Last updated: 2022-02-26

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 5c37a5d. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Adipose_Visceral_Omentum.Rmd) and HTML (docs/T2D_Adipose_Visceral_Omentum.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 5c37a5d sq-96 2022-02-26 update
html 3fa3a64 sq-96 2022-02-26 Build site.
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 8279
#number of imputed weights by chromosome
table(qclist_all$chr)

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
860 632 533 357 434 491 417 287 316 367 525 508 179 281 284 320 451 139 400 239 
 21  22 
 83 176 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 4625
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.5586

Check convergence of parameters

Version Author Date
3fa3a64 sq-96 2022-02-26
e6bc169 sq-96 2022-02-13
#estimated group prior
estimated_group_prior <- group_prior_rec[,ncol(group_prior_rec)]
names(estimated_group_prior) <- c("gene", "snp")
estimated_group_prior["snp"] <- estimated_group_prior["snp"]*thin #adjust parameter to account for thin argument
print(estimated_group_prior)
     gene       snp 
0.0185530 0.0003497 
#estimated group prior variance
estimated_group_prior_var <- group_prior_var_rec[,ncol(group_prior_var_rec)]
names(estimated_group_prior_var) <- c("gene", "snp")
print(estimated_group_prior_var)
 gene   snp 
7.211 8.954 
#report sample size
print(sample_size)
[1] 62892
#report group size
group_size <- c(nrow(ctwas_gene_res), n_snps)
print(group_size)
[1]    8279 5017190
#estimated group PVE
estimated_group_pve <- estimated_group_prior_var*estimated_group_prior*group_size/sample_size #check PVE calculation
names(estimated_group_pve) <- c("gene", "snp")
print(estimated_group_pve)
   gene     snp 
0.01761 0.24979 
#compare sum(PIP*mu2/sample_size) with above PVE calculation
c(sum(ctwas_gene_res$PVE),sum(ctwas_snp_res$PVE))
[1] 0.1023 1.4004

Genes with highest PIPs

         genename region_tag susie_pip   mu2       PVE      z num_eqtl
8882      POLR2J3       7_63    0.9604 25.74 0.0003930  4.987        1
7980        LMOD1      1_102    0.9456 24.43 0.0003672 -4.907        1
249        ANGEL1      14_36    0.9355 21.80 0.0003243  4.558        2
3617         ARG1       6_87    0.9094 29.87 0.0004319 -5.606        1
1848         CTSZ      20_34    0.8805 20.18 0.0002824 -3.896        1
7655        PTH1R       3_33    0.8780 28.47 0.0003974 -5.646        1
3290        GRB14      2_100    0.8747 25.00 0.0003478  5.163        1
14287 RP5-899E9.1       7_49    0.8132 19.91 0.0002575 -4.333        1
4668       ZNF236      18_45    0.7874 20.14 0.0002522 -4.378        1
7322        NTAN1      16_15    0.7754 19.37 0.0002388  4.192        1
9579        DMRT2        9_1    0.7497 19.40 0.0002313 -4.318        1
10241      ZNF664      12_75    0.7398 41.11 0.0004836 -6.452        1
9990       SEC24C      10_49    0.7330 26.90 0.0003135 -4.862        1
2306       DNASE2      19_10    0.7296 18.47 0.0002143 -3.744        1
11753    TMEM229B      14_31    0.7256 18.31 0.0002112 -3.658        1
1508      CWF19L1      10_64    0.6962 33.33 0.0003690 -5.810        1
5258      C2orf49       2_62    0.6887 26.88 0.0002943  5.235        1
13192   LINC01184       5_78    0.6805 18.64 0.0002016  3.793        1
6264        MRPS5       2_57    0.6164 20.20 0.0001980 -3.737        1
6029        SCYL1      11_36    0.6145 22.23 0.0002172 -4.814        1

Genes with largest effect sizes

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
7057      JAZF1       7_23  0.277121 130.42 5.747e-04 -12.662        1
2722       WFS1        4_7  0.158490  64.77 1.632e-04  11.434        1
3379      THADA       2_27  0.063978  59.34 6.037e-05   8.667        1
14565 LINC01126       2_27  0.050344  52.18 4.177e-05  -8.377        1
10525    UBE2E2       3_17  0.084142  48.51 6.491e-05   7.166        2
11136    KCNJ11      11_12  0.028462  45.08 2.040e-05   7.075        2
11227   NCR3LG1      11_12  0.035887  44.08 2.515e-05  -6.854        2
3273      NRBP1       2_16  0.057481  43.86 4.008e-05  -6.625        1
7493      UBE2Z      17_28  0.607571  43.82 4.234e-04  -7.392        1
3656     CCDC92      12_75  0.135611  42.88 9.246e-05  -5.887        2
1401     PABPC4       1_24  0.103952  42.78 7.072e-05  -6.817        1
7491     ATP5G1      17_28  0.090095  41.35 5.923e-05   6.400        1
10241    ZNF664      12_75  0.739843  41.11 4.836e-04  -6.452        1
1158     COBLL1      2_100  0.072551  39.99 4.613e-05  -5.375        1
12780   CYP21A2       6_26  0.055455  39.91 3.519e-05   6.453        1
7494       SNF8      17_28  0.077698  39.44 4.873e-05   6.300        1
9611      PEAK1      15_36  0.478500  39.02 2.969e-04  -6.885        1
6467     CDKAL1       6_15  0.004169  37.81 2.506e-06  -8.192        1
7378      AP3S2      15_41  0.369116  36.18 2.124e-04   6.356        1
5126      P2RX4      12_74  0.263755  35.42 1.485e-04   4.096        1

Genes with highest PVE

         genename region_tag susie_pip    mu2       PVE       z num_eqtl
7057        JAZF1       7_23    0.2771 130.42 0.0005747 -12.662        1
10241      ZNF664      12_75    0.7398  41.11 0.0004836  -6.452        1
3617         ARG1       6_87    0.9094  29.87 0.0004319  -5.606        1
7493        UBE2Z      17_28    0.6076  43.82 0.0004234  -7.392        1
7655        PTH1R       3_33    0.8780  28.47 0.0003974  -5.646        1
8882      POLR2J3       7_63    0.9604  25.74 0.0003930   4.987        1
1508      CWF19L1      10_64    0.6962  33.33 0.0003690  -5.810        1
7980        LMOD1      1_102    0.9456  24.43 0.0003672  -4.907        1
3290        GRB14      2_100    0.8747  25.00 0.0003478   5.163        1
249        ANGEL1      14_36    0.9355  21.80 0.0003243   4.558        2
9990       SEC24C      10_49    0.7330  26.90 0.0003135  -4.862        1
9611        PEAK1      15_36    0.4785  39.02 0.0002969  -6.885        1
5258      C2orf49       2_62    0.6887  26.88 0.0002943   5.235        1
1848         CTSZ      20_34    0.8805  20.18 0.0002824  -3.896        1
14287 RP5-899E9.1       7_49    0.8132  19.91 0.0002575  -4.333        1
4668       ZNF236      18_45    0.7874  20.14 0.0002522  -4.378        1
7322        NTAN1      16_15    0.7754  19.37 0.0002388   4.192        1
4021       KBTBD4      11_29    0.6073  24.30 0.0002346  -5.098        1
9579        DMRT2        9_1    0.7497  19.40 0.0002313  -4.318        1
6029        SCYL1      11_36    0.6145  22.23 0.0002172  -4.814        1

Genes with largest z scores

       genename region_tag susie_pip    mu2       PVE       z num_eqtl
7057      JAZF1       7_23  0.277121 130.42 5.747e-04 -12.662        1
2722       WFS1        4_7  0.158490  64.77 1.632e-04  11.434        1
3379      THADA       2_27  0.063978  59.34 6.037e-05   8.667        1
14565 LINC01126       2_27  0.050344  52.18 4.177e-05  -8.377        1
6467     CDKAL1       6_15  0.004169  37.81 2.506e-06  -8.192        1
7493      UBE2Z      17_28  0.607571  43.82 4.234e-04  -7.392        1
10525    UBE2E2       3_17  0.084142  48.51 6.491e-05   7.166        2
11136    KCNJ11      11_12  0.028462  45.08 2.040e-05   7.075        2
9611      PEAK1      15_36  0.478500  39.02 2.969e-04  -6.885        1
11227   NCR3LG1      11_12  0.035887  44.08 2.515e-05  -6.854        2
1401     PABPC4       1_24  0.103952  42.78 7.072e-05  -6.817        1
3273      NRBP1       2_16  0.057481  43.86 4.008e-05  -6.625        1
12062      MICB       6_25  0.392658  34.75 2.170e-04   6.462        2
12780   CYP21A2       6_26  0.055455  39.91 3.519e-05   6.453        1
10241    ZNF664      12_75  0.739843  41.11 4.836e-04  -6.452        1
7491     ATP5G1      17_28  0.090095  41.35 5.923e-05   6.400        1
7378      AP3S2      15_41  0.369116  36.18 2.124e-04   6.356        1
7494       SNF8      17_28  0.077698  39.44 4.873e-05   6.300        1
13095     ARPIN      15_41  0.224871  34.65 1.239e-04   6.250        1
3656     CCDC92      12_75  0.135611  42.88 9.246e-05  -5.887        2

Comparing z scores and PIPs

[1] 0.008093
       genename region_tag susie_pip    mu2       PVE       z num_eqtl
7057      JAZF1       7_23  0.277121 130.42 5.747e-04 -12.662        1
2722       WFS1        4_7  0.158490  64.77 1.632e-04  11.434        1
3379      THADA       2_27  0.063978  59.34 6.037e-05   8.667        1
14565 LINC01126       2_27  0.050344  52.18 4.177e-05  -8.377        1
6467     CDKAL1       6_15  0.004169  37.81 2.506e-06  -8.192        1
7493      UBE2Z      17_28  0.607571  43.82 4.234e-04  -7.392        1
10525    UBE2E2       3_17  0.084142  48.51 6.491e-05   7.166        2
11136    KCNJ11      11_12  0.028462  45.08 2.040e-05   7.075        2
9611      PEAK1      15_36  0.478500  39.02 2.969e-04  -6.885        1
11227   NCR3LG1      11_12  0.035887  44.08 2.515e-05  -6.854        2
1401     PABPC4       1_24  0.103952  42.78 7.072e-05  -6.817        1
3273      NRBP1       2_16  0.057481  43.86 4.008e-05  -6.625        1
12062      MICB       6_25  0.392658  34.75 2.170e-04   6.462        2
12780   CYP21A2       6_26  0.055455  39.91 3.519e-05   6.453        1
10241    ZNF664      12_75  0.739843  41.11 4.836e-04  -6.452        1
7491     ATP5G1      17_28  0.090095  41.35 5.923e-05   6.400        1
7378      AP3S2      15_41  0.369116  36.18 2.124e-04   6.356        1
7494       SNF8      17_28  0.077698  39.44 4.873e-05   6.300        1
13095     ARPIN      15_41  0.224871  34.65 1.239e-04   6.250        1
3656     CCDC92      12_75  0.135611  42.88 9.246e-05  -5.887        2

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 30
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Cellular_Component_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                Description      FDR Ratio BgRatio
30                  Ataxia, Spinocerebellar 0.006521  2/13 34/9703
35 Jansen type metaphyseal chondrodysplasia 0.006521  1/13  1/9703
45            Spinocerebellar Ataxia Type 1 0.006521  2/13 34/9703
46            Spinocerebellar Ataxia Type 2 0.006521  2/13 34/9703
47            Spinocerebellar Ataxia Type 4 0.006521  2/13 35/9703
48            Spinocerebellar Ataxia Type 5 0.006521  2/13 34/9703
49 Spinocerebellar Ataxia Type 6 (disorder) 0.006521  2/13 34/9703
50            Spinocerebellar Ataxia Type 7 0.006521  2/13 34/9703
52        Calcium pyrophosphate arthropathy 0.006521  1/13  1/9703
58                 Eiken Skeletal Dysplasia 0.006521  1/13  1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
Warning in oraEnrichment(interestGeneList, referenceGeneList, geneSet, minNum =
minNum, : No significant gene set is identified based on FDR 0.05!
NULL

PIP Manhattan Plot

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 72
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 23
#significance threshold for TWAS
print(sig_thresh)
[1] 4.525
#number of ctwas genes
length(ctwas_genes)
[1] 30
#number of TWAS genes
length(twas_genes)
[1] 67
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
         genename region_tag susie_pip   mu2       PVE      z num_eqtl
6264        MRPS5       2_57    0.6164 20.20 0.0001980 -3.737        1
11469     PRPF40A       2_91    0.5260 19.92 0.0001666 -3.944        2
10022      ZBTB38       3_86    0.5340 17.12 0.0001454 -3.072        1
7953       DCAF16       4_17    0.5632 20.45 0.0001831 -4.139        3
5664        G3BP2       4_51    0.5373 20.37 0.0001740 -4.457        1
7088         ANKH       5_12    0.5580 21.14 0.0001876  3.655        1
13192   LINC01184       5_78    0.6805 18.64 0.0002016  3.793        1
5358    NIPSNAP3A       9_52    0.5688 19.29 0.0001745 -3.837        2
6679        EIF3M      11_22    0.5118 17.81 0.0001449 -3.890        1
11753    TMEM229B      14_31    0.7256 18.31 0.0002112 -3.658        1
7322        NTAN1      16_15    0.7754 19.37 0.0002388  4.192        1
4668       ZNF236      18_45    0.7874 20.14 0.0002522 -4.378        1
2306       DNASE2      19_10    0.7296 18.47 0.0002143 -3.744        1
14287 RP5-899E9.1       7_49    0.8132 19.91 0.0002575 -4.333        1
9579        DMRT2        9_1    0.7497 19.40 0.0002313 -4.318        1
1848         CTSZ      20_34    0.8805 20.18 0.0002824 -3.896        1
#sensitivity / recall
print(sensitivity)
  ctwas    TWAS 
0.01389 0.04167 
#specificity
print(specificity)
 ctwas   TWAS 
0.9965 0.9922 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.03333 0.04478 

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.3.1      forcats_0.5.1     stringr_1.4.0     dplyr_1.0.7      
 [5] purrr_0.3.4       readr_2.1.1       tidyr_1.1.4       tidyverse_1.3.1  
 [9] tibble_3.1.6      WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0      
[13] cowplot_1.0.0     ggplot2_3.3.5     workflowr_1.6.2  

loaded via a namespace (and not attached):
 [1] fs_1.5.2          lubridate_1.8.0   bit64_4.0.5       doParallel_1.0.17
 [5] httr_1.4.2        rprojroot_2.0.2   tools_3.6.1       backports_1.4.1  
 [9] doRNG_1.8.2       utf8_1.2.2        R6_2.5.1          vipor_0.4.5      
[13] DBI_1.1.2         colorspace_2.0-2  withr_2.4.3       ggrastr_1.0.1    
[17] tidyselect_1.1.1  bit_4.0.4         curl_4.3.2        compiler_3.6.1   
[21] git2r_0.26.1      rvest_1.0.2       cli_3.1.0         Cairo_1.5-12.2   
[25] xml2_1.3.3        labeling_0.4.2    scales_1.1.1      apcluster_1.4.8  
[29] digest_0.6.29     rmarkdown_2.11    svglite_1.2.2     pkgconfig_2.0.3  
[33] htmltools_0.5.2   dbplyr_2.1.1      fastmap_1.1.0     highr_0.9        
[37] rlang_1.0.1       rstudioapi_0.13   RSQLite_2.2.8     jquerylib_0.1.4  
[41] farver_2.1.0      generics_0.1.1    jsonlite_1.7.2    vroom_1.5.7      
[45] magrittr_2.0.2    Matrix_1.2-18     ggbeeswarm_0.6.0  Rcpp_1.0.8       
[49] munsell_0.5.0     fansi_1.0.2       gdtools_0.1.9     lifecycle_1.0.1  
[53] stringi_1.7.6     whisker_0.3-2     yaml_2.2.1        plyr_1.8.6       
[57] grid_3.6.1        blob_1.2.2        ggrepel_0.9.1     parallel_3.6.1   
[61] promises_1.0.1    crayon_1.5.0      lattice_0.20-38   haven_2.4.3      
[65] hms_1.1.1         knitr_1.36        pillar_1.6.4      igraph_1.2.10    
[69] rjson_0.2.20      rngtools_1.5.2    reshape2_1.4.4    codetools_0.2-16 
[73] reprex_2.0.1      glue_1.6.2        evaluate_0.14     data.table_1.14.2
[77] modelr_0.1.8      vctrs_0.3.8       tzdb_0.2.0        httpuv_1.5.1     
[81] foreach_1.5.2     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] cachem_1.0.6      xfun_0.29         broom_0.7.10      later_0.8.0      
[89] iterators_1.0.14  beeswarm_0.2.3    memoise_2.0.1     ellipsis_0.3.2