Last updated: 2022-02-26

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0e6a2f2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Adipose_Subcutaneous.Rmd) and HTML (docs/T2D_Adipose_Subcutaneous.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

[1] 8591

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
874 679 536 364 458 498 421 323 333 362 534 523 182 297 322 342 434 142 429 246 
 21  22 
102 190 
[1] 4545
[1] 0.529042

Load ctwas results

Check convergence of parameters


********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************

Version Author Date
e6bc169 sq-96 2022-02-13
        gene          snp 
0.0164052744 0.0003491226 
    gene      snp 
9.541881 8.856665 
[1] 62892
[1]    8591 5017200
      gene        snp 
0.02138286 0.24666880 
[1] 0.097563 1.394008

Genes with highest PIPs

Version Author Date
e6bc169 sq-96 2022-02-13
      genename region_tag susie_pip      mu2          PVE         z num_eqtl
7109    LONRF1       8_15 0.9929090 29.21253 0.0004611935 -5.424976        2
5112     P2RX4      12_74 0.9614949 25.94139 0.0003965927  5.081395        1
250     ANGEL1      14_36 0.9577010 22.67702 0.0003453190  4.529353        2
7272     KCNS2       8_68 0.9084550 26.21428 0.0003786570 -5.148148        1
7654     PTH1R       3_33 0.8979756 30.11423 0.0004299728 -5.646341        1
6918   ARL14EP      11_21 0.8714865 23.28173 0.0003226120 -4.877816        2
13239  N4BP2L2      13_11 0.8441484 24.33744 0.0003266617 -4.430380        1
10030   FAM89B      11_36 0.7961326 24.33365 0.0003080330  5.011364        1
8836   FAM234A       16_1 0.7887942 31.18972 0.0003911829  5.621053        1
11712    PARVA       11_9 0.7846449 20.35377 0.0002539351 -3.862069        1
7267      GDF6       8_67 0.7821456 21.36036 0.0002656444 -4.371795        1
3924     SEPT7       7_26 0.7750777 20.71351 0.0002552722 -4.166667        1
3988    ZC3H13      13_19 0.7732369 20.55708 0.0002527427  4.310345        1
2323    DNASE2      19_10 0.7718480 18.79133 0.0002306184 -3.744186        1
4009    KBTBD4      11_29 0.7473759 26.46156 0.0003144555 -5.097561        1
3282     GRB14      2_100 0.7261964 21.31644 0.0002461349  4.744898        1
11149    SLIT1      10_62 0.7054051 24.44621 0.0002741919  4.797347        2
7490     UBE2Z      17_28 0.7027425 47.07794 0.0005260394 -7.392405        1
6245     MRPS5       2_57 0.6981455 19.67432 0.0002183988 -3.809979        2
10469 TMEM132E      17_20 0.6953548 21.32974 0.0002358287 -3.692999        2

Genes with largest effect sizes

Version Author Date
e6bc169 sq-96 2022-02-13
           genename region_tag   susie_pip       mu2          PVE          z
7048          JAZF1       7_23 0.010489657 138.57315 2.311240e-05 -12.730769
14285  RP11-395N3.2      2_133 0.035388941 109.23628 6.146658e-05 -11.370370
356            ANK1       8_36 0.040525872  59.39273 3.827104e-05   8.666667
6954        ZFP36L2       2_27 0.039417323  55.29285 3.465458e-05   8.376923
2723           WFS1        4_7 0.029567029  53.22895 2.502420e-05  10.641975
8537             C2       6_26 0.219640555  52.12414 1.820355e-04   7.148936
11174        KCNJ11      11_12 0.022352569  49.76935 1.768862e-05   7.230769
11270       NCR3LG1      11_12 0.022725263  49.30958 1.781742e-05  -7.168932
14659     LINC01126       2_27 0.049133590  47.84997 3.738219e-05  -7.520384
1417         PABPC4       1_24 0.208389179  47.84681 1.585378e-04  -7.054348
7490          UBE2Z      17_28 0.702742531  47.07794 5.260394e-04  -7.392405
3368          THADA       2_27 0.037435740  45.74582 2.722967e-05   7.450450
943           ZZEF1       17_4 0.090686616  43.96105 6.338928e-05   6.916667
10282        ZNF664      12_75 0.315660986  43.32163 2.174354e-04  -6.452055
7491           SNF8      17_28 0.064661984  43.16571 4.438053e-05   6.300000
10726         BMP8A       1_24 0.090840980  42.58988 6.151667e-05   6.868132
6449         CDKAL1       6_15 0.003751902  40.70165 2.428108e-06  -8.191860
10555        UBE2E2       3_17 0.498580721  39.49123 3.130695e-04   6.080882
3647         CCDC92      12_75 0.108517987  38.03243 6.562365e-05  -5.498713
13467 RP11-419C23.1       8_33 0.506566550  37.39164 3.011727e-04  -6.316832
      num_eqtl
7048         1
14285        1
356          1
6954         1
2723         1
8537         1
11174        1
11270        2
14659        2
1417         1
7490         1
3368         1
943          1
10282        1
7491         1
10726        1
6449         1
10555        1
3647         5
13467        1

Genes with highest PVE

           genename region_tag susie_pip      mu2          PVE         z
7490          UBE2Z      17_28 0.7027425 47.07794 0.0005260394 -7.392405
7109         LONRF1       8_15 0.9929090 29.21253 0.0004611935 -5.424976
7654          PTH1R       3_33 0.8979756 30.11423 0.0004299728 -5.646341
5112          P2RX4      12_74 0.9614949 25.94139 0.0003965927  5.081395
8836        FAM234A       16_1 0.7887942 31.18972 0.0003911829  5.621053
7272          KCNS2       8_68 0.9084550 26.21428 0.0003786570 -5.148148
250          ANGEL1      14_36 0.9577010 22.67702 0.0003453190  4.529353
13239       N4BP2L2      13_11 0.8441484 24.33744 0.0003266617 -4.430380
6918        ARL14EP      11_21 0.8714865 23.28173 0.0003226120 -4.877816
4009         KBTBD4      11_29 0.7473759 26.46156 0.0003144555 -5.097561
10555        UBE2E2       3_17 0.4985807 39.49123 0.0003130695  6.080882
10030        FAM89B      11_36 0.7961326 24.33365 0.0003080330  5.011364
13467 RP11-419C23.1       8_33 0.5065666 37.39164 0.0003011727 -6.316832
6645         CAMK2G      10_49 0.5494966 32.00592 0.0002796404  5.012658
11149         SLIT1      10_62 0.7054051 24.44621 0.0002741919  4.797347
7267           GDF6       8_67 0.7821456 21.36036 0.0002656444 -4.371795
3924          SEPT7       7_26 0.7750777 20.71351 0.0002552722 -4.166667
11712         PARVA       11_9 0.7846449 20.35377 0.0002539351 -3.862069
3988         ZC3H13      13_19 0.7732369 20.55708 0.0002527427  4.310345
3282          GRB14      2_100 0.7261964 21.31644 0.0002461349  4.744898
      num_eqtl
7490         1
7109         2
7654         1
5112         1
8836         1
7272         1
250          2
13239        1
6918         2
4009         1
10555        1
10030        1
13467        1
6645         1
11149        2
7267         1
3924         1
11712        1
3988         1
3282         1

Genes with largest z scores

           genename region_tag   susie_pip       mu2          PVE          z
7048          JAZF1       7_23 0.010489657 138.57315 2.311240e-05 -12.730769
14285  RP11-395N3.2      2_133 0.035388941 109.23628 6.146658e-05 -11.370370
2723           WFS1        4_7 0.029567029  53.22895 2.502420e-05  10.641975
356            ANK1       8_36 0.040525872  59.39273 3.827104e-05   8.666667
6954        ZFP36L2       2_27 0.039417323  55.29285 3.465458e-05   8.376923
6449         CDKAL1       6_15 0.003751902  40.70165 2.428108e-06  -8.191860
14659     LINC01126       2_27 0.049133590  47.84997 3.738219e-05  -7.520384
3368          THADA       2_27 0.037435740  45.74582 2.722967e-05   7.450450
7490          UBE2Z      17_28 0.702742531  47.07794 5.260394e-04  -7.392405
11174        KCNJ11      11_12 0.022352569  49.76935 1.768862e-05   7.230769
11270       NCR3LG1      11_12 0.022725263  49.30958 1.781742e-05  -7.168932
8537             C2       6_26 0.219640555  52.12414 1.820355e-04   7.148936
1417         PABPC4       1_24 0.208389179  47.84681 1.585378e-04  -7.054348
943           ZZEF1       17_4 0.090686616  43.96105 6.338928e-05   6.916667
10726         BMP8A       1_24 0.090840980  42.58988 6.151667e-05   6.868132
10282        ZNF664      12_75 0.315660986  43.32163 2.174354e-04  -6.452055
12119          MICB       6_25 0.483137672  29.83545 2.291966e-04   6.443315
13467 RP11-419C23.1       8_33 0.506566550  37.39164 3.011727e-04  -6.316832
7491           SNF8      17_28 0.064661984  43.16571 4.438053e-05   6.300000
7368          AP3S2      15_41 0.392663862  36.07772 2.252499e-04   6.272710
      num_eqtl
7048         1
14285        1
2723         1
356          1
6954         1
6449         1
14659        2
3368         1
7490         1
11174        1
11270        2
8537         1
1417         1
943          1
10726        1
10282        1
12119        3
13467        1
7491         1
7368         2

Comparing z scores and PIPs

Version Author Date
e6bc169 sq-96 2022-02-13

Version Author Date
e6bc169 sq-96 2022-02-13
[1] 0.009079269
           genename region_tag   susie_pip       mu2          PVE          z
7048          JAZF1       7_23 0.010489657 138.57315 2.311240e-05 -12.730769
14285  RP11-395N3.2      2_133 0.035388941 109.23628 6.146658e-05 -11.370370
2723           WFS1        4_7 0.029567029  53.22895 2.502420e-05  10.641975
356            ANK1       8_36 0.040525872  59.39273 3.827104e-05   8.666667
6954        ZFP36L2       2_27 0.039417323  55.29285 3.465458e-05   8.376923
6449         CDKAL1       6_15 0.003751902  40.70165 2.428108e-06  -8.191860
14659     LINC01126       2_27 0.049133590  47.84997 3.738219e-05  -7.520384
3368          THADA       2_27 0.037435740  45.74582 2.722967e-05   7.450450
7490          UBE2Z      17_28 0.702742531  47.07794 5.260394e-04  -7.392405
11174        KCNJ11      11_12 0.022352569  49.76935 1.768862e-05   7.230769
11270       NCR3LG1      11_12 0.022725263  49.30958 1.781742e-05  -7.168932
8537             C2       6_26 0.219640555  52.12414 1.820355e-04   7.148936
1417         PABPC4       1_24 0.208389179  47.84681 1.585378e-04  -7.054348
943           ZZEF1       17_4 0.090686616  43.96105 6.338928e-05   6.916667
10726         BMP8A       1_24 0.090840980  42.58988 6.151667e-05   6.868132
10282        ZNF664      12_75 0.315660986  43.32163 2.174354e-04  -6.452055
12119          MICB       6_25 0.483137672  29.83545 2.291966e-04   6.443315
13467 RP11-419C23.1       8_33 0.506566550  37.39164 3.011727e-04  -6.316832
7491           SNF8      17_28 0.064661984  43.16571 4.438053e-05   6.300000
7368          AP3S2      15_41 0.392663862  36.07772 2.252499e-04   6.272710
      num_eqtl
7048         1
14285        1
2723         1
356          1
6954         1
6449         1
14659        2
3368         1
7490         1
11174        1
11270        2
8537         1
1417         1
943          1
10726        1
10282        1
12119        3
13467        1
7491         1
7368         2

Sensitivity, specificity and precision for silver standard genes

[1] 72
[1] 25
[1] 4.532824
[1] 7
[1] 78
      genename region_tag susie_pip      mu2          PVE         z num_eqtl
13239  N4BP2L2      13_11 0.8441484 24.33744 0.0003266617 -4.430380        1
250     ANGEL1      14_36 0.9577010 22.67702 0.0003453190  4.529353        2
     ctwas       TWAS 
0.00000000 0.02777778 
    ctwas      TWAS 
0.9991828 0.9911277 
     ctwas       TWAS 
0.00000000 0.02564103 

Version Author Date
e6bc169 sq-96 2022-02-13

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] readxl_1.3.1    cowplot_1.0.0   ggplot2_3.3.5   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.29         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       generics_0.1.1    htmltools_0.5.2   yaml_2.2.1       
 [9] utf8_1.2.2        blob_1.2.2        rlang_1.0.1       jquerylib_0.1.4  
[13] later_0.8.0       pillar_1.6.4      glue_1.6.2        withr_2.4.3      
[17] DBI_1.1.2         bit64_4.0.5       lifecycle_1.0.1   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      evaluate_0.14    
[25] memoise_2.0.1     labeling_0.4.2    knitr_1.36        fastmap_1.1.0    
[29] httpuv_1.5.1      fansi_1.0.2       highr_0.9         Rcpp_1.0.8       
[33] promises_1.0.1    scales_1.1.1      cachem_1.0.6      farver_2.1.0     
[37] fs_1.5.2          bit_4.0.4         digest_0.6.29     stringi_1.7.6    
[41] dplyr_1.0.7       rprojroot_2.0.2   grid_3.6.1        cli_3.1.0        
[45] tools_3.6.1       magrittr_2.0.2    tibble_3.1.6      RSQLite_2.2.8    
[49] crayon_1.5.0      whisker_0.3-2     pkgconfig_2.0.3   ellipsis_0.3.2   
[53] data.table_1.14.2 assertthat_0.2.1  rmarkdown_2.11    R6_2.5.1         
[57] git2r_0.26.1      compiler_3.6.1