Last updated: 2021-09-14

Checks: 7 0

Knit directory: soil_alcontar/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210907) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 56e0949. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .RData
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/C369E4F4/
    Ignored:    .Rproj.user/shared/notebooks/0EF54E14-NOBORRAR/
    Ignored:    .Rproj.user/shared/notebooks/27FF967E-analysis_pre_post_epoca/
    Ignored:    .Rproj.user/shared/notebooks/33E25F73-analysis_resilience/
    Ignored:    .Rproj.user/shared/notebooks/3F603CAC-map/
    Ignored:    .Rproj.user/shared/notebooks/4672E36C-study_area/
    Ignored:    .Rproj.user/shared/notebooks/4A68381F-general_overview_soils/
    Ignored:    .Rproj.user/shared/notebooks/4E13660A-temporal_comparison/
    Ignored:    .Rproj.user/shared/notebooks/5D919DFD-analysis_zona_time_postFire/
    Ignored:    .Rproj.user/shared/notebooks/827D0727-analysis_pre_post/
    Ignored:    .Rproj.user/shared/notebooks/A3F813C2-index/
    Ignored:    .Rproj.user/shared/notebooks/D4E3AA10-analysis_zona_time/

Untracked files:
    Untracked:  analysis/NOBORRAR.Rmd
    Untracked:  analysis/analysis_pre_post_cache/
    Untracked:  analysis/test.Rmd
    Untracked:  data/spatial/01_EP_ANDALUCIA/EP_Andalucía.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
    Untracked:  data/spatial/lucdeme/
    Untracked:  data/spatial/parcelas/GEO_PARCELAS.shp.DESKTOP-CKNNEUJ.5492.5304.sr.lock
    Untracked:  data/spatial/test/
    Untracked:  map.Rmd
    Untracked:  output/anovas_pre_post_epoca.csv
    Untracked:  output/anovas_zona_time.csv
    Untracked:  output/anovas_zona_time_postFire.csv
    Untracked:  scripts/generate_3dview.R

Unstaged changes:
    Modified:   analysis/_site.yml
    Modified:   analysis/analysis_zona_time_postFire.Rmd
    Modified:   data/spatial/.DS_Store
    Modified:   data/spatial/01_EP_ANDALUCIA/EP_Andalucía.dbf
    Deleted:    index.Rmd
    Modified:   scripts/00_prepare_data.R
    Modified:   temporal_comparison.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/analysis_pre_post_epoca.Rmd) and HTML (docs/analysis_pre_post_epoca.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 56e0949 ajpelu 2021-09-14 change fechaQuema por estacion; momento por
html 389b963 ajpelu 2021-09-14 Build site.
Rmd 9ba7a9d ajpelu 2021-09-14 add analysis by date Fire

Prepare data

raw_soil <- readxl::read_excel(here::here("data/Resultados_Suelos_2018_2021_v2.xlsx"), 
    sheet = "SEGUIMIENTO_SUELOS_sin_ouliers") %>% janitor::clean_names() %>% mutate(treatment_name = case_when(str_detect(geo_parcela_nombre, 
    "NP_") ~ "Autumn Burning / No Browsing", str_detect(geo_parcela_nombre, "PR_") ~ 
    "Spring Burning / Browsing", str_detect(geo_parcela_nombre, "P_") ~ "Autumn Burning / Browsing"), 
    zona = case_when(str_detect(geo_parcela_nombre, "NP_") ~ "QOt_NP", str_detect(geo_parcela_nombre, 
        "PR_") ~ "QPr_P", str_detect(geo_parcela_nombre, "P_") ~ "QOt_P"), estacion = case_when(str_detect(geo_parcela_nombre, 
        "NP_") ~ "Ot", str_detect(geo_parcela_nombre, "PR_") ~ "Pr", str_detect(geo_parcela_nombre, 
        "P_") ~ "Ot"), date = lubridate::ymd(fecha), fecha = case_when(pre_post_quema == 
        "Prequema" ~ "0 preQuema", pre_post_quema == "Postquema" ~ "1 postQuema"))
  • Select data pre- and intermediately post-fire (first post-fire sampling: “2018-12-20” and “2019-05-09” for autumn and spring fires respectively)
soil <- raw_soil %>% filter(date %in% lubridate::ymd(c("2018-12-11", "2018-12-20", 
    "2019-04-24", "2019-05-09"))) %>% mutate(zona = as.factor(zona), fecha = as.factor(fecha))
  • Structure of the data
             estacion
fecha         Ot Pr
  0 preQuema  48 24
  1 postQuema 48 24

Modelize

  • For each response variable, the approach modelling is

\(Y \sim estacion (Ot|Pr) + fecha(pre|post) + estacion \times fecha\)

  • using the “(1|estacion:geo_parcela_nombre)” as nested random effects

  • Then explore error distribution of the variable response and model diagnostics

  • Select the appropiate error distribution and use LMM or GLMM

  • Explore Post-hoc

  • Plot interactions

Humedad

Model

Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value    Pr(>F)    
fecha          461.74  461.74     1   130 50.4197 7.257e-11 ***
estacion         0.53    0.53     1    10  0.0575    0.8153    
fecha:estacion 439.95  439.95     1   130 48.0407 1.748e-10 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                    Sum Sq     Mean Sq NumDF DenDF     F value       Pr(>F)
fecha          461.7404592 461.7404592     1   130 50.41969020 7.256505e-11
estacion         0.5268064   0.5268064     1    10  0.05752456 8.152969e-01
fecha:estacion 439.9539281 439.9539281     1   130 48.04071273 1.748462e-10
               variable         factor
fecha           humedad          fecha
estacion        humedad       estacion
fecha:estacion  humedad fecha:estacion

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    13.9 0.689 13.8    12.44     15.4
 1 postQuema   10.1 0.689 13.8     8.64     11.6

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema      3.8 0.535 130 7.101   <.0001 

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
$`emmeans of estacion`
 estacion emmean    SE df lower.CL upper.CL
 Ot         12.2 0.734 10    10.54     13.8
 Pr         11.9 1.038 10     9.56     14.2

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate   SE df t.ratio p.value
 Ot - Pr    0.305 1.27 10 0.240   0.8153 

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema   12.22 0.796 13.8     10.5     13.9
 1 postQuema  12.13 0.796 13.8     10.4     13.8

estacion = Pr:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema   15.62 1.126 13.8     13.2     18.0
 1 postQuema   8.11 1.126 13.8      5.7     10.5

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0907 0.618 130 0.147   0.8835 

estacion = Pr:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   7.5065 0.874 130 8.593   <.0001 

Degrees-of-freedom method: kenward-roger 

CIC

Model

Type III Analysis of Variance Table with Satterthwaite's method
               Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
fecha          18.503  18.503     1   130  5.1118 0.02543 *
estacion       35.605  35.605     1    10  9.8361 0.01058 *
fecha:estacion  8.337   8.337     1   130  2.3031 0.13154  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                  Sum Sq   Mean Sq NumDF      DenDF  F value     Pr(>F)
fecha          18.503472 18.503472     1 130.000001 5.111751 0.02542616
estacion       35.604511 35.604511     1   9.999998 9.836067 0.01057742
fecha:estacion  8.336806  8.336806     1 130.000001 2.303118 0.13154272
               variable         factor
fecha               cic          fecha
estacion            cic       estacion
fecha:estacion      cic fecha:estacion

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    14.9 0.496 12.8     13.8     16.0
 1 postQuema   14.1 0.496 12.8     13.1     15.2

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema     0.76 0.336 130 2.261   0.0254 

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
$`emmeans of estacion`
 estacion emmean    SE df lower.CL upper.CL
 Ot           16 0.539 10     14.8     17.2
 Pr           13 0.762 10     11.3     14.7

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE df t.ratio p.value
 Ot - Pr     2.93 0.933 10 3.136   0.0106 

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    16.6 0.573 12.8     15.4     17.8
 1 postQuema   15.3 0.573 12.8     14.1     16.6

estacion = Pr:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    13.2 0.810 12.8     11.4     14.9
 1 postQuema   12.9 0.810 12.8     11.2     14.7

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema     1.27 0.388 130 3.272   0.0014 

estacion = Pr:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema     0.25 0.549 130 0.455   0.6497 

Degrees-of-freedom method: kenward-roger 

C

Model

Type III Analysis of Variance Table with Satterthwaite's method
                Sum Sq Mean Sq NumDF DenDF F value  Pr(>F)  
fecha          13.3214 13.3214     1   130  6.1796 0.01419 *
estacion        0.2542  0.2542     1    10  0.1179 0.73843  
fecha:estacion  0.5636  0.5636     1   130  0.2614 0.61001  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
                   Sum Sq    Mean Sq NumDF      DenDF   F value     Pr(>F)
fecha          13.3214014 13.3214014     1 130.000000 6.1795805 0.01419189
estacion        0.2541669  0.2541669     1   9.999999 0.1179039 0.73842869
fecha:estacion  0.5635681  0.5635681     1 130.000000 0.2614300 0.61000674
                variable         factor
fecha          c_percent          fecha
estacion       c_percent       estacion
fecha:estacion c_percent fecha:estacion

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    7.14 0.455 11.8     6.14     8.13
 1 postQuema   7.78 0.455 11.8     6.79     8.77

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate   SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.645 0.26 130 -2.486  0.0142 

Results are averaged over the levels of: estacion 
Degrees-of-freedom method: kenward-roger 
$`emmeans of estacion`
 estacion emmean    SE df lower.CL upper.CL
 Ot         7.61 0.503 10     6.49     8.73
 Pr         7.31 0.712 10     5.72     8.90

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE df t.ratio p.value
 Ot - Pr    0.299 0.872 10 0.343   0.7384 

Results are averaged over the levels of: fecha 
Degrees-of-freedom method: kenward-roger 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    7.22 0.525 11.8     6.07     8.37
 1 postQuema   8.00 0.525 11.8     6.85     9.14

estacion = Pr:
 fecha       emmean    SE   df lower.CL upper.CL
 0 preQuema    7.05 0.743 11.8     5.43     8.67
 1 postQuema   7.57 0.743 11.8     5.95     9.19

Degrees-of-freedom method: kenward-roger 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.778 0.300 130 -2.596  0.0105 

estacion = Pr:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.512 0.424 130 -1.209  0.2288 

Degrees-of-freedom method: kenward-roger 

Fe

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: fe_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df    F p.value
1          fecha 1, 130 0.28    .598
2       estacion  1, 10 0.46    .512
3 fecha:estacion 1, 130 0.21    .648
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: fe_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df      F Pr(>F)
fecha               1    130 0.2796 0.5979
estacion            1     10 0.4631 0.5116
fecha:estacion      1    130 0.2093 0.6481

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema   0.545 0.036 Inf     0.475     0.616
 1 postQuema  0.554 0.036 Inf     0.484     0.625

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00898 0.0167 Inf -0.539  0.5898 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean     SE  df asymp.LCL asymp.UCL
 Ot        0.568 0.0398 Inf     0.490     0.646
 Pr        0.532 0.0573 Inf     0.419     0.644

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate     SE  df z.ratio p.value
 Ot - Pr   0.0364 0.0695 Inf 0.524   0.6006 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.559 0.0410 Inf     0.479     0.640
 1 postQuema  0.576 0.0411 Inf     0.496     0.657

estacion = Pr:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.531 0.0588 Inf     0.416     0.646
 1 postQuema  0.532 0.0588 Inf     0.417     0.647

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.01688 0.0200 Inf -0.843  0.3991 

estacion = Pr:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00109 0.0266 Inf -0.041  0.9675 

Note: contrasts are still on the inverse scale 

MO

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mo ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df         F p.value
1          fecha 1, 130      0.60    .439
2       estacion  1, 10 35.18 ***   <.001
3 fecha:estacion 1, 130      0.91    .341
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mo ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df       F    Pr(>F)    
fecha               1    130  0.6020 0.4392419    
estacion            1     10 35.1850 0.0001448 ***
fecha:estacion      1    130  0.9143 0.3407472    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.271 0.0190 Inf     0.233     0.308
 1 postQuema  0.265 0.0191 Inf     0.228     0.302

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00557 0.0229 Inf 0.243   0.8082 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean     SE  df asymp.LCL asymp.UCL
 Ot        0.181 0.0143 Inf     0.153     0.209
 Pr        0.355 0.0265 Inf     0.303     0.407

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate     SE  df z.ratio p.value
 Ot - Pr   -0.175 0.0298 Inf -5.859  <.0001 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.190 0.0166 Inf     0.158     0.223
 1 postQuema  0.171 0.0158 Inf     0.140     0.202

estacion = Pr:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.351 0.0339 Inf     0.285     0.417
 1 postQuema  0.359 0.0345 Inf     0.292     0.427

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.01929 0.0152 Inf  1.269  0.2044 

estacion = Pr:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00815 0.0433 Inf -0.188  0.8507 

Note: contrasts are still on the inverse scale 

K

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: k_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df      F p.value
1          fecha 1, 130   1.92    .168
2       estacion  1, 10 8.33 *    .016
3 fecha:estacion 1, 130   0.00    .976
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: k_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df      F  Pr(>F)  
fecha               1    130 1.9189 0.16835  
estacion            1     10 8.3254 0.01624 *
fecha:estacion      1    130 0.0009 0.97555  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema    2.06 0.286 Inf      1.50      2.62
 1 postQuema   2.18 0.287 Inf      1.62      2.74

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.119 0.0844 Inf -1.414  0.1574 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean    SE  df asymp.LCL asymp.UCL
 Ot         2.73 0.287 Inf     2.167      3.29
 Pr         1.51 0.487 Inf     0.554      2.46

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE  df z.ratio p.value
 Ot - Pr     1.22 0.565 Inf 2.161   0.0307 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema    2.64 0.294 Inf     2.063      3.21
 1 postQuema   2.82 0.296 Inf     2.242      3.40

estacion = Pr:
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema    1.48 0.490 Inf     0.522      2.44
 1 postQuema   1.54 0.490 Inf     0.576      2.50

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.1833 0.132 Inf -1.386  0.1657 

estacion = Pr:
 2                        estimate    SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0554 0.105 Inf -0.528  0.5975 

Note: contrasts are still on the inverse scale 

Mg

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mg_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df      F p.value
1          fecha 1, 130   0.96    .329
2       estacion  1, 10 4.01 +    .073
3 fecha:estacion 1, 130   0.13    .719
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: mg_percent ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df      F  Pr(>F)  
fecha               1    130 0.9587 0.32933  
estacion            1     10 4.0114 0.07304 .
fecha:estacion      1    130 0.1300 0.71903  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema   0.738 0.0953 Inf     0.551     0.925
 1 postQuema  0.699 0.0950 Inf     0.513     0.885

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   0.0394 0.0329 Inf 1.197   0.2313 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean    SE  df asymp.LCL asymp.UCL
 Ot        0.888 0.100 Inf     0.691     1.084
 Pr        0.549 0.158 Inf     0.240     0.858

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE  df z.ratio p.value
 Ot - Pr    0.338 0.186 Inf 1.816   0.0693 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema   0.920 0.103 Inf     0.717     1.122
 1 postQuema  0.856 0.102 Inf     0.655     1.056

estacion = Pr:
 fecha       emmean    SE  df asymp.LCL asymp.UCL
 0 preQuema   0.557 0.159 Inf     0.244     0.869
 1 postQuema  0.542 0.159 Inf     0.230     0.854

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   0.0643 0.0469 Inf 1.371   0.1702 

estacion = Pr:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   0.0146 0.0463 Inf 0.315   0.7530 

Note: contrasts are still on the inverse scale 

C/N

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: c_n ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df    F p.value
1          fecha 1, 130 0.05    .815
2       estacion  1, 10 0.56    .471
3 fecha:estacion 1, 130 0.80    .372
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: c_n ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df      F Pr(>F)
fecha               1    130 0.0550 0.8150
estacion            1     10 0.5601 0.4715
fecha:estacion      1    130 0.8031 0.3718

Post-hoc

$`emmeans of fecha`
 fecha       emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema  0.0266 0.00265 Inf    0.0214    0.0318
 1 postQuema 0.0272 0.00265 Inf    0.0220    0.0324

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                         estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.000626 0.00163 Inf -0.385  0.7000 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean      SE  df asymp.LCL asymp.UCL
 Ot       0.0288 0.00291 Inf    0.0231    0.0345
 Pr       0.0250 0.00408 Inf    0.0170    0.0330

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate      SE  df z.ratio p.value
 Ot - Pr  0.00388 0.00496 Inf 0.781   0.4346 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema  0.0277 0.00305 Inf    0.0217    0.0336
 1 postQuema 0.0300 0.00311 Inf    0.0239    0.0361

estacion = Pr:
 fecha       emmean      SE  df asymp.LCL asymp.UCL
 0 preQuema  0.0255 0.00429 Inf    0.0171    0.0339
 1 postQuema 0.0244 0.00425 Inf    0.0161    0.0327

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.00236 0.00202 Inf -1.171  0.2415 

estacion = Pr:
 2                        estimate      SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00111 0.00255 Inf  0.435  0.6636 

Note: contrasts are still on the inverse scale 

P

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df       F p.value
1          fecha 1, 130    0.45    .502
2       estacion  1, 10  8.17 *    .017
3 fecha:estacion 1, 130 9.31 **    .003
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df      F   Pr(>F)   
fecha               1    130 0.4536 0.501823   
estacion            1     10 8.1689 0.017011 * 
fecha:estacion      1    130 9.3060 0.002769 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema    1.62 0.0628 Inf      1.50      1.74
 1 postQuema   1.70 0.0619 Inf      1.58      1.82

Results are averaged over the levels of: estacion 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema  -0.0834 0.0746 Inf -1.118  0.2635 

Results are averaged over the levels of: estacion 
Results are given on the log (not the response) scale. 
$`emmeans of estacion`
 estacion emmean     SE  df asymp.LCL asymp.UCL
 Ot         1.49 0.0614 Inf      1.37      1.61
 Pr         1.83 0.0788 Inf      1.68      1.99

Results are averaged over the levels of: fecha 
Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate  SE  df z.ratio p.value
 Ot - Pr   -0.338 0.1 Inf -3.379  0.0007 

Results are averaged over the levels of: fecha 
Results are given on the log (not the response) scale. 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema    1.34 0.0819 Inf      1.18      1.50
 1 postQuema   1.65 0.0730 Inf      1.50      1.79

estacion = Pr:
 fecha       emmean     SE  df asymp.LCL asymp.UCL
 0 preQuema    1.90 0.0951 Inf      1.71      2.09
 1 postQuema   1.76 0.0994 Inf      1.57      1.96

Results are given on the log (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema   -0.306 0.0947 Inf -3.227  0.0012 

estacion = Pr:
 2                        estimate     SE  df z.ratio p.value
 0 preQuema - 1 postQuema    0.139 0.1140 Inf  1.217  0.2235 

Results are given on the log (not the response) scale. 

N

Model

Post-hoc

$`emmeans of fecha`
 fecha       emmean     SE  df lower.CL upper.CL
 0 preQuema   -1.33 0.0758 138    -1.48    -1.18
 1 postQuema  -1.18 0.0742 138    -1.32    -1.03

Results are averaged over the levels of: estacion 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   -0.153 0.105 138 -1.461  0.1463 

Results are averaged over the levels of: estacion 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of estacion`
 estacion emmean     SE  df lower.CL upper.CL
 Ot        -1.11 0.0590 138    -1.23   -0.997
 Pr        -1.39 0.0883 138    -1.57   -1.219

Results are averaged over the levels of: fecha 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE  df t.ratio p.value
 Ot - Pr     0.28 0.105 138 2.673   0.0084 

Results are averaged over the levels of: fecha 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean     SE  df lower.CL upper.CL
 0 preQuema  -1.276 0.0857 138    -1.45   -1.106
 1 postQuema -0.952 0.0798 138    -1.11   -0.794

estacion = Pr:
 fecha       emmean     SE  df lower.CL upper.CL
 0 preQuema  -1.384 0.1237 138    -1.63   -1.140
 1 postQuema -1.403 0.1243 138    -1.65   -1.157

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema  -0.3240 0.116 138 -2.789  0.0060 

estacion = Pr:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0182 0.174 138  0.104  0.9171 

Results are given on the log odds ratio (not the response) scale. 

Na

Model

Post-hoc

$`emmeans of fecha`
 fecha       emmean    SE  df lower.CL upper.CL
 0 preQuema   -2.95 0.116 138    -3.18    -2.72
 1 postQuema  -3.02 0.117 138    -3.25    -2.78

Results are averaged over the levels of: estacion 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate     SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0699 0.0893 138 0.784   0.4346 

Results are averaged over the levels of: estacion 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of estacion`
 estacion emmean    SE  df lower.CL upper.CL
 Ot        -3.15 0.126 138    -3.40    -2.90
 Pr        -2.81 0.172 138    -3.15    -2.47

Results are averaged over the levels of: fecha 
Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate    SE  df t.ratio p.value
 Ot - Pr   -0.341 0.212 138 -1.606  0.1106 

Results are averaged over the levels of: fecha 
Results are given on the log odds ratio (not the response) scale. 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean    SE  df lower.CL upper.CL
 0 preQuema   -3.10 0.137 138    -3.38    -2.83
 1 postQuema  -3.20 0.139 138    -3.47    -2.92

estacion = Pr:
 fecha       emmean    SE  df lower.CL upper.CL
 0 preQuema   -2.79 0.186 138    -3.15    -2.42
 1 postQuema  -2.83 0.186 138    -3.20    -2.47

Results are given on the logit (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0936 0.112 138 0.833   0.4065 

estacion = Pr:
 2                        estimate    SE  df t.ratio p.value
 0 preQuema - 1 postQuema   0.0463 0.139 138 0.334   0.7389 

Results are given on the log odds ratio (not the response) scale. 

pH agua

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_agua_eez ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df        F p.value
1          fecha 1, 130     0.99    .322
2       estacion  1, 10   9.29 *    .012
3 fecha:estacion 1, 130 10.51 **    .002
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_agua_eez ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df       F   Pr(>F)   
fecha               1    130  0.9889 0.321856   
estacion            1     10  9.2903 0.012294 * 
fecha:estacion      1    130 10.5108 0.001508 **
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean        SE  df asymp.LCL asymp.UCL
 0 preQuema  0.1255 0.0003116 Inf    0.1249    0.1261
 1 postQuema 0.1251 0.0003101 Inf    0.1245    0.1257

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00039 0.000397 Inf 0.982   0.3261 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean        SE  df asymp.LCL asymp.UCL
 Ot       0.1259 0.0002773 Inf    0.1254    0.1265
 Pr       0.1247 0.0003898 Inf    0.1239    0.1255

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate       SE  df z.ratio p.value
 Ot - Pr  0.00123 0.000478 Inf 2.570   0.0102 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema   0.125 0.000359 Inf     0.125     0.126
 1 postQuema  0.126 0.000362 Inf     0.126     0.127

estacion = Pr:
 fecha       emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema   0.126 0.000509 Inf     0.125     0.127
 1 postQuema  0.124 0.000503 Inf     0.123     0.125

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema -0.000918 0.000460 Inf -1.994  0.0461 

estacion = Pr:
 2                         estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.001697 0.000646 Inf  2.628  0.0086 

Note: contrasts are still on the inverse scale 

pH KCl

Model

Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_k_cl ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
          Effect     df         F p.value
1          fecha 1, 130 45.36 ***   <.001
2       estacion  1, 10    5.70 *    .038
3 fecha:estacion 1, 130   9.39 **    .003
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '+' 0.1 ' ' 1
Fitting one lmer() model. [DONE]
Calculating p-values. [DONE]
Mixed Model Anova Table (Type 3 tests, KR-method)

Model: p_h_k_cl ~ fecha * estacion + (1 | estacion:geo_parcela_nombre)
Data: df_model
               num Df den Df       F    Pr(>F)    
fecha               1    130 45.3634 4.776e-10 ***
estacion            1     10  5.7006  0.038115 *  
fecha:estacion      1    130  9.3932  0.002649 ** 
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Post-hoc

$`emmeans of fecha`
 fecha       emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema   0.134 0.000631 Inf     0.132     0.135
 1 postQuema  0.131 0.000628 Inf     0.130     0.132

Results are averaged over the levels of: estacion 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha`
 1                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00263 0.000383 Inf 6.876   <.0001 

Results are averaged over the levels of: estacion 
Note: contrasts are still on the inverse scale 
$`emmeans of estacion`
 estacion emmean       SE  df asymp.LCL asymp.UCL
 Ot        0.133 0.000689 Inf     0.132     0.135
 Pr        0.131 0.000981 Inf     0.129     0.133

Results are averaged over the levels of: fecha 
Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of estacion`
 1       estimate     SE  df z.ratio p.value
 Ot - Pr  0.00216 0.0012 Inf 1.806   0.0710 

Results are averaged over the levels of: fecha 
Note: contrasts are still on the inverse scale 
$`emmeans of fecha | estacion`
estacion = Ot:
 fecha       emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema   0.134 0.000725 Inf     0.133     0.135
 1 postQuema  0.133 0.000724 Inf     0.131     0.134

estacion = Pr:
 fecha       emmean       SE  df asymp.LCL asymp.UCL
 0 preQuema   0.133 0.001032 Inf     0.131     0.135
 1 postQuema  0.129 0.001026 Inf     0.127     0.131

Results are given on the inverse (not the response) scale. 
Confidence level used: 0.95 

$`pairwise differences of fecha | estacion`
estacion = Ot:
 2                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00147 0.000446 Inf 3.291   0.0010 

estacion = Pr:
 2                        estimate       SE  df z.ratio p.value
 0 preQuema - 1 postQuema  0.00379 0.000621 Inf 6.105   <.0001 

Note: contrasts are still on the inverse scale 

NH4

  • Prepare data
  • We have only data for Autumn fire
  • The approach will be the following: Apply non-parametric Wilcoxon test to compare pre and postFire
        fecha
estacion 0 preQuema 1 postQuema
      Ot         48          43

Model

NO3

Model

General Overview

Mean + SE table

Characteristic 0 preQuema 1 postQuema
Ot, N = 481 Pr, N = 241 Ot, N = 481 Pr, N = 241
humedad 12.22 (0.50) 15.62 (0.63) 12.13 (0.59) 8.11 (0.53)
n_nh4 0.62 (0.03) NA (NA) 2.91 (0.36) NA (NA)
n_no3 0.92 (0.07) NA (NA) 0.81 (0.07) NA (NA)
fe_percent 1.86 (0.07) 1.95 (0.08) 1.80 (0.04) 1.95 (0.09)
k_percent 0.45 (0.03) 0.79 (0.06) 0.41 (0.03) 0.75 (0.06)
mg_percent 1.29 (0.09) 2.00 (0.14) 1.42 (0.12) 2.06 (0.18)
na_percent 0.04 (0.00) 0.06 (0.01) 0.04 (0.00) 0.06 (0.01)
n_percent 0.22 (0.01) 0.19 (0.02) 0.29 (0.02) 0.18 (0.01)
c_percent 7.22 (0.30) 7.05 (0.31) 8.00 (0.29) 7.57 (0.38)
c_n 39.72 (2.77) 41.62 (3.62) 36.14 (3.32) 43.72 (3.06)
cic 16.60 (0.34) 13.17 (0.49) 15.33 (0.29) 12.92 (0.55)
p 3.83 (0.17) 6.75 (0.92) 5.20 (0.24) 5.88 (0.25)
mo 5.37 (0.30) 2.87 (0.32) 6.00 (0.39) 2.80 (0.16)
p_h_k_cl 7.46 (0.02) 7.52 (0.04) 7.54 (0.02) 7.74 (0.03)
p_h_agua_eez 7.97 (0.02) 7.97 (0.04) 7.91 (0.02) 8.07 (0.02)

1 Mean (std.error)

Characteristic Ot Pr
0 preQuema, N = 481 1 postQuema, N = 481 0 preQuema, N = 241 1 postQuema, N = 241
humedad 12.22 (0.50) 12.13 (0.59) 15.62 (0.63) 8.11 (0.53)
n_nh4 0.62 (0.03) 2.91 (0.36) NA (NA) NA (NA)
n_no3 0.92 (0.07) 0.81 (0.07) NA (NA) NA (NA)
fe_percent 1.86 (0.07) 1.80 (0.04) 1.95 (0.08) 1.95 (0.09)
k_percent 0.45 (0.03) 0.41 (0.03) 0.79 (0.06) 0.75 (0.06)
mg_percent 1.29 (0.09) 1.42 (0.12) 2.00 (0.14) 2.06 (0.18)
na_percent 0.04 (0.00) 0.04 (0.00) 0.06 (0.01) 0.06 (0.01)
n_percent 0.22 (0.01) 0.29 (0.02) 0.19 (0.02) 0.18 (0.01)
c_percent 7.22 (0.30) 8.00 (0.29) 7.05 (0.31) 7.57 (0.38)
c_n 39.72 (2.77) 36.14 (3.32) 41.62 (3.62) 43.72 (3.06)
cic 16.60 (0.34) 15.33 (0.29) 13.17 (0.49) 12.92 (0.55)
p 3.83 (0.17) 5.20 (0.24) 6.75 (0.92) 5.88 (0.25)
mo 5.37 (0.30) 6.00 (0.39) 2.87 (0.32) 2.80 (0.16)
p_h_k_cl 7.46 (0.02) 7.54 (0.02) 7.52 (0.04) 7.74 (0.03)
p_h_agua_eez 7.97 (0.02) 7.91 (0.02) 7.97 (0.04) 8.07 (0.02)

1 Mean (std.error)

Figures

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

Anovas table

estacion
fecha
estacion x fecha
Variables F p F p F p
c_n 0.560 0.471 0.055 0.815 0.803 0.372
cic 9.836 0.011 5.112 0.025 2.303 0.132
k_percent 8.325 0.016 1.919 0.168 0.001 0.976
mg_percent 4.011 0.073 0.959 0.329 0.130 0.719
mo 35.185 0.000 0.602 0.439 0.914 0.341
n_nh4 NA NA 403.000 0.000 NA NA
n_no3 NA NA 1198.500 0.187 NA NA
p 8.169 0.017 0.454 0.502 9.306 0.003
p_h_agua_eez 9.290 0.012 0.989 0.322 10.511 0.002
p_h_k_cl 5.701 0.038 45.363 0.000 9.393 0.003
humedad 0.058 0.815 50.420 0.000 48.041 0.000
n_percent 7.294 0.007 5.121 0.024 2.671 0.102
c_percent 0.118 0.738 6.180 0.014 0.261 0.610
na_percent 2.571 0.109 0.735 0.391 0.070 0.791

Gráficos feos feísimos

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

Version Author Date
389b963 ajpelu 2021-09-14

R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS Catalina 10.15.3

Matrix products: default
BLAS:   /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRblas.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] kableExtra_1.3.1   gtsummary_1.4.2    plotrix_3.8-1      glmmTMB_1.0.2.1   
 [5] afex_0.28-1        performance_0.7.2  multcomp_1.4-16    TH.data_1.0-10    
 [9] mvtnorm_1.1-1      emmeans_1.5.4      lmerTest_3.1-3     lme4_1.1-27.1     
[13] Matrix_1.3-2       fitdistrplus_1.1-3 survival_3.2-7     MASS_7.3-53       
[17] ggpubr_0.4.0       janitor_2.1.0      here_1.0.1         forcats_0.5.1     
[21] stringr_1.4.0      dplyr_1.0.6        purrr_0.3.4        readr_1.4.0       
[25] tidyr_1.1.3        tibble_3.1.2       ggplot2_3.3.5      tidyverse_1.3.1   
[29] rmdformats_1.0.1   knitr_1.31         workflowr_1.6.2   

loaded via a namespace (and not attached):
  [1] minqa_1.2.4         colorspace_2.0-0    ggsignif_0.6.0     
  [4] ellipsis_0.3.2      rio_0.5.16          rprojroot_2.0.2    
  [7] estimability_1.3    snakecase_0.11.0    fs_1.5.0           
 [10] rstudioapi_0.13     farver_2.0.3        fansi_0.4.2        
 [13] lubridate_1.7.10    xml2_1.3.2          codetools_0.2-18   
 [16] splines_4.0.2       jsonlite_1.7.2      nloptr_1.2.2.2     
 [19] gt_0.3.0            pbkrtest_0.5-0.1    broom_0.7.9        
 [22] dbplyr_2.1.1        compiler_4.0.2      httr_1.4.2         
 [25] backports_1.2.1     assertthat_0.2.1    fastmap_1.1.0      
 [28] cli_2.5.0           formatR_1.8         later_1.1.0.1      
 [31] htmltools_0.5.2     tools_4.0.2         coda_0.19-4        
 [34] gtable_0.3.0        glue_1.4.2          reshape2_1.4.4     
 [37] Rcpp_1.0.7          carData_3.0-4       cellranger_1.1.0   
 [40] jquerylib_0.1.3     vctrs_0.3.8         nlme_3.1-152       
 [43] broom.helpers_1.3.0 insight_0.14.4      xfun_0.23          
 [46] openxlsx_4.2.3      rvest_1.0.0         lifecycle_1.0.0    
 [49] rstatix_0.6.0       zoo_1.8-8           scales_1.1.1       
 [52] hms_1.0.0           promises_1.2.0.1    parallel_4.0.2     
 [55] sandwich_3.0-0      TMB_1.7.19          yaml_2.2.1         
 [58] curl_4.3            sass_0.3.1          stringi_1.7.4      
 [61] highr_0.8           checkmate_2.0.0     boot_1.3-26        
 [64] zip_2.1.1           commonmark_1.7      rlang_0.4.10       
 [67] pkgconfig_2.0.3     evaluate_0.14       lattice_0.20-41    
 [70] labeling_0.4.2      tidyselect_1.1.1    plyr_1.8.6         
 [73] magrittr_2.0.1      bookdown_0.21.6     R6_2.5.0           
 [76] generics_0.1.0      DBI_1.1.1           pillar_1.6.1       
 [79] haven_2.3.1         whisker_0.4         foreign_0.8-81     
 [82] withr_2.4.1         abind_1.4-5         modelr_0.1.8       
 [85] crayon_1.4.1        car_3.0-10          utf8_1.1.4         
 [88] rmarkdown_2.8       grid_4.0.2          readxl_1.3.1       
 [91] data.table_1.14.0   git2r_0.28.0        webshot_0.5.2      
 [94] reprex_2.0.0        digest_0.6.27       xtable_1.8-4       
 [97] httpuv_1.5.5        numDeriv_2016.8-1.1 munsell_0.5.0      
[100] viridisLite_0.3.0   bslib_0.2.4