Last updated: 2021-09-23

Checks: 7 0

Knit directory: mistyMBC/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(42) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 02a4d8f. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .DS_Store
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    analysis/.DS_Store
    Ignored:    analysis/.Rhistory
    Ignored:    code/
    Ignored:    data/
    Ignored:    omnipathr-log/
    Ignored:    output/.DS_Store
    Ignored:    output/HTAPP-364-SMP-1321/.DS_Store

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/browse_results.Rmd) and HTML (docs/browse_results.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 02a4d8f Jovan Tanevski 2021-09-23 add metadata and signature pca
html 6a3c444 Jovan Tanevski 2021-09-15 Build site.
Rmd c6d135a Jovan Tanevski 2021-09-15 extend results with celltype analysis
html 6398d1c Jovan Tanevski 2021-09-13 Build site.
Rmd b562161 Jovan Tanevski 2021-09-13 merge codex and merfish results
html c457348 Jovan Tanevski 2021-09-09 Build site.
html aa6ca6b Jovan Tanevski 2021-09-09 Build site.
Rmd 04b30ad Jovan Tanevski 2021-09-09 clean up results, focus on targets with gain
html 2438eb2 Jovan Tanevski 2021-09-09 Build site.
Rmd b124494 Jovan Tanevski 2021-09-09 update codex,merfish; add slideseq cellcom results
html e0c1952 Jovan Tanevski 2021-07-22 Build site.
html 4dd6a02 Jovan Tanevski 2021-07-14 Build site.
html 913535e Jovan Tanevski 2021-06-17 Build site.
Rmd 736d8e3 Jovan Tanevski 2021-06-17 subset merfish results
html 1b68c27 Jovan Tanevski 2021-06-15 Build site.
Rmd 43913a8 Jovan Tanevski 2021-06-15 auto publish date
Rmd 34b1d9e Jovan Tanevski 2021-06-15 explicit codex, merfish and exseq
html e445e6f Jovan Tanevski 2021-06-11 Build site.
Rmd dd0219f Jovan Tanevski 2021-06-11 add result browsing example

Setup

Load necessary libraries

library(stringr)
library(dplyr)
library(mistyR)
library(ggplot2)
library(future)


plan(multisession)        

Output collection

Find the location of the results for all samples

outputs <- str_subset(list.dirs("output"), "processed") %>% 
  str_subset("failed", negate = TRUE)

Collect the results for all samples, single modality and all replicates

misty.results.codex <- collect_results(str_subset(outputs, "codex"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating
misty.results.merfish <- collect_results(str_subset(outputs, "merfish"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating
misty.results.ligrcp <- collect_results(str_subset(outputs, "ligrcp"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating
misty.results.ligpath <- collect_results(str_subset(outputs, "ligpath"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating

Get metadata

sample.meta <- read.delim("data/HTAPP_MBC_spatial_annotations.tsv", 
                          na.strings = "")

Plot basic results

CODEX

Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions

misty.results.codex %>%
  plot_improvement_stats(trim = 1) %>%
  plot_view_contributions(trim = 1)

Version Author Date
2438eb2 Jovan Tanevski 2021-09-09
913535e Jovan Tanevski 2021-06-17
e445e6f Jovan Tanevski 2021-06-11

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09
4dd6a02 Jovan Tanevski 2021-07-14
913535e Jovan Tanevski 2021-06-17
e445e6f Jovan Tanevski 2021-06-11

Plot interaction heatmaps

misty.results.codex %>%
  plot_interaction_heatmap("intra", cutoff = 3, clean = TRUE) %>%
  plot_interaction_heatmap("juxta.15", cutoff = 0.75, clean = TRUE, trim = 1) %>%
  plot_interaction_heatmap("para.100", cutoff = 0.75, clean = TRUE, trim = 1)

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09
e0c1952 Jovan Tanevski 2021-07-22
913535e Jovan Tanevski 2021-06-17
1b68c27 Jovan Tanevski 2021-06-15

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09
e0c1952 Jovan Tanevski 2021-07-22
913535e Jovan Tanevski 2021-06-17
1b68c27 Jovan Tanevski 2021-06-15

Version Author Date
2438eb2 Jovan Tanevski 2021-09-09
913535e Jovan Tanevski 2021-06-17
1b68c27 Jovan Tanevski 2021-06-15

Plot contrasts

misty.results.codex %>%
  plot_contrast_heatmap("intra", "juxta.15", cutoff = 0.75, trim = 1) %>%
  plot_contrast_heatmap("intra", "para.100", cutoff = 0.75, trim = 1)

Version Author Date
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Plot interaction communities

misty.results.codex %>%    
  plot_interaction_communities("intra", cutoff = 3) %>%
  plot_interaction_communities("juxta.15", cutoff = 1) %>%
  plot_interaction_communities("para.100", cutoff = 1)

Version Author Date
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
2438eb2 Jovan Tanevski 2021-09-09

Signatures and clustering

signature.per.codex <- misty.results.codex %>% 
  extract_signature("performance", trim = 1) %>%
  mutate(sample = str_extract(sample, "HTAPP(-[:alnum:]+){3}"))

signature.per.pca <- signature.per.codex %>% select(-sample) %>% prcomp()

signature.per.pca.ann <- left_join(bind_cols(signature.per.codex %>% select(sample), 
                                             as.data.frame(signature.per.pca$x)), 
                                   sample.meta, 
                                   by = c("sample" = "name"))

ggplot(signature.per.pca.ann, aes(x = PC1, y = PC2)) +
  geom_point(aes(color = receptors_primary)) +
  theme_classic()

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

MERFISH

Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions

misty.results.merfish %>%
  plot_improvement_stats(trim = 1) %>%
  plot_view_contributions(trim = 1)

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Plot interaction heatmaps

misty.results.merfish %>%
  plot_interaction_heatmap("intra", cutoff = 6, clean = TRUE) %>%
  plot_interaction_heatmap("juxta.15", cutoff = 2, clean = TRUE, trim = 1) %>%
  plot_interaction_heatmap("para.100", cutoff = 1, clean = TRUE, trim = 1)

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Plot contrasts

misty.results.merfish %>% 
  plot_contrast_heatmap("intra", "juxta.15", cutoff = 1.5, trim = 1) %>%  
  plot_contrast_heatmap("intra", "para.100", cutoff = 1, trim = 1)

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
2438eb2 Jovan Tanevski 2021-09-09

Plot interaction communities

misty.results.merfish %>%    
  plot_interaction_communities("intra", cutoff = 6) %>%
  plot_interaction_communities("juxta.15", cutoff = 3) %>%
  plot_interaction_communities("para.100", cutoff = 1.5)

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

Signatures and clustering

signature.per.merfish <- misty.results.merfish %>% 
  extract_signature("performance", trim = 1) %>%
  mutate(sample = str_extract(sample, "HTAPP(-[:alnum:]+){3}"))

signature.per.pca <- signature.per.merfish %>% select(-sample) %>% prcomp()

signature.per.pca.ann <- left_join(bind_cols(signature.per.merfish %>% select(sample), 
                                             as.data.frame(signature.per.pca$x)), 
                                   sample.meta, 
                                   by = c("sample" = "name"))

ggplot(signature.per.pca.ann, aes(x = PC1, y = PC2)) +
  geom_point(aes(color = receptors_primary)) +
  theme_classic()

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
2438eb2 Jovan Tanevski 2021-09-09

Merge CODEX and MERFISH results

Filter only genes with mean gain in variance explained of 1 or more to plot the gain and view contributions

misty.results.merged <- collect_results(str_subset(outputs, "codex|merfish"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating
misty.results.merged %>% plot_improvement_stats(trim = 1) %>%
  plot_view_contributions(trim = 1)

Version Author Date
6398d1c Jovan Tanevski 2021-09-13
aa6ca6b Jovan Tanevski 2021-09-09
2438eb2 Jovan Tanevski 2021-09-09

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

Plot interaction heatmaps

misty.results.merged %>%
  plot_interaction_heatmap("intra", cutoff = 6, clean = TRUE) %>%
  plot_interaction_heatmap("juxta.15", cutoff = 1.5, clean = TRUE, trim = 1) %>%
  plot_interaction_heatmap("para.100", cutoff = 1, clean = TRUE, trim = 1)

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

SlideSeq

Filter only ligands then pathways with mean gain in variance explained of 1 or more to plot the gain and view contributions

misty.results.ligrcp %>% 
  plot_improvement_stats(trim = 0.5) %>%
  plot_view_contributions(trim = 0.5)
Warning: Removed 1 rows containing missing values (geom_segment).

Version Author Date
6398d1c Jovan Tanevski 2021-09-13

misty.results.ligpath %>% 
  plot_improvement_stats(trim = 1) %>%
  plot_view_contributions(trim = 1)

Version Author Date
6a3c444 Jovan Tanevski 2021-09-15

Plot interaction heatmaps

  misty.results.ligrcp %>%
    plot_interaction_heatmap("intra", cutoff = 5, clean = TRUE) %>%
    plot_interaction_heatmap("juxta.15", cutoff = 2, clean = TRUE, trim = 0.5) %>%
    plot_interaction_heatmap("para.100", cutoff = 2, clean = TRUE, trim = 0.5)

Version Author Date
6a3c444 Jovan Tanevski 2021-09-15

Version Author Date
6a3c444 Jovan Tanevski 2021-09-15

misty.results.ligpath %>%
    plot_interaction_heatmap("intra", cutoff = 1, clean = TRUE) %>%
    plot_interaction_heatmap("juxta.15", cutoff = 1.5, clean = TRUE, trim = 1) %>%
    plot_interaction_heatmap("para.100", cutoff = 1.5, clean = TRUE, trim = 1)

Plot intrinsic pathway communities

misty.results.ligpath %>% plot_interaction_communities("intra", cutoff = 1)

Cell-type based analysis

We are interested in predicting the probability of a cell being of a cell-type of interest, by looking at the distribution of cell types in the neighborhood of 100 cells.

More conservative trimming of above 10% variance explained since the intraview is bypassed.

misty.results.ctype <- collect_results(str_subset(outputs, "ctype"))

Collecting improvements

Collecting contributions

Collecting importances

Aggregating
misty.results.ctype %>% 
  plot_improvement_stats(trim = 10)

Plot neighborhood interactions

misty.results.ctype %>% 
  plot_interaction_heatmap("juxta.15", trim = 10, cutoff = 0.5) %>% 
  plot_interaction_heatmap("para.100", trim = 10, cutoff = 0.5)

Plot contrasts

misty.results.ctype %>% 
  plot_contrast_heatmap("para.100", "juxta.15", trim = 10, cutoff = 0.5) %>%
  plot_contrast_heatmap("juxta.15", "para.100", trim = 10, cutoff = 0.5)

Plot communities

misty.results.ctype %>% 
  plot_interaction_communities("juxta.15", cutoff = 1) %>%
  plot_interaction_communities("para.100", cutoff = 1)


sessionInfo()
R version 4.1.1 (2021-08-10)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Big Sur 10.16

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.1/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] future_1.22.1   ggplot2_3.3.5   mistyR_1.1.9    dplyr_1.0.7    
[5] stringr_1.4.0   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1   xfun_0.26          bslib_0.3.0        purrr_0.3.4       
 [5] listenv_0.8.0      colorspace_2.0-2   vctrs_0.3.8        generics_0.1.0    
 [9] htmltools_0.5.2    yaml_2.2.1         utf8_1.2.2         rlang_0.4.11      
[13] R.oo_1.24.0        jquerylib_0.1.4    later_1.3.0        pillar_1.6.2      
[17] glue_1.4.2         withr_2.4.2        DBI_1.1.1          R.utils_2.10.1    
[21] RColorBrewer_1.1-2 lifecycle_1.0.0    munsell_0.5.0      gtable_0.3.0      
[25] R.methodsS3_1.8.1  codetools_0.2-18   evaluate_0.14      labeling_0.4.2    
[29] knitr_1.34         fastmap_1.1.0      httpuv_1.6.3       parallel_4.1.1    
[33] fansi_0.5.0        highr_0.9          furrr_0.2.3        Rcpp_1.0.7        
[37] promises_1.2.0.1   scales_1.1.1       jsonlite_1.7.2     farver_2.1.0      
[41] parallelly_1.28.1  fs_1.5.0           digest_0.6.27      stringi_1.7.4     
[45] rprojroot_2.0.2    grid_4.1.1         tools_4.1.1        magrittr_2.0.1    
[49] sass_0.4.0         tibble_3.1.4       tidyr_1.1.3        crayon_1.4.1      
[53] whisker_0.4        pkgconfig_2.0.3    ellipsis_0.3.2     assertthat_0.2.1  
[57] rmarkdown_2.11     R6_2.5.1           globals_0.14.0     igraph_1.2.6      
[61] git2r_0.28.0       compiler_4.1.1