Last updated: 2020-02-25
Checks: 7 0
Knit directory: RcppComputingClub/
This reproducible R Markdown analysis was created with workflowr (version 1.6.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20200224)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility. The version displayed above was the version of the Git repository at the time these results were generated.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
working directory clean
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the R Markdown and HTML files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view them.
File | Version | Author | Date | Message |
---|---|---|---|---|
html | 303d980 | scristia | 2020-02-25 | Build site. |
Rmd | e98074c | scristia | 2020-02-25 | working on index |
Rmd | 33eeea2 | scristia | 2020-02-24 | wflow_git_commit(all = TRUE, files = “intro.Rmd”) |
#include <RcppArmadillo.h>
// Note #include <Rcpp.h> implied by RcppArmadillo.
using namespace Rcpp;
Let’s begin by examining to very simple examples of calling C++ functions within R :
// [[Rcpp::export]]
int square(int x) {
return x*x;
}
// [[Rcpp::export]]
int add(int x, int y, int z) {
int sum = x + y + z;
return sum;
}
Note the // [[Rcpp::export]] line allows the function to be exported into R . Within R , I can now call:
square(7L)
[1] 49
add(1, 2, 3)
[1] 6
It is very straightforward to call the C++ implemented function within R. The motivation behind Rcpp comes when you run into a computation in R that create a performance bottleneck in your code. By instead writing your function in C++, you can achieve a massive speed boost. Rcpp seeks to make the interaction between R and C++ as seamless and convenient as possible.
It can be even easier to parse C++ code in R
Rcpp::cppFunction('double accu(NumericVector x) { return(
std::accumulate(x.begin(), x.end(), 0.0)
);
}')
res <- accu(seq(1, 10, by=0.5))
res
[1] 104.5
cppFunction parses C++ code and compiles it for use within R. If you have an external .cpp file you want to call within R, can use sourceCpp
. You can also evaluate a single C++ statement with evalCpp()
# Showing maximum value of double.
Rcpp::evalCpp('std::numeric_limits<double>::max()')
[1] 1.797693e+308
Here’s a 2-minute C++ introduction:
// This is a comment
/* Also this */
// [[Rcpp::export]]
double sumC(NumericVector x) {
int n = x.size();
double total = 0;
for(int i = 0; i < n; ++i) {
total += x[i]; if(total > 100) break;
}
return total;
}
sumC(seq(1:10))
[1] 55
Notice the following things about C++:
A quick introduction to Rcpp objects and operations:
Example:
// Rcpp implementation
// [[Rcpp::export]]
NumericVector pdistCpp(double x, NumericVector ys) {
return pow((x-ys), 2);
}
# R implementation
pdistR <- function(x, ys) {
(x - ys)^2
}
pdistR(5.0, c(4.1, -9.3, 0, 13.7))
[1] 0.81 204.49 25.00 75.69
pdistCpp(5.0, c(4.1, -9.3, 0, 13.7))
[1] 0.81 204.49 25.00 75.69
Note the similarity of the Rcpp and R implementations. Rcpp performs R styled vectorizations.
// two integer vectors of the same size
NumericVector x;
NumericVector y;
// expressions involving two vectors
LogicalVector res = x < y;
LogicalVector res = x != y;
// one vector, one single value
LogicalVector res = x < 2;
// two expressions
LogicalVector res = (x + y) == (x*x);
// functions producing single boolean result
all(x*x < 3);
any(x*x < 3);
There are many functions similar to what exists inside R:
is_na(x);
seq_along(x);
sapply( seq_len(10), square<int>() );
ifelse( x < y, x, (x+y)*y );
pmin( x, x*x);
diff( xx );
intersect( xx, yy); //returns interserct of two vectors
unique( xx ); // subset of unique values in input vecto
// math functions
abs(x); exp(x); log(x); ceil(x);
sqrt(x); sin(x); gamma(x);
range(x);
mean(x); sd(x); var(x);
which_min(x); which_max(x);
// A bunch more
Rcpp has access to the same density, distribution, and RNG functions used by R itself. The seed you set in R will even be passed into Rcpp. For example, you can draw from a gamma distribution with scale and shape parameters equal to 1 with:
RNGScope scope;
// [[Rcpp::export]]
NumericVector getRGamma() {
NumericVector x = rgamma( 10, 1, 1 );
return x;
}
set.seed(1234)
getRGamma()
[1] 0.01072755 0.74699906 0.78632796 0.11687523 0.92185869 0.17617898
[7] 1.43714223 0.15671970 0.21950202 3.52757261
set.seed(1234)
rgamma(10, 1, 1)
[1] 0.01072755 0.74699906 0.78632796 0.11687523 0.92185869 0.17617898
[7] 1.43714223 0.15671970 0.21950202 3.52757261
Don’t use stdout and stderr as you would in C++. Instead, use Rcpp::Rcout or Rcpp::print.
// [[Rcpp::export]]
void useOperatorOnVector(NumericVector x) {
Rcpp::Rcout << "Rcpp vector is " << std::endl << x << std::endl;
}
// [[Rcpp::export]]
void callPrint(RObject x) {
Rcpp::print(x); // will work on any SEXP object
}
v <- seq(0.0, 10.0, by=2.5)
useOperatorOnVector(v)
Rcpp vector is
0 2.5 5 7.5 10
callPrint(v)
[1] 0.0 2.5 5.0 7.5 10.0
// [[Rcpp::export]]
NumericVector logRcpp1(NumericVector invec) {
NumericVector outvec(invec);
for(int i=0; i<invec.size(); i++) {
outvec[i] = log(invec[i]);
}
return outvec;
}
x <- seq(1.0, 3.0, by=1)
cbind(x, logRcpp1(x))
x
[1,] 0.0000000 0.0000000
[2,] 0.6931472 0.6931472
[3,] 1.0986123 1.0986123
Note: outvec and invec point to the same underlying R object.
Instead, Use clone to not modify original vector.
// [[Rcpp::export]]
NumericVector logRcpp2(NumericVector invec) {
NumericVector outvec=clone(invec);
for(int i=0; i<invec.size(); i++) {
outvec[i] = log(invec[i]);
}
return outvec;
}
x <- seq(1.0, 3.0, by=1)
cbind(x, logRcpp2(x))
x
[1,] 1 0.0000000
[2,] 2 0.6931472
[3,] 3 1.0986123
#include <RcppArmadillo.h>
// [[Rcpp::depends(RcppArmadillo)]]
// [[Rcpp::export]]
void showMatrix(arma::mat X) {
Rcout << "Armadillo matrix is" << std::endl << X << std::endl;
}
// [[Rcpp::export]]
List svd_arma(arma::mat x) {
arma::mat xtx = x.t() * x ;
arma::mat U ;
arma::vec s ;
arma::mat V ;
svd(U, s, V, xtx) ;
List ret ;
ret["U"] = U ;
ret["s"] = s ;
ret["V"] = V ;
return(ret) ;
}
M <- matrix(1:9,3,3)
showMatrix(M)
Armadillo matrix is
1.0000 4.0000 7.0000
2.0000 5.0000 8.0000
3.0000 6.0000 9.0000
## SVD implemented in Armadillo
svd_arma(M)
$U
[,1] [,2] [,3]
[1,] -0.2148372 0.8872307 0.4082483
[2,] -0.5205874 0.2496440 -0.8164966
[3,] -0.8263375 -0.3879428 0.4082483
$s
[,1]
[1,] 2.838586e+02
[2,] 1.141413e+00
[3,] 1.462429e-15
$V
[,1] [,2] [,3]
[1,] -0.2148372 0.8872307 -0.4082483
[2,] -0.5205874 0.2496440 0.8164966
[3,] -0.8263375 -0.3879428 -0.4082483
Note above was an example of returning multiple objects to R in a list.
Before using Rcpp
in your package, you should first consider if it’s necessary.
sessionInfo()
R version 3.5.2 (2018-12-20)
Platform: x86_64-apple-darwin15.6.0 (64-bit)
Running under: macOS Mojave 10.14.5
Matrix products: default
BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] nvimcom_0.9-81
loaded via a namespace (and not attached):
[1] workflowr_1.6.0 Rcpp_1.0.3
[3] rprojroot_1.3-2 digest_0.6.21
[5] later_1.0.0 R6_2.4.0
[7] backports_1.1.5 git2r_0.26.1
[9] magrittr_1.5 evaluate_0.14
[11] stringi_1.4.3 rlang_0.4.0
[13] RcppArmadillo_0.9.850.1.0 fs_1.3.1
[15] promises_1.1.0 whisker_0.4
[17] rmarkdown_1.16 tools_3.5.2
[19] stringr_1.4.0 glue_1.3.1
[21] httpuv_1.5.2 xfun_0.10
[23] yaml_2.2.0 compiler_3.5.2
[25] htmltools_0.4.0 knitr_1.25