/GLORYS_u_clim.Rda
        Ignored:    data/clim/GLORYS_v_clim.Rda
        Ignored:    data/clim/OISST_sst_clim.Rda
        Ignored:    data/comparison/node_mean_all_anom.Rda
        Ignored:    data/comparison/packet_all.Rda
        Ignored:    data/comparison/packet_all_anom.Rda
        Ignored:    data/comparison/packet_nolab.Rda
        Ignored:    data/comparison/packet_nolab14.Rda
        Ignored:    data/comparison/packet_nolabgsl.Rda
        Ignored:    data/comparison/packet_nolabmod.Rda
        Ignored:    data/comparison/som_all.Rda
        Ignored:    data/comparison/som_all_anom.Rda
        Ignored:    data/comparison/som_nolab.Rda
        Ignored:    data/comparison/som_nolab14.Rda
        Ignored:    data/comparison/som_nolab_16.Rda
        Ignored:    data/comparison/som_nolab_9.Rda
        Ignored:    data/comparison/som_nolabgsl.Rda
        Ignored:    data/comparison/som_nolabmod.Rda
    
    Unstaged changes:
        Modified:   code/functions.R
    
    
    Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
Expand here to see past versions:
    File Version Author Date Message
    Rmd 600a1ae robwschlegel 2019-08-27 Re-edited SOM node summary text for the figures that show all of the nodes together
    Rmd e9767c7 robwschlegel 2019-08-22 Working through the pipeline to adapt to the decided methodoloy
    html 826c73d robwschlegel 2019-08-15 Build site.
    html 143b1a6 robwschlegel 2019-08-15 Build site.
    html 20ae166 robwschlegel 2019-08-11 Build site.
    html 19bea26 robwschlegel 2019-08-11 Build site.
    html 2652a3a robwschlegel 2019-08-11 Build site.
    html f0d2efb robwschlegel 2019-08-07 Build site.
    html aa82e6e robwschlegel 2019-07-31 Build site.
    Rmd 498909b robwschlegel 2019-07-31 Re-publish entire site.
    Rmd 51ed681 robwschlegel 2019-07-25 Completed anoms for OISST
    Rmd 0b6f065 robwschlegel 2019-07-25 Push before beginning to write code for loading entire obs/reanalysis products into memory for clim calculations
    html 7792f24 robwschlegel 2019-07-24 Build site.
    html 7cc8ec3 robwschlegel 2019-07-24 Build site.
    Rmd 463b89a robwschlegel 2019-07-24 Edited the polygon and sst prep vignettes while redoing methodology.
    html 81e961d robwschlegel 2019-07-09 Build site.
    Rmd b25762e robwschlegel 2019-06-12 More work on figures
    html c23c50b robwschlegel 2019-06-10 Build site.
    html 028d3cc robwschlegel 2019-06-10 Build site.
    html c61a15f robwschlegel 2019-06-06 Build site.
    Rmd 44ac335 robwschlegel 2019-06-06 Working on inclusion of vectors into SOM pipeline
    html 6dd6da8 robwschlegel 2019-06-06 Build site.
    Rmd 94ce8f6 robwschlegel 2019-06-04 Functions for creating data packets are up and running
    html 5cb8e8f robwschlegel 2019-05-28 Build site.
    Rmd 3cdb0aa robwschlegel 2019-05-28 Extended the corners of the study region.
    html def6979 robwschlegel 2019-05-24 Build site.
    Rmd 4144097 robwschlegel 2019-05-24 Minor edit to polygon prep vignette.
    html c09b4f7 robwschlegel 2019-05-24 Build site.
    Rmd 5dc8bd9 robwschlegel 2019-05-24 Finished initial creation of SST prep vignette.
    Rmd 5c2b406 robwschlegel 2019-05-23 Commit before changes
    html d544295 robwschlegel 2019-05-23 Build site.
    Rmd 9cb3efa robwschlegel 2019-05-23 Updating work done on the polygon prep vignette.
    Rmd d8f2b99 robwschlegel 2019-05-23 Working on polygon vignette

Introduction

This markdown file contains all of the code that prepares the polygons used to define the different regions in the Northwest Atlantic. These different regions then have the NOAA OISST pixels found therein spatially averaged to create a single time series per region in the SST preparation vignette. This is done so that the MHW detection algorithm may then be run on these individual time series as a general representation of the SST in those regions, rather than running the algorithm on each pixel individually, which would introduce a host of technical and philosophical problems that I won’t go into here.

# Packages used in this vignette\
library(tidyverse) # Base suite of functions
library(R.matlab) # For dealing with MATLAB files
# library(marmap) # For bathymetry, but not currently used

Coastal region polygons

The first step in this analysis is to broadly define the coastal regions based on previous research into thermally relevant boundaries. We have chosen to use a paper by Richaud et al. (2016) to do this (https://www.sciencedirect.com/science/article/pii/S0278434316303181#f0010). Being the wonderful person that he is, Benjamin forwarded us the polygons [Richaud et al. (2016); Figure 2] from this paper. The only hiccup being that they are a MATLAB file so we must first convert them to an R format. It should be noted that these areas were designed to not encompass depths deeper than 600 m as the investigators were interested in characterising the climatologies for the shelf and upper slope regions of the north east coast of North America. This works for our research purposes as well.

# Load the file
NWA_polygons <- readMat("data/boundaries.mat")

# Remove index list items and attributes
NWA_polygons[grepl("[.]",names(NWA_polygons))] <- NULL
# attributes(NWA_polygons) <- NULL

# Function for neatly converting list items into a dataframe
mat_col <- function(vec){
  df <- as.data.frame(vec)
  df$region <- substr(colnames(df)[1], 2, nchar(colnames(df)[1]))
  colnames(df)[1] <- strtrim(colnames(df)[1], 1)
  df <- df[c(2,1)]
  return(df)
}

# Create multiple smaller data.frames
coords_1 <- cbind(mat_col(NWA_polygons[1]), mat_col(NWA_polygons[2])[2])
coords_2 <- cbind(mat_col(NWA_polygons[3]), mat_col(NWA_polygons[4])[2])
coords_3 <- cbind(mat_col(NWA_polygons[5]), mat_col(NWA_polygons[6])[2])
coords_4 <- cbind(mat_col(NWA_polygons[7]), mat_col(NWA_polygons[8])[2])
coords_5 <- cbind(mat_col(NWA_polygons[9]), mat_col(NWA_polygons[10])[2])
coords_6 <- cbind(mat_col(NWA_polygons[11]), mat_col(NWA_polygons[12])[2])

# Combine them into one full dataframe and save
NWA_coords_base <- rbind(coords_1, coords_2, coords_3, coords_4, coords_5, coords_6)
colnames(NWA_coords_base) <- c("region", "lon", "lat")

With our polygons switched over from MATLAB to R we now want to visualise them to ensure that everything has gone smoothly.

# The base map
map_base <- ggplot2::fortify(maps::map(fill = TRUE, col = "grey80", plot = FALSE)) %>%
  dplyr::rename(lon = long) %>%
  mutate(group = ifelse(lon > 180, group+9999, group),
         lon = ifelse(lon > 180, lon-360, lon)) %>% 
  select(-region, -subregion)
# saveRDS(map_base, "data/map_base.Rda")

# Quick map
ggplot(data = NWA_coords_base, aes(x = lon, y = lat)) +
  geom_polygon(aes(colour = region, fill = region), size = 1.5, alpha = 0.2) +
  geom_polygon(data = map_base, aes(group = group), show.legend = F) +
  coord_cartesian(xlim = c(min(NWA_coords_base$lon)-2, max(NWA_coords_base$lon)+2),
                  ylim = c(min(NWA_coords_base$lat)-2, max(NWA_coords_base$lat)+2)) +
  labs(x = NULL, y = NULL, colour = "Region", fill = "Region") +
  theme(legend.position = "bottom")

Expand here to see past versions of poly-vis-1.png:
Version Author Date
7cc8ec3 robwschlegel 2019-07-24
5cb8e8f robwschlegel 2019-05-28
c09b4f7 robwschlegel 2019-05-24
d544295 robwschlegel 2019-05-23

The region abbreviations are: “gm” for Gulf of Maine, “gls” for Gulf of St. Lawrence, “ls” for Labrador Shelf, “mab” for Mid-Atlantic Bight, “nfs” for Newfoundland Shelf and “ss” for Scotian Shelf.

Cabot Strait

It was decided that because we are interested in the geography of the regions, and not just their temperature regimes, the Cabot Strait needed to be defined apart from the Gulf of St. Lawrence region. To do this we will simply snip the “gsl” polygon into two pieces at its narrowest point.

# Extract the gsl region only
gsl_sub <- NWA_coords_base[NWA_coords_base$region == "gsl",]

# Add a simple integer column for ease of plotting
gsl_sub$row_count <- 1:nrow(gsl_sub)

ggplot(data = gsl_sub, aes(x = lon, y = lat)) +
  geom_polygon(aes(fill = region)) +
  geom_label(aes(label = row_count)) +
  labs(x = NULL, y = NULL)

Expand here to see past versions of cabot-strait-1-1.png:
Version Author Date
5cb8e8f robwschlegel 2019-05-28
c09b4f7 robwschlegel 2019-05-24
d544295 robwschlegel 2019-05-23

It appears from the crude figure above that we should pinch the polygon off into two separate shapes at row 6 and 10.

# Create smaller gsl polygon
gsl_new <- NWA_coords_base[NWA_coords_base$region == "gsl",] %>% 
  slice(-c(7:9))

# Create new cbs (Cabot Strait) polygon
cbs <- NWA_coords_base[NWA_coords_base$region == "gsl",] %>% 
  slice(6:10) %>% 
  mutate(region = "cbs")

# Attach the new polygons to the original polygons
NWA_coords_cabot <- NWA_coords_base %>% 
  filter(region != "gsl") %>% 
  rbind(., gsl_new, cbs)
# saveRDS(NWA_coords_cabot, "data/NWA_coords_cabot.Rda")

# Plot the new areas to ensure everything worked
ggplot(data = NWA_coords_cabot, aes(x = lon, y = lat)) +
  geom_polygon(aes(colour = region, fill = region), size = 1.5, alpha = 0.2) +
  geom_polygon(data = map_base, aes(group = group), show.legend = F) +
  coord_cartesian(xlim = c(min(NWA_coords_cabot$lon)-2, max(NWA_coords_cabot$lon)+2),
                  ylim = c(min(NWA_coords_cabot$lat)-2, max(NWA_coords_cabot$lat)+2)) +
  labs(x = NULL, y = NULL, colour = "Region", fill = "Region") +
  theme(legend.position = "bottom")

Expand here to see past versions of cabot-strait-2-1.png:
Version Author Date
aa82e6e robwschlegel 2019-07-31
7cc8ec3 robwschlegel 2019-07-24
5cb8e8f robwschlegel 2019-05-28
c09b4f7 robwschlegel 2019-05-24
d544295 robwschlegel 2019-05-23

Labrador Shelf

After running through a series of slef-roganising map (SOM) experiments in the previous iteration of this project it was decided that the Labrador Shelf (ls) region needs to be excluded from the study. This is predominantly because the inclusion of this region into the SOM study makes it too difficult for the machine to make sense of the patterns it is seeing. We concluded that this was because of the strong, sometimes unrelated processes happening in the Gulf Stream vs. the Labrador Sea. Because we are primarily concerned with the Atlantic coast, we prioritised the more southern regions over the Labrador shelf region. The code below shows what these final regions look like.

# FIlter out the ls region
NWA_coords <- NWA_coords_cabot %>% 
  filter(region != "ls")

# Save these final study region coordinates
# saveRDS(NWA_coords, "data/NWA_coords.Rda")

# Plot the new areas to ensure everything worked
NWA_study_area <- ggplot(data = NWA_coords, aes(x = lon, y = lat)) +
  geom_polygon(aes(colour = region, fill = region), size = 1.5, alpha = 0.2) +
  geom_polygon(data = map_base, aes(group = group), show.legend = F) +
  coord_cartesian(xlim = c(min(NWA_coords$lon)-2, max(NWA_coords$lon)+2),
                  ylim = c(min(NWA_coords$lat)-2, max(NWA_coords$lat)+0.5),
                  expand = FALSE) +
    scale_x_continuous(breaks = seq(-70, -50, 10),
                     labels = c("70°W", "60°W", "50°W"),
                     position = "top") +
  scale_y_continuous(breaks = c(40, 50),
                     labels = scales::unit_format(suffix = "°N", sep = "")) +
  labs(x = NULL, y = NULL, colour = "Region", fill = "Region") +
  theme_bw() +
  theme(legend.position = "bottom")
# ggsave(NWA_study_area, filename = "output/NWA_study_area.pdf", height = 5, width = 6)
# ggsave(NWA_study_area, filename = "output/NWA_study_area.png", height = 5, width = 6)

# Visualise
NWA_study_area

Study area extent

The final step in this vignette is to establish a consistent study area for this project based on our regions. We’ll simply extend the study area by the nearest 2 whole degrees of longitude and latitude from the furthest edges of the polygons, as seen in the figure above. This will encompass broad synoptic scale variables that may be driving MHWs in our study regions, but should not be so broad as to begin to account for teleconnections, which are currently beyond the scope of this project. The exception to this being that because we want to exclude as much of the Labrador Sea as possible, we will only extend the northern edge of the study area by 0.5 degrees of latitude from the northernmost point of our study regions.

# Set the max/min lon/at values
lon_min <- round(min(NWA_coords$lon)-2)
lon_max <- round(max(NWA_coords$lon)+2)
lat_min <- round(min(NWA_coords$lat)-2)
lat_max <- round(max(NWA_coords$lat)+0.5)

# Combine and save
NWA_corners <- c(lon_min, lon_max, lat_min, lat_max)
# saveRDS(NWA_corners, file = "data/NWA_corners.Rda")

# Pront the values
NWA_corners
[1] -80 -41  32  52

We will now go about creating SST time series for each of the regions and calculate marine heatwaves (MHWs) from them. This work is continued in the SST preparation and MHW detection vignette.

References

Richaud, B., Kwon, Y.-O., Joyce, T. M., Fratantoni, P. S., and Lentz, S. J. (2016). Surface and bottom temperature and salinity climatology along the continental shelf off the canadian and us east coasts. Continental Shelf Research 124, 165–181.

Session information

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 16.04.6 LTS

Matrix products: default
BLAS:   /usr/lib/openblas-base/libblas.so.3
LAPACK: /usr/lib/libopenblasp-r0.2.18.so

locale:
 [1] LC_CTYPE=en_CA.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_CA.UTF-8        LC_COLLATE=en_CA.UTF-8    
 [5] LC_MONETARY=en_CA.UTF-8    LC_MESSAGES=en_CA.UTF-8   
 [7] LC_PAPER=en_CA.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] bindrcpp_0.2.2  R.matlab_3.6.1  forcats_0.3.0   stringr_1.3.1  
 [5] dplyr_0.7.6     purrr_0.2.5     readr_1.1.1     tidyr_0.8.1    
 [9] tibble_1.4.2    ggplot2_3.0.0   tidyverse_1.2.1

loaded via a namespace (and not attached):
 [1] tidyselect_0.2.4  haven_1.1.2       lattice_0.20-35  
 [4] colorspace_1.3-2  htmltools_0.3.6   yaml_2.2.0       
 [7] rlang_0.2.2       R.oo_1.22.0       pillar_1.3.0     
[10] glue_1.3.0        withr_2.1.2       R.utils_2.7.0    
[13] modelr_0.1.2      readxl_1.1.0      bindr_0.1.1      
[16] plyr_1.8.4        munsell_0.5.0     gtable_0.2.0     
[19] workflowr_1.1.1   cellranger_1.1.0  rvest_0.3.2      
[22] R.methodsS3_1.7.1 evaluate_0.11     labeling_0.3     
[25] knitr_1.20        broom_0.5.0       Rcpp_0.12.18     
[28] scales_1.0.0      backports_1.1.2   jsonlite_1.5     
[31] hms_0.4.2         digest_0.6.16     stringi_1.2.4    
[34] grid_3.6.1        rprojroot_1.3-2   cli_1.0.0        
[37] tools_3.6.1       maps_3.3.0        magrittr_1.5     
[40] lazyeval_0.2.1    crayon_1.3.4      whisker_0.3-2    
[43] pkgconfig_2.0.2   xml2_1.2.0        lubridate_1.7.4  
[46] assertthat_0.2.0  rmarkdown_1.10    httr_1.3.1       
[49] rstudioapi_0.7    R6_2.2.2          nlme_3.1-137     
[52] git2r_0.23.0      compiler_3.6.1   

This reproducible R Markdown analysis was created with workflowr 1.1.1