Last updated: 2021-11-11

Checks: 7 0

Knit directory: Multispectral HCC/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210728) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version d27c5d1. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    NMF_26ce5dfd0cab/
    Ignored:    analysis/.DS_Store
    Ignored:    code/
    Ignored:    data/
    Ignored:    old/
    Ignored:    output/.DS_Store
    Ignored:    output/tumor.hc.nmf.rank.1.rds
    Ignored:    output/tumor.hc.nmf.rank.10.rds
    Ignored:    output/tumor.hc.umap.rds

Untracked files:
    Untracked:  core_cluster_fractions.pdf
    Untracked:  output/cores_3/11_18529_T_HCC1_Core[1,11,M]_[61473,19738].im3.png
    Untracked:  output/cores_3/12_291_T_HCC1_Core[1,5,K]_[58929,10236].im3.png
    Untracked:  output/cores_3/13_372_T_HCC1_Core[1,3,A]_[45443,7020].im3.png

Unstaged changes:
    Modified:   analysis/index.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/tcga_6.Rmd) and HTML (docs/tcga_6.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 515f7e6 Jovan Tanevski 2021-10-28 Build site.
Rmd 182f85e Jovan Tanevski 2021-10-28 duplicate tcga

Setup

Load required libraries.

library(tidyverse)
library(skimr)
library(uwot)
library(factoextra)
library(cowplot)
library(limma)
library(NMF)
library(pheatmap)

Read filtered TCGA RRPA data and display summary statistics.

tcga.lihc <- read_tsv("data/TCGA-RPPA-pancan-clean.txt") %>%
  filter(TumorType == "LIHC")
Rows: 7790 Columns: 200
── Column specification ────────────────────────────────────────────────────────
Delimiter: "\t"
chr   (2): SampleID, TumorType
dbl (198): X1433EPSILON, X4EBP1, X4EBP1_pS65, X4EBP1_pT37T46, X53BP1, ACC_pS...

ℹ Use `spec()` to retrieve the full column specification for this data.
ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
tcga.raw <- tcga.lihc %>%
  select(
    SampleID, BETACATENIN, CKIT, JNK_pT183Y185, JNK2, MAPK_pT202Y204,
    P38MAPK, P38_pT180Y182, PKCALPHA, PKCALPHA_pS657, PKCDELTA_pS664,
    S6_pS235S236, STAT3_pY705, TRANSGLUTAMINASE
  ) %>%
  column_to_rownames("SampleID")

skim(tcga.raw)
Data summary
Name tcga.raw
Number of rows 184
Number of columns 13
_______________________
Column type frequency:
numeric 13
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
BETACATENIN 0 1 1.50 0.72 -1.30 1.08 1.51 1.87 3.70 ▁▁▇▅▁
CKIT 0 1 0.12 0.39 -0.80 -0.06 0.15 0.31 2.75 ▂▇▁▁▁
JNK_pT183Y185 0 1 -0.21 0.29 -1.14 -0.36 -0.17 -0.04 0.48 ▁▂▇▇▂
JNK2 0 1 0.19 0.32 -1.52 0.03 0.15 0.30 1.48 ▁▁▇▃▁
MAPK_pT202Y204 0 1 -0.22 0.74 -2.03 -0.62 -0.06 0.25 4.12 ▃▇▁▁▁
P38MAPK 0 1 0.11 0.29 -0.88 -0.08 0.07 0.27 0.96 ▁▂▇▃▁
P38_pT180Y182 0 1 0.49 0.57 -1.45 0.31 0.50 0.72 2.95 ▁▂▇▁▁
PKCALPHA 0 1 -0.30 0.40 -1.36 -0.59 -0.36 -0.02 0.82 ▁▆▇▅▁
PKCALPHA_pS657 0 1 -0.46 0.37 -1.74 -0.62 -0.47 -0.22 0.46 ▁▁▇▆▁
PKCDELTA_pS664 0 1 -0.36 0.15 -0.88 -0.42 -0.33 -0.26 -0.14 ▁▁▃▇▇
S6_pS235S236 0 1 -0.72 0.75 -3.53 -1.06 -0.67 -0.36 1.12 ▁▁▅▇▂
STAT3_pY705 0 1 0.14 0.40 -1.27 -0.05 0.20 0.36 1.20 ▁▂▇▇▁
TRANSGLUTAMINASE 0 1 -0.42 0.56 -1.24 -0.83 -0.59 -0.20 2.72 ▇▃▁▁▁

Quantile normalization and rank normalization for NMF as suggested in https://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/LIHC/RPPA_Clustering_CNMF/nozzle.html

tcga.norm <- normalizeQuantiles(tcga.raw)

skim(tcga.norm)
Data summary
Name tcga.norm
Number of rows 184
Number of columns 13
_______________________
Column type frequency:
numeric 13
________________________
Group variables None

Variable type: numeric

skim_variable n_missing complete_rate mean sd p0 p25 p50 p75 p100 hist
BETACATENIN 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
CKIT 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
JNK_pT183Y185 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
JNK2 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
MAPK_pT202Y204 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
P38MAPK 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
P38_pT180Y182 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
PKCALPHA 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
PKCALPHA_pS657 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
PKCDELTA_pS664 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
S6_pS235S236 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
STAT3_pY705 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
TRANSGLUTAMINASE 0 1 -0.01 0.44 -1.47 -0.25 -0.01 0.23 1.74 ▁▃▇▂▁
tcga.rank <- mutate_all(tcga.raw, rank)

Dimensionality reduction

tcga.pca <- prcomp(tcga.norm)
summary(tcga.pca)
Importance of components:
                          PC1    PC2    PC3     PC4     PC5     PC6     PC7
Standard deviation     0.8463 0.6793 0.5538 0.46534 0.42315 0.39088 0.35254
Proportion of Variance 0.2797 0.1802 0.1198 0.08456 0.06992 0.05966 0.04853
Cumulative Proportion  0.2797 0.4599 0.5797 0.66423 0.73415 0.79381 0.84235
                           PC8     PC9   PC10    PC11    PC12    PC13
Standard deviation     0.32919 0.30663 0.2716 0.24954 0.23050 0.11040
Proportion of Variance 0.04232 0.03672 0.0288 0.02432 0.02075 0.00476
Cumulative Proportion  0.88466 0.92138 0.9502 0.97449 0.99524 1.00000
set.seed(42)
tcga.umap <- umap(tcga.norm, n_neighbors = 10, n_epochs = 1000)

Consensus NMF clustering

For this analysis 3 clusters were selected based on the consensus cophenetic correlation coefficient.

tcga.nmf.rank <- nmfEstimateRank(as.matrix(t(tcga.rank)), seq(2, 10), nrun = 20, seed = 42)

plot(tcga.nmf.rank)

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28
tcga.nmf <- tcga.nmf <- tcga.nmf.rank$fit[["6"]]

Extract basis of NMF (signature of cluster)

basismap(tcga.nmf)

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Extract coefficients of NMF (soft clustering of samples)

coefmap(tcga.nmf)

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Check for signs of overfitting

consensusmap(tcga.nmf)

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Assign clusters

nmf.clusters <- apply(tcga.nmf@fit@H, 2, which.max)

Plot in 2D PCA and UMAP

fviz_pca_ind(tcga.pca, geom = "point", col.ind = as.factor(nmf.clusters)) +
  theme_classic()

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28
tcga.umap.clus <-
  tcga.umap %>%
  cbind(nmf.clusters) %>%
  `colnames<-`(c("U1", "U2", "Cluster")) %>%
  as_tibble() %>%
  mutate_at("Cluster", as.factor)

ggplot(tcga.umap.clus, aes(x = U1, y = U2, color = Cluster)) +
  geom_point() +
  theme_classic()

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Expression profiles per cluster

tcga.clustered.nmf <- tcga.norm %>%
  mutate(Cluster = as.factor(nmf.clusters)) %>%
  pivot_longer(names_to = "Marker", values_to = "Norm.value", -Cluster)

profiles <- seq_len(max(nmf.clusters)) %>% map(~
ggplot(
  tcga.clustered.nmf %>% filter(Cluster == .x),
  aes(x = Marker, y = Norm.value, color = Marker)
) +
  stat_summary(fun.data = mean_sdl, show.legend = FALSE) +
  ylim(-3, 3) +
  theme_classic() +
  theme(axis.text.x = element_text(angle = 90, hjust = 1)))

plot_grid(plotlist = profiles, labels = paste("Cluster", seq_len(max(nmf.clusters))))

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Differential expression analysis (limma)

design <- model.matrix(~ 0 + as.factor(nmf.clusters))
colnames(design) <- paste0("Cluster", seq_len(max(nmf.clusters)))

tcga.nmf.limma <- lmFit(t(tcga.norm), design = design)

tcga.nmf.eb <- eBayes(tcga.nmf.limma)

topTable(tcga.nmf.eb)
Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6 AveExpr F P.Value adj.P.Val
PKCALPHA_pS657 -0.3730278 -0.2937306 0.3724889 -0.0850154 -0.2231801 -0.6994625 -0.0112531 22.11160 0 0
PKCALPHA -0.1560999 -0.1697372 0.3853539 -0.2080164 -0.1104291 -0.4628339 -0.0112531 18.85941 0 0
PKCDELTA_pS664 -0.4300651 -0.4760229 0.0415293 0.2406422 -0.3974601 -0.3695432 -0.0112531 16.82459 0 0
STAT3_pY705 -0.2554661 -0.4818671 -0.1820745 0.2073898 0.3576408 -0.3717927 -0.0112531 15.68875 0 0
JNK_pT183Y185 -0.3404028 -0.4054327 -0.1714750 0.2661254 -0.2508033 0.3296977 -0.0112531 15.25773 0 0
P38_pT180Y182 -0.4345396 -0.4041800 -0.0950428 0.1413069 0.4209966 -0.5078815 -0.0112719 14.17915 0 0
MAPK_pT202Y204 -0.5001174 -0.3442448 -0.1283186 0.2725479 -0.1019825 -0.2658334 -0.0112531 13.28206 0 0
P38MAPK -0.1589381 0.3190424 0.0674792 -0.1949200 0.4337038 -0.4089599 -0.0112531 11.38894 0 0
S6_pS235S236 0.6378278 -0.3856756 -0.1232475 0.1429577 -0.2631252 0.0083774 -0.0112531 11.04938 0 0
BETACATENIN -0.3392457 0.4892022 0.1698493 -0.1622843 -0.1459475 -0.2320966 -0.0112531 10.44787 0 0
tests.nmf <- decideTests(tcga.nmf.eb)

tests.nmf@.Data
                 Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
BETACATENIN            -1        1        1       -1        0        0
CKIT                    0        0        0        0        0        1
JNK_pT183Y185          -1       -1       -1        1       -1        1
JNK2                   -1        1        1       -1        0        0
MAPK_pT202Y204         -1       -1       -1        1        0       -1
P38MAPK                 0        1        0       -1        1       -1
P38_pT180Y182          -1       -1        0        1        1       -1
PKCALPHA                0        0        1       -1        0       -1
PKCALPHA_pS657         -1       -1        1       -1       -1       -1
PKCDELTA_pS664         -1       -1        0        1       -1       -1
S6_pS235S236            1       -1       -1        1       -1        0
STAT3_pY705             0       -1       -1        1        1       -1
TRANSGLUTAMINASE        1        0        0       -1        0        1
summary(tests.nmf)
       Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6
Down          7        7        4        6        4        7
NotSig        4        3        5        1        6        3
Up            2        3        4        6        3        3

Differential expression analysis (silhouette)

Calculate the similarity of samples using the expression and the silhouette scores based on the assigned clusters.

silhouette.nmf <- silhouette(nmf.clusters, dist(tcga.norm))
fviz_silhouette(silhouette.nmf)
  cluster size ave.sil.width
1       1    9         -0.01
2       2   15          0.08
3       3   60         -0.01
4       4   72          0.24
5       5   19          0.00
6       6    9          0.01

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

Select only the samples with positive silhouette scores as “core samples”

core.samples <- which(silhouette.nmf[, 3] > 0)
tcga.core.samples <- tcga.norm %>%
  add_column(Cluster = nmf.clusters) %>%
  slice(core.samples)

Calculate difference in means (mean(cluster) - mean(other)), one-vs-all t-test per marker and correct for FDR. Filter q <= 0.05. Plot the differences.

de.table <- unique(tcga.core.samples$Cluster) %>%
  map_dfr(\(c){
    tcga.core.samples %>%
      summarize(across(-Cluster, ~ t.test(.x ~ (Cluster == c))$p.value)) %>%
      pivot_longer(names_to = "Marker", values_to = "p", everything()) %>%
      mutate(Cluster = c, Difference = tcga.core.samples %>%
        group_by(Cluster == c) %>%
        select(-Cluster) %>%
        group_split(.keep = FALSE) %>% map(colMeans) %>% reduce(`-`))
  }) %>%
  mutate(q = p.adjust(p, method = "fdr"), Difference = -Difference)

de.table %>%
  filter(q <= 0.05) %>%
  arrange(q)
Marker p Cluster Difference q
PKCALPHA 0.0000000 3 0.7701627 0.0000000
PKCALPHA_pS657 0.0000000 3 0.7431880 0.0000000
MAPK_pT202Y204 0.0000000 4 0.5537569 0.0000000
JNK_pT183Y185 0.0000000 4 0.5116234 0.0000000
PKCDELTA_pS664 0.0000000 4 0.4766631 0.0000000
S6_pS235S236 0.0000015 4 0.3604600 0.0000194
STAT3_pY705 0.0000031 4 0.3840488 0.0000342
PKCALPHA 0.0000055 4 -0.3757780 0.0000538
P38MAPK 0.0000079 4 -0.3644667 0.0000686
JNK2 0.0000153 4 -0.2946430 0.0001197
BETACATENIN 0.0000288 2 0.6929014 0.0002045
P38_pT180Y182 0.0000331 4 0.3229844 0.0002150
PKCDELTA_pS664 0.0000401 2 -0.5608850 0.0002404
JNK2 0.0000896 3 0.3296572 0.0004660
STAT3_pY705 0.0000867 3 -0.2972949 0.0004660
P38_pT180Y182 0.0001063 6 -0.6298227 0.0005184
P38_pT180Y182 0.0001293 2 -0.4511885 0.0005931
JNK2 0.0001502 2 0.5217964 0.0006347
BETACATENIN 0.0001546 4 -0.3013091 0.0006347
JNK_pT183Y185 0.0002328 3 -0.3574638 0.0009079
P38MAPK 0.0002997 5 0.6237278 0.0011133
JNK_pT183Y185 0.0004760 1 -0.6043500 0.0016875
JNK_pT183Y185 0.0005527 2 -0.5475734 0.0017962
P38MAPK 0.0005522 2 0.4367812 0.0017962
TRANSGLUTAMINASE 0.0007879 4 -0.2732536 0.0024582
MAPK_pT202Y204 0.0009888 2 -0.4639665 0.0029665
PKCDELTA_pS664 0.0021256 6 -0.4919496 0.0061405
S6_pS235S236 0.0027499 2 -0.4689384 0.0076605
PKCDELTA_pS664 0.0030533 5 -0.5668973 0.0082123
STAT3_pY705 0.0036598 2 -0.6449699 0.0095156
BETACATENIN 0.0041324 3 0.2508449 0.0103977
MAPK_pT202Y204 0.0052705 5 -0.4149137 0.0128469
STAT3_pY705 0.0059010 5 0.5901075 0.0139478
PKCDELTA_pS664 0.0068256 1 -0.6073484 0.0156587
PKCALPHA_pS657 0.0085792 6 -0.8492541 0.0191194
MAPK_pT202Y204 0.0091498 3 -0.2274984 0.0198246
S6_pS235S236 0.0095179 5 -0.4778042 0.0200648
P38_pT180Y182 0.0122621 5 0.3881879 0.0251695
PKCALPHA 0.0225922 6 -0.6475438 0.0451843
TRANSGLUTAMINASE 0.0234684 6 0.4467719 0.0457633
P38MAPK 0.0253916 3 0.2127752 0.0483061
de.table %>%
  pivot_wider(names_from = "Cluster", values_from = "Difference", -c(p, q)) %>%
  column_to_rownames("Marker") %>%
  as.matrix() %>%
  pheatmap(scale = "none")

Version Author Date
515f7e6 Jovan Tanevski 2021-10-28

sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] parallel  stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] RColorBrewer_1.1-2  doParallel_1.0.16   iterators_1.0.13   
 [4] foreach_1.5.1       pheatmap_1.0.12     NMF_0.23.0         
 [7] synchronicity_1.3.5 bigmemory_4.5.36    Biobase_2.54.0     
[10] BiocGenerics_0.40.0 cluster_2.1.2       rngtools_1.5.2     
[13] pkgmaker_0.32.2     registry_0.5-1      limma_3.50.0       
[16] cowplot_1.1.1       factoextra_1.0.7    uwot_0.1.10        
[19] Matrix_1.3-4        skimr_2.1.3         forcats_0.5.1      
[22] stringr_1.4.0       dplyr_1.0.7         purrr_0.3.4        
[25] readr_2.0.2         tidyr_1.1.4         tibble_3.1.6       
[28] ggplot2_3.3.5       tidyverse_1.3.1     workflowr_1.6.2    

loaded via a namespace (and not attached):
  [1] bigmemory.sri_0.1.3 colorspace_2.0-2    ggsignif_0.6.3     
  [4] ellipsis_0.3.2      rprojroot_2.0.2     htmlTable_2.3.0    
  [7] base64enc_0.1-3     fs_1.5.0            rstudioapi_0.13    
 [10] ggpubr_0.4.0        farver_2.1.0        ggrepel_0.9.1      
 [13] bit64_4.0.5         RSpectra_0.16-0     fansi_0.5.0        
 [16] lubridate_1.8.0     xml2_1.3.2          splines_4.1.1      
 [19] codetools_0.2-18    knitr_1.36          Formula_1.2-4      
 [22] jsonlite_1.7.2      broom_0.7.10        gridBase_0.4-7     
 [25] dbplyr_2.1.1        png_0.1-7           compiler_4.1.1     
 [28] httr_1.4.2          backports_1.3.0     assertthat_0.2.1   
 [31] fastmap_1.1.0       cli_3.1.0           later_1.3.0        
 [34] htmltools_0.5.2     tools_4.1.1         gtable_0.3.0       
 [37] glue_1.5.0          reshape2_1.4.4      Rcpp_1.0.7         
 [40] carData_3.0-4       cellranger_1.1.0    jquerylib_0.1.4    
 [43] vctrs_0.3.8         xfun_0.28           rvest_1.0.2        
 [46] lifecycle_1.0.1     rstatix_0.7.0       scales_1.1.1       
 [49] vroom_1.5.6         hms_1.1.1           promises_1.2.0.1   
 [52] yaml_2.2.1          gridExtra_2.3       sass_0.4.0         
 [55] rpart_4.1-15        latticeExtra_0.6-29 stringi_1.7.5      
 [58] highr_0.9           checkmate_2.0.0     repr_1.1.3         
 [61] rlang_0.4.12        pkgconfig_2.0.3     evaluate_0.14      
 [64] lattice_0.20-45     htmlwidgets_1.5.4   labeling_0.4.2     
 [67] bit_4.0.4           tidyselect_1.1.1    plyr_1.8.6         
 [70] magrittr_2.0.1      R6_2.5.1            Hmisc_4.6-0        
 [73] generics_0.1.1      DBI_1.1.1           foreign_0.8-81     
 [76] pillar_1.6.4        haven_2.4.3         whisker_0.4        
 [79] withr_2.4.2         nnet_7.3-16         survival_3.2-13    
 [82] abind_1.4-5         modelr_0.1.8        crayon_1.4.2       
 [85] car_3.0-12          uuid_1.0-3          utf8_1.2.2         
 [88] tzdb_0.2.0          rmarkdown_2.11      jpeg_0.1-9         
 [91] grid_4.1.1          readxl_1.3.1        data.table_1.14.2  
 [94] FNN_1.1.3           git2r_0.28.0        reprex_2.0.1       
 [97] digest_0.6.28       xtable_1.8-4        httpuv_1.6.3       
[100] munsell_0.5.0       bslib_0.3.1