Last updated: 2021-08-02

Checks: 7 0

Knit directory: Multispectral HCC/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version a152862. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    code/
    Ignored:    data/
    Ignored:    old/
    Ignored:    output/

Untracked files:
    Untracked:  analysis/cores.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tcga.Rmd) and HTML (docs/tcga.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd a152862 Jovan Tanevski 2021-08-02 add NMF based analysis
html c25dcca Jovan Tanevski 2021-08-02 Build site.
Rmd 21cf743 Jovan Tanevski 2021-08-02 rank normalization, leiden analysis, diff exp
html a386eaa Jovan Tanevski 2021-07-28 Build site.
Rmd 9ab4acc Jovan Tanevski 2021-07-28 Build site.
Rmd bd05dbf Jovan Tanevski 2021-07-28 add expression profiles
html e45bf1d Jovan Tanevski 2021-07-28 Build site.
Rmd dcab1bf Jovan Tanevski 2021-07-28 set figure output to svg
html 33e71a0 Jovan Tanevski 2021-07-28 Build site.
Rmd bb998b8 Jovan Tanevski 2021-07-28 hclust with factoextra
html 1cb80af Jovan Tanevski 2021-07-28 Build site.
Rmd d0b6e0f Jovan Tanevski 2021-07-28 add pca to tcga analysis
html d73f586 Jovan Tanevski 2021-07-28 Build site.
Rmd c4324f5 Jovan Tanevski 2021-07-28 add umap
html 0bfae68 Jovan Tanevski 2021-07-28 Build site.
Rmd 82e3712 Jovan Tanevski 2021-07-28 add basic hclust

Setup

Load required libraries.

library(tidyverse)
library(skimr)
library(uwot)
library(factoextra)
library(cowplot)
library(FNN)
library(igraph)
library(leiden)
library(limma)
library(NMF)

Read filtered TCGA RRPA data and display summary statistics.

tcga.raw <- read_csv("data/TCGA-RPPA-LIHC_selected.csv", col_types = cols()) %>%
  select(-TumorType) %>%
  column_to_rownames("SampleID")

skim(tcga.raw)
Data summary
Name tcga.raw
Number of rows 184
Number of columns 12
_______________________
Column type frequency:
numeric 12
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
P53 0 1 -1.13 0.46 -2.54 -1.40 -0.96 -0.76 -0.51 ▁▂▂▅▇
AKT_pS473 0 1 -0.63 0.71 -2.76 -1.02 -0.41 -0.15 0.96 ▁▂▃▇▁
AKT_pT308 0 1 0.07 0.42 -1.16 -0.07 0.09 0.22 1.72 ▁▃▇▁▁
BETACATENIN 0 1 1.50 0.72 -1.30 1.08 1.51 1.87 3.70 ▁▁▇▅▁
JNK_pT183Y185 0 1 -0.21 0.29 -1.14 -0.36 -0.17 -0.04 0.48 ▁▂▇▇▂
MEK1_pS217S221 0 1 -0.17 0.36 -0.82 -0.35 -0.23 -0.10 2.58 ▇▃▁▁▁
P38_pT180Y182 0 1 0.49 0.57 -1.45 0.31 0.50 0.72 2.95 ▁▂▇▁▁
P70S6K_pT389 0 1 -1.21 0.75 -3.22 -1.58 -0.95 -0.65 1.09 ▂▃▇▃▁
PDK1_pS241 0 1 0.40 0.31 -0.56 0.23 0.37 0.55 1.62 ▁▇▇▂▁
S6_pS235S236 0 1 -0.72 0.75 -3.53 -1.06 -0.67 -0.36 1.12 ▁▁▅▇▂
YAP_pS127 0 1 2.21 0.61 0.68 1.78 2.10 2.54 4.05 ▁▇▇▂▁
TRANSGLUTAMINASE 0 1 -0.42 0.56 -1.24 -0.83 -0.59 -0.20 2.72 ▇▃▁▁▁

Rank normalize as suggested in https://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/LIHC/RPPA_Clustering_CNMF/nozzle.html

tcga <- mutate_all(tcga.raw, rank)

Dimensionality reduction

tcga.pca <- prcomp(tcga)
summary(tcga.pca)
Importance of components:
                            PC1     PC2      PC3      PC4      PC5      PC6
Standard deviation     112.2545 66.8808 57.91412 54.79530 52.30290 45.98226
Proportion of Variance   0.3702  0.1314  0.09853  0.08821  0.08036  0.06211
Cumulative Proportion    0.3702  0.5016  0.60012  0.68833  0.76869  0.83081
                           PC7      PC8      PC9     PC10     PC11    PC12
Standard deviation     41.5038 35.65454 34.96764 28.14257 23.00992 14.8757
Proportion of Variance  0.0506  0.03735  0.03592  0.02327  0.01555  0.0065
Cumulative Proportion   0.8814  0.91876  0.95468  0.97795  0.99350  1.0000
tcga.umap <- umap(tcga, n_neighbors = 5, n_epochs = 1000)

Hierarchical clustering

Perform hierarchical clustering of the data and plot the resulting dendrogram

tcga.hclust <- eclust(tcga, "hclust")
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.
fviz_dend(tcga.hclust, rect = TRUE)
Warning: `guides(<scale> = FALSE)` is deprecated. Please use `guides(<scale> =
"none")` instead.

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
a386eaa Jovan Tanevski 2021-07-28
fviz_gap_stat(tcga.hclust$gap_stat)

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
fviz_silhouette(tcga.hclust) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1))
  cluster size ave.sil.width
1       1   43          0.05
2       2   23          0.25
3       3   17          0.34
4       4   40          0.03
5       5   35          0.02
6       6   12          0.16
7       7   14          0.01

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(tcga.hclust$cluster)) +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
tcga.umap.clus <-
  tcga.umap %>%
  cbind(tcga.hclust$cluster) %>%
  `colnames<-`(c("U1", "U2", "Cluster")) %>%
  as_tibble() %>%
  mutate_at("Cluster", as.factor)

ggplot(tcga.umap.clus, aes(x = U1, y = U2, color = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Expression profiles per cluster

tcga.clustered <- tcga.raw %>%
  mutate(Cluster = as.factor(tcga.hclust$cluster)) %>%
  pivot_longer(names_to = "Marker", values_to = "Z", -Cluster)

profiles <- seq_len(tcga.hclust$nbclust) %>% map(~
ggplot(
  tcga.clustered %>% filter(Cluster == .x),
  aes(x = Marker, y = Z, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  ylim(-3, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(tcga.hclust$nbclust)))
Warning: Removed 17 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 6 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 4 rows containing non-finite values (stat_summary).
Warning: Removed 1 rows containing missing values (geom_segment).
Warning: Removed 4 rows containing non-finite values (stat_summary).
Warning: Removed 1 rows containing missing values (geom_segment).

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Differential expression analysis

design <- model.matrix(~0 + as.factor(tcga.hclust$cluster))
colnames(design) <- paste0("Cluster", seq_len(tcga.hclust$nbclust))

tcga.hclust.limma <- lmFit(t(tcga.raw), design = design)

tcga.hclust.limma$coefficients
                    Cluster1    Cluster2     Cluster3    Cluster4    Cluster5
P53              -0.83287575 -1.63930495 -0.686920525 -0.77840188 -1.45188350
AKT_pS473        -0.30863644 -1.33879677 -0.006580675 -0.21834276 -1.32477306
AKT_pT308         0.08732521 -0.27177766  0.218564880  0.18469631 -0.29203272
BETACATENIN       1.57155636  2.31044844  1.039230839  1.56262878  1.21849982
JNK_pT183Y185    -0.11316242 -0.53603513 -0.020171999 -0.06052635 -0.32400742
MEK1_pS217S221   -0.24976273 -0.31018141 -0.253137701 -0.23604609  0.05052373
P38_pT180Y182     0.51223883  0.02056018  0.769874692  0.58845685  0.63984603
P70S6K_pT389     -0.77571779 -1.94795561 -0.534009436 -0.69535853 -1.62072380
PDK1_pS241        0.38756470  0.59045467  0.116197084  0.16495428  0.63423716
S6_pS235S236     -0.67758055 -1.43636690 -0.361153007 -0.40006282 -0.97855764
YAP_pS127         2.03602902  3.00731625  1.850386691  2.08600134  2.04093606
TRANSGLUTAMINASE -0.74859832 -0.22338223 -0.911213400 -0.13653922 -0.45593106
                    Cluster6    Cluster7
P53              -1.59199405 -1.55125427
AKT_pS473        -1.36858380 -0.01857768
AKT_pT308         0.16397916  0.89903051
BETACATENIN       0.69812217  1.74893447
JNK_pT183Y185    -0.18383498 -0.40070734
MEK1_pS217S221    0.26605581 -0.29766097
P38_pT180Y182    -0.02873231  0.58069604
P70S6K_pT389     -2.07460770 -1.91867762
PDK1_pS241        0.31715543  0.63407898
S6_pS235S236     -0.18619595 -0.86118068
YAP_pS127         2.57126673  2.33398982
TRANSGLUTAMINASE  0.18560297 -0.40427359
tests.hclust <- decideTests(eBayes(tcga.hclust.limma))

tests.hclust@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7
P53                    -1       -1       -1       -1       -1       -1       -1
AKT_pS473              -1       -1        0       -1       -1       -1        0
AKT_pT308               1       -1        1        1       -1        0        1
BETACATENIN             1        1        1        1        1        1        1
JNK_pT183Y185          -1       -1        0        0       -1       -1       -1
MEK1_pS217S221         -1       -1       -1       -1        0        1       -1
P38_pT180Y182           1        0        1        1        1        0        1
P70S6K_pT389           -1       -1       -1       -1       -1       -1       -1
PDK1_pS241              1        1        0        1        1        1        1
S6_pS235S236           -1       -1       -1       -1       -1        0       -1
YAP_pS127               1        1        1        1        1        1        1
TRANSGLUTAMINASE       -1       -1       -1        0       -1        0       -1
summary(tests.hclust)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7
Down          7        8        5        5        7        4        6
NotSig        0        1        3        2        1        4        1
Up            5        3        4        5        4        4        5

Similarity and graph based clustering

Calculate leiden clustering based on weighted shared nearest neighbor graph

tcga.knn <- knn.index(tcga, 10)
jaccard.cuttoff <- 0.1

snn <- seq_len(nrow(tcga.knn) - 1) %>% map_dfr(\(id){
  to <- seq(id + 1, nrow(tcga.knn))
  jaccard <- to %>%
    map_dbl(~ length(intersect(tcga.knn[id, ], tcga.knn[.x, ])) /
      length(union(tcga.knn[id, ], tcga.knn[.x, ])))
  
  tibble(from = id, to = to, weight = jaccard) %>% filter(jaccard >= jaccard.cuttoff)
})

leiden.clusters <- graph_from_data_frame(snn, directed = FALSE) %>% leiden()

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(leiden.clusters)) +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02
ggplot(tcga.umap.clus %>% mutate(Cluster = as.factor(leiden.clusters)), aes(x = U1, y = U2, color = Cluster, shape = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Expression profiles per cluster

tcga.clustered <- tcga.raw %>%
  mutate(Cluster = as.factor(leiden.clusters)) %>%
  pivot_longer(names_to = "Marker", values_to = "Z", -Cluster)

profiles <- seq_len(max(leiden.clusters)) %>% map(~
ggplot(
  tcga.clustered %>% filter(Cluster == .x),
  aes(x = Marker, y = Z, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  ylim(-3, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(max(leiden.clusters))))
Warning: Removed 1 rows containing non-finite values (stat_summary).
Warning: Removed 10 rows containing non-finite values (stat_summary).
Warning: Removed 2 rows containing missing values (geom_segment).
Warning: Removed 2 rows containing non-finite values (stat_summary).
Warning: Removed 19 rows containing non-finite values (stat_summary).
Warning: Removed 3 rows containing missing values (geom_segment).
Warning: Removed 1 rows containing non-finite values (stat_summary).

Version Author Date
c25dcca Jovan Tanevski 2021-08-02

Differential expression analysis

design <- model.matrix(~0 + as.factor(leiden.clusters))
colnames(design) <- paste0("Cluster", seq_len(max(leiden.clusters)))

tcga.leiden.limma <- lmFit(t(tcga.raw), design = design)

tcga.leiden.limma$coefficients
                   Cluster1    Cluster2    Cluster3    Cluster4     Cluster5
P53              -0.9673433 -1.53283086 -0.75756942 -1.61767917 -0.749373251
AKT_pS473        -0.3200889 -1.28276689 -0.16000561 -1.15973070 -0.194008436
AKT_pT308         0.2124778 -0.18171392  0.21593973 -0.04769457  0.153441990
BETACATENIN       1.7912135  1.25643693  1.03564301  2.09187795  1.416551169
JNK_pT183Y185    -0.1965589 -0.32069886 -0.03275702 -0.49164891 -0.009853884
MEK1_pS217S221   -0.2999638  0.05567082 -0.15493844 -0.26691280 -0.206574355
P38_pT180Y182     0.5421273  0.49421905  0.77606040 -0.01780252  0.514742787
P70S6K_pT389     -0.9958935 -1.84333252 -0.60204473 -1.95723563 -0.625471023
PDK1_pS241        0.3879572  0.56800614  0.21918573  0.58110009  0.209576601
S6_pS235S236     -0.6349137 -0.82814538 -0.47055819 -1.33662344 -0.368775477
YAP_pS127         2.0322800  2.23326298  2.06163471  2.82246037  1.999431332
TRANSGLUTAMINASE -0.4973532 -0.24179636 -0.80334063 -0.36399467 -0.082472412
tests.leiden <- decideTests(eBayes(tcga.leiden.limma))

tests.leiden@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
P53                    -1       -1       -1       -1       -1
AKT_pS473              -1       -1        0       -1        0
AKT_pT308               1       -1        1        0        0
BETACATENIN             1        1        1        1        1
JNK_pT183Y185          -1       -1        0       -1        0
MEK1_pS217S221         -1        0       -1       -1       -1
P38_pT180Y182           1        1        1        0        1
P70S6K_pT389           -1       -1       -1       -1       -1
PDK1_pS241              1        1        1        1        1
S6_pS235S236           -1       -1       -1       -1       -1
YAP_pS127               1        1        1        1        1
TRANSGLUTAMINASE       -1       -1       -1       -1        0
summary(tests.leiden)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5
Down          7        7        5        7        4
NotSig        0        1        2        2        4
Up            5        4        5        3        4

Consensus NMF

tcga.nmf.rank <- nmfEstimateRank(as.matrix(t(tcga)), seq(2,12), nrun = 10)

plot(tcga.nmf.rank)
Warning: Removed 1 rows containing missing values (geom_point).

tcga.nmf <- nmf(as.matrix(t(tcga)), 9, nrun = 10)

Extract basis of NMF (signature of cluster)

basismap(tcga.nmf)

Extract coefficients of NMF (soft clustering of samples)

coefmap(tcga.nmf)

Check for signs of overfitting

consensusmap(tcga.nmf)

Assign clusters

nmf.clusters <- apply(tcga.nmf@fit@H, 2, which.max)

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(nmf.clusters)) +
  theme_classic()

ggplot(tcga.umap.clus %>% mutate(Cluster = as.factor(nmf.clusters)), aes(x = U1, y = U2, color = Cluster)) +
  geom_point() +
  theme_classic()

Differential expression analysis

design <- model.matrix(~0 + as.factor(nmf.clusters))
colnames(design) <- paste0("Cluster", seq_len(max(nmf.clusters)))

tcga.nmf.limma <- lmFit(t(tcga.raw), design = design)

tcga.nmf.limma$coefficients
                    Cluster1    Cluster2   Cluster3    Cluster4     Cluster5
P53              -1.10694961 -1.47281717 -1.4390930 -1.31952436 -1.408395531
AKT_pS473        -0.57406575 -1.03079810 -1.1267523 -0.98040237 -1.435032358
AKT_pT308         0.05333472 -0.06691784 -0.1742176 -0.39565713 -0.124579611
BETACATENIN       2.47820655  1.69944114  1.6562291  1.50041542  1.094901251
JNK_pT183Y185    -0.32673969 -0.40956008 -0.5157945 -0.43549726  0.001981008
MEK1_pS217S221   -0.30372607 -0.19884053 -0.2561024 -0.31368660  0.452610710
P38_pT180Y182     0.24978589  0.23245516  1.1584952  0.06678912  0.447332278
P70S6K_pT389     -1.24207931 -1.73111606 -1.6578623 -1.50621120 -1.555388810
PDK1_pS241        0.52947256  0.53284938  0.4288817  0.67767127  0.556231887
S6_pS235S236     -1.08064394 -0.95305470 -1.2276411 -1.35723076 -0.860677320
YAP_pS127         1.94124952  2.93622011  1.9401463  1.56874728  2.056839337
TRANSGLUTAMINASE -0.70096178 -0.36776500 -0.6494818 -0.37180974 -0.139566359
                    Cluster6    Cluster7    Cluster8   Cluster9
P53              -0.75792378 -1.16642743 -1.44794565 -1.7343508
AKT_pS473        -0.17752958 -0.80854698 -1.35388746  0.6065127
AKT_pT308         0.16494551 -0.07193855 -0.35792865  1.5088877
BETACATENIN       1.39488420  1.45777476  1.23146467  1.5788436
JNK_pT183Y185    -0.05473442 -0.39775043 -0.68698203 -0.4520198
MEK1_pS217S221   -0.25505234 -0.38203065 -0.43545558 -0.2443669
P38_pT180Y182     0.58923331  0.36995499  0.31986997  0.8981164
P70S6K_pT389     -0.66793673 -1.23538317 -1.74264302 -2.1618971
PDK1_pS241        0.23571112  0.37396033  0.44641453  0.6912316
S6_pS235S236     -0.47921236 -0.58950486 -0.09480915 -0.5763633
YAP_pS127         1.95673778  1.88453913  1.43437318  1.9099130
TRANSGLUTAMINASE -0.52400250  0.33394102 -0.41896611 -0.3269469
tests.nmf <- decideTests(eBayes(tcga.nmf.limma))

tests.nmf@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7
P53                    -1       -1       -1       -1       -1       -1       -1
AKT_pS473              -1       -1       -1       -1       -1       -1       -1
AKT_pT308               0        0        0       -1        0        1        0
BETACATENIN             1        1        1        1        1        1        1
JNK_pT183Y185          -1       -1       -1       -1        0       -1       -1
MEK1_pS217S221         -1       -1       -1        0        1       -1       -1
P38_pT180Y182           0        1        1        0        1        1        0
P70S6K_pT389           -1       -1       -1       -1       -1       -1       -1
PDK1_pS241              1        1        1        1        1        1        1
S6_pS235S236           -1       -1       -1       -1       -1       -1        0
YAP_pS127               1        1        1        1        1        1        1
TRANSGLUTAMINASE       -1       -1       -1        0        0       -1        0
                 Cluster8 Cluster9
P53                    -1       -1
AKT_pS473              -1        1
AKT_pT308               0        1
BETACATENIN             1        1
JNK_pT183Y185          -1       -1
MEK1_pS217S221         -1       -1
P38_pT180Y182           0        1
P70S6K_pT389           -1       -1
PDK1_pS241              1        1
S6_pS235S236            0        0
YAP_pS127               1        1
TRANSGLUTAMINASE        0        0
summary(tests.nmf)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 Cluster7 Cluster8
Down          7        7        7        6        4        7        5        5
NotSig        2        1        1        3        3        0        4        4
Up            3        4        4        3        5        5        3        3
       Cluster9
Down          4
NotSig        2
Up            6

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] RColorBrewer_1.1-2  doParallel_1.0.16   iterators_1.0.13   
 [4] foreach_1.5.1       NMF_0.23.0          Biobase_2.52.0     
 [7] BiocGenerics_0.38.0 cluster_2.1.2       rngtools_1.5       
[10] pkgmaker_0.32.2     registry_0.5-1      limma_3.48.1       
[13] leiden_0.3.9        igraph_1.2.6        FNN_1.1.3          
[16] cowplot_1.1.1       factoextra_1.0.7    uwot_0.1.10        
[19] Matrix_1.3-4        skimr_2.1.3         forcats_0.5.1      
[22] stringr_1.4.0       dplyr_1.0.7         purrr_0.3.4        
[25] readr_2.0.0         tidyr_1.1.3         tibble_3.1.3       
[28] ggplot2_3.3.5       tidyverse_1.3.1     workflowr_1.6.2    

loaded via a namespace (and not attached):
  [1] readxl_1.3.1        backports_1.2.1     Hmisc_4.5-0        
  [4] plyr_1.8.6          repr_1.1.3          splines_4.1.0      
  [7] gridBase_0.4-7      digest_0.6.27       htmltools_0.5.1.1  
 [10] viridis_0.6.1       fansi_0.5.0         checkmate_2.0.0    
 [13] magrittr_2.0.1      tzdb_0.1.2          openxlsx_4.2.4     
 [16] modelr_0.1.8        vroom_1.5.3         jpeg_0.1-9         
 [19] colorspace_2.0-2    rvest_1.0.1         ggrepel_0.9.1      
 [22] haven_2.4.1         xfun_0.24           crayon_1.4.1       
 [25] jsonlite_1.7.2      survival_3.2-11     glue_1.4.2         
 [28] gtable_0.3.0        car_3.0-11          abind_1.4-5        
 [31] scales_1.1.1        DBI_1.1.1           rstatix_0.7.0      
 [34] Rcpp_1.0.7          htmlTable_2.2.1     viridisLite_0.4.0  
 [37] xtable_1.8-4        reticulate_1.20     foreign_0.8-81     
 [40] bit_4.0.4           Formula_1.2-4       htmlwidgets_1.5.3  
 [43] httr_1.4.2          ellipsis_0.3.2      pkgconfig_2.0.3    
 [46] farver_2.1.0        nnet_7.3-16         sass_0.4.0         
 [49] dbplyr_2.1.1        utf8_1.2.2          tidyselect_1.1.1   
 [52] labeling_0.4.2      rlang_0.4.11        reshape2_1.4.4     
 [55] later_1.2.0         munsell_0.5.0       cellranger_1.1.0   
 [58] tools_4.1.0         cli_3.0.1           generics_0.1.0     
 [61] broom_0.7.9         evaluate_0.14       yaml_2.2.1         
 [64] knitr_1.33          bit64_4.0.5         fs_1.5.0           
 [67] zip_2.2.0           dendextend_1.15.1   whisker_0.4        
 [70] xml2_1.3.2          compiler_4.1.0      rstudioapi_0.13    
 [73] curl_4.3.2          png_0.1-7           ggsignif_0.6.2     
 [76] reprex_2.0.0        bslib_0.2.5.1       stringi_1.7.3      
 [79] highr_0.9           RSpectra_0.16-0     lattice_0.20-44    
 [82] vctrs_0.3.8         pillar_1.6.2        lifecycle_1.0.0    
 [85] jquerylib_0.1.4     data.table_1.14.0   httpuv_1.6.1       
 [88] R6_2.5.0            latticeExtra_0.6-29 promises_1.2.0.1   
 [91] gridExtra_2.3       rio_0.5.27          codetools_0.2-18   
 [94] assertthat_0.2.1    rprojroot_2.0.2     withr_2.4.2        
 [97] hms_1.1.0           grid_4.1.0          rpart_4.1-15       
[100] rmarkdown_2.9       carData_3.0-4       git2r_0.28.0       
[103] ggpubr_0.4.0        lubridate_1.7.10    base64enc_0.1-3