Last updated: 2022-02-26

Checks: 6 1

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0e6a2f2. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .ipynb_checkpoints/
    Ignored:    data/AF/

Untracked files:
    Untracked:  Rplot.png
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  analysis/Glucose_Adipose_Subcutaneous.Rmd
    Untracked:  analysis/Glucose_Adipose_Visceral_Omentum.Rmd
    Untracked:  analysis/Splicing_Test.Rmd
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/BMI/
    Untracked:  data/BMI_S/
    Untracked:  data/Glucose/
    Untracked:  data/LDL_S/
    Untracked:  data/T2D/
    Untracked:  data/TEST/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt

Unstaged changes:
    Modified:   analysis/BMI_Brain_Amygdala_S.Rmd
    Modified:   analysis/BMI_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/BMI_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/BMI_Brain_Cerebellum_S.Rmd
    Modified:   analysis/BMI_Brain_Cortex.Rmd
    Modified:   analysis/BMI_Brain_Cortex_S.Rmd
    Modified:   analysis/BMI_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/BMI_Brain_Hippocampus_S.Rmd
    Modified:   analysis/BMI_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/BMI_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/BMI_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/BMI_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/LDL_Liver_S.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/T2D_Pancreas.Rmd) and HTML (docs/T2D_Pancreas.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0e6a2f2 sq-96 2022-02-26 update
html 91f38fa sq-96 2022-02-13 Build site.
Rmd eb13ecf sq-96 2022-02-13 update
html e6bc169 sq-96 2022-02-13 Build site.
Rmd 87fee8b sq-96 2022-02-13 update

Weight QC

[1] 7605

  1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20 
748 581 480 310 401 436 387 270 287 327 513 475 161 273 282 292 407 119 367 228 
 21  22 
 92 169 
[1] 4452
[1] 0.5854043

Load ctwas results

Check convergence of parameters


********************************************************
Note: As of version 1.0.0, cowplot does not change the
  default ggplot2 theme anymore. To recover the previous
  behavior, execute:
  theme_set(theme_cowplot())
********************************************************

Version Author Date
e6bc169 sq-96 2022-02-13
        gene          snp 
0.0123097006 0.0003667405 
    gene      snp 
8.180928 8.889625 
[1] 62892
[1]    7605 5017190
      gene        snp 
0.01217738 0.26008027 
[1] 0.06992339 1.44416811

Genes with highest PIPs

Version Author Date
e6bc169 sq-96 2022-02-13
       genename region_tag susie_pip      mu2          PVE         z num_eqtl
5708      SCRN2      17_28 0.8106840 23.09802 0.0002977357 -4.970331        2
3452       ARG1       6_87 0.7825383 28.70545 0.0003571696 -5.418037        2
8741    ONECUT1      15_22 0.7596047 27.19347 0.0003284406  5.078652        1
10062   ARL6IP4      12_75 0.7433361 36.01403 0.0004256587  5.620253        1
11158     PARVA       11_9 0.7137719 21.89032 0.0002484369 -3.861836        2
2227     DNASE2      19_10 0.7083131 19.08862 0.0002149831 -3.744186        1
4461     ZNF236      18_45 0.7058864 20.69653 0.0002322934 -4.378049        1
7604    CFAP221       2_69 0.6764235 20.29448 0.0002182736 -4.049666        2
10527      GSAP       7_49 0.6504951 24.56257 0.0002540519 -4.185185        1
183        GIPR      19_32 0.6326493 36.31838 0.0003653374 -6.632184        1
1451    CWF19L1      10_64 0.6279579 33.14247 0.0003309177 -5.802916        2
12493 LINC01184       5_78 0.5774450 20.30140 0.0001863979  3.793478        1
4519      TUBG1      17_25 0.5615797 23.49127 0.0002097599  5.267913        2
6236      CRIP3       6_33 0.5552431 21.65792 0.0001912073  4.544995        2
2221      MIER2       19_1 0.5414438 23.95810 0.0002062578  3.683544        1
6019      MRPS5       2_57 0.5399310 21.72457 0.0001865065 -3.736842        1
11243    ZNF251       8_94 0.5343093 24.42065 0.0002074696 -4.886076        1
1411      TYRO3      15_15 0.5095761 23.08603 0.0001870522  4.865854        1
3830     KBTBD4      11_29 0.4950396 25.44472 0.0002002821 -5.097561        1
12664 LINC01933       5_89 0.4650992 20.73843 0.0001533649  3.780488        1

Genes with largest effect sizes

Version Author Date
e6bc169 sq-96 2022-02-13
       genename region_tag    susie_pip       mu2          PVE          z
6795      JAZF1       7_23 0.0253350265 147.33975 5.935344e-05 -13.081610
474       BCAR1      16_40 0.0891403843  58.61868 8.308357e-05  -7.720000
10584     ARAP1      11_41 0.0192135642  57.42519 1.754345e-05   7.885714
6345     CDKN2B       9_16 0.0874432759  55.90606 7.773022e-05  -8.191781
13639 LINC01126       2_27 0.0310929522  53.93953 2.666697e-05  -8.376923
10742   NCR3LG1      11_12 0.0210811758  51.25289 1.717979e-05  -7.369863
7991     NKX6-3       8_36 0.4571378966  42.54881 3.092710e-04  -6.780976
9232      PEAK1      15_36 0.4152425579  40.39351 2.666970e-04   6.885057
7192     ATP5G1      17_28 0.0676819144  39.62674 4.264475e-05   6.400000
11440     RBM20      10_70 0.0002240545  38.42672 1.368962e-07  -3.000000
7194       SNF8      17_28 0.0573205865  37.71067 3.437000e-05   6.300000
1291      P2RX7      12_74 0.2975091723  37.48946 1.773430e-04   5.483748
10224     BMP8A       1_24 0.0347386872  37.42298 2.067076e-05   6.296296
7087      AP3S2      15_41 0.3727948286  37.36237 2.214669e-04   6.356322
183        GIPR      19_32 0.6326492659  36.31838 3.653374e-04  -6.632184
10062   ARL6IP4      12_75 0.7433361169  36.01403 4.256587e-04   5.620253
10674    HAPLN4      19_15 0.0946101030  35.80928 5.386884e-05   5.347368
11533      MICB       6_25 0.0933548640  33.28052 4.940054e-05   5.545585
1451    CWF19L1      10_64 0.6279578506  33.14247 3.309177e-04  -5.802916
8540       TAP1       6_27 0.0647763566  32.26518 3.323190e-05  -5.575000
      num_eqtl
6795         2
474          1
10584        1
6345         1
13639        1
10742        1
7991         2
9232         1
7192         1
11440        1
7194         1
1291         2
10224        1
7087         1
183          1
10062        1
10674        1
11533        2
1451         2
8540         1

Genes with highest PVE

      genename region_tag susie_pip      mu2          PVE         z num_eqtl
10062  ARL6IP4      12_75 0.7433361 36.01403 0.0004256587  5.620253        1
183       GIPR      19_32 0.6326493 36.31838 0.0003653374 -6.632184        1
3452      ARG1       6_87 0.7825383 28.70545 0.0003571696 -5.418037        2
1451   CWF19L1      10_64 0.6279579 33.14247 0.0003309177 -5.802916        2
8741   ONECUT1      15_22 0.7596047 27.19347 0.0003284406  5.078652        1
7991    NKX6-3       8_36 0.4571379 42.54881 0.0003092710 -6.780976        2
5708     SCRN2      17_28 0.8106840 23.09802 0.0002977357 -4.970331        2
9232     PEAK1      15_36 0.4152426 40.39351 0.0002666970  6.885057        1
10527     GSAP       7_49 0.6504951 24.56257 0.0002540519 -4.185185        1
11158    PARVA       11_9 0.7137719 21.89032 0.0002484369 -3.861836        2
4461    ZNF236      18_45 0.7058864 20.69653 0.0002322934 -4.378049        1
7087     AP3S2      15_41 0.3727948 37.36237 0.0002214669  6.356322        1
7604   CFAP221       2_69 0.6764235 20.29448 0.0002182736 -4.049666        2
2227    DNASE2      19_10 0.7083131 19.08862 0.0002149831 -3.744186        1
4519     TUBG1      17_25 0.5615797 23.49127 0.0002097599  5.267913        2
11243   ZNF251       8_94 0.5343093 24.42065 0.0002074696 -4.886076        1
2221     MIER2       19_1 0.5414438 23.95810 0.0002062578  3.683544        1
3830    KBTBD4      11_29 0.4950396 25.44472 0.0002002821 -5.097561        1
6236     CRIP3       6_33 0.5552431 21.65792 0.0001912073  4.544995        2
1411     TYRO3      15_15 0.5095761 23.08603 0.0001870522  4.865854        1

Genes with largest z scores

       genename region_tag  susie_pip       mu2          PVE          z
6795      JAZF1       7_23 0.02533503 147.33975 5.935344e-05 -13.081610
13639 LINC01126       2_27 0.03109295  53.93953 2.666697e-05  -8.376923
6345     CDKN2B       9_16 0.08744328  55.90606 7.773022e-05  -8.191781
10584     ARAP1      11_41 0.01921356  57.42519 1.754345e-05   7.885714
474       BCAR1      16_40 0.08914038  58.61868 8.308357e-05  -7.720000
10742   NCR3LG1      11_12 0.02108118  51.25289 1.717979e-05  -7.369863
9232      PEAK1      15_36 0.41524256  40.39351 2.666970e-04   6.885057
7991     NKX6-3       8_36 0.45713790  42.54881 3.092710e-04  -6.780976
183        GIPR      19_32 0.63264927  36.31838 3.653374e-04  -6.632184
7192     ATP5G1      17_28 0.06768191  39.62674 4.264475e-05   6.400000
7087      AP3S2      15_41 0.37279483  37.36237 2.214669e-04   6.356322
7194       SNF8      17_28 0.05732059  37.71067 3.437000e-05   6.300000
10224     BMP8A       1_24 0.03473869  37.42298 2.067076e-05   6.296296
1451    CWF19L1      10_64 0.62795785  33.14247 3.309177e-04  -5.802916
10062   ARL6IP4      12_75 0.74333612  36.01403 4.256587e-04   5.620253
3128      NRBP1       2_16 0.02608681  31.30510 1.298496e-05  -5.594937
8540       TAP1       6_27 0.06477636  32.26518 3.323190e-05  -5.575000
11533      MICB       6_25 0.09335486  33.28052 4.940054e-05   5.545585
3134      PPM1G       2_16 0.02636672  30.92622 1.296545e-05  -5.544304
1291      P2RX7      12_74 0.29750917  37.48946 1.773430e-04   5.483748
      num_eqtl
6795         2
13639        1
6345         1
10584        1
474          1
10742        1
9232         1
7991         2
183          1
7192         1
7087         1
7194         1
10224        1
1451         2
10062        1
3128         1
8540         1
11533        2
3134         1
1291         2

Comparing z scores and PIPs

Version Author Date
e6bc169 sq-96 2022-02-13

Version Author Date
e6bc169 sq-96 2022-02-13
[1] 0.006180145
       genename region_tag  susie_pip       mu2          PVE          z
6795      JAZF1       7_23 0.02533503 147.33975 5.935344e-05 -13.081610
13639 LINC01126       2_27 0.03109295  53.93953 2.666697e-05  -8.376923
6345     CDKN2B       9_16 0.08744328  55.90606 7.773022e-05  -8.191781
10584     ARAP1      11_41 0.01921356  57.42519 1.754345e-05   7.885714
474       BCAR1      16_40 0.08914038  58.61868 8.308357e-05  -7.720000
10742   NCR3LG1      11_12 0.02108118  51.25289 1.717979e-05  -7.369863
9232      PEAK1      15_36 0.41524256  40.39351 2.666970e-04   6.885057
7991     NKX6-3       8_36 0.45713790  42.54881 3.092710e-04  -6.780976
183        GIPR      19_32 0.63264927  36.31838 3.653374e-04  -6.632184
7192     ATP5G1      17_28 0.06768191  39.62674 4.264475e-05   6.400000
7087      AP3S2      15_41 0.37279483  37.36237 2.214669e-04   6.356322
7194       SNF8      17_28 0.05732059  37.71067 3.437000e-05   6.300000
10224     BMP8A       1_24 0.03473869  37.42298 2.067076e-05   6.296296
1451    CWF19L1      10_64 0.62795785  33.14247 3.309177e-04  -5.802916
10062   ARL6IP4      12_75 0.74333612  36.01403 4.256587e-04   5.620253
3128      NRBP1       2_16 0.02608681  31.30510 1.298496e-05  -5.594937
8540       TAP1       6_27 0.06477636  32.26518 3.323190e-05  -5.575000
11533      MICB       6_25 0.09335486  33.28052 4.940054e-05   5.545585
3134      PPM1G       2_16 0.02636672  30.92622 1.296545e-05  -5.544304
1291      P2RX7      12_74 0.29750917  37.48946 1.773430e-04   5.483748
      num_eqtl
6795         2
13639        1
6345         1
10584        1
474          1
10742        1
9232         1
7991         2
183          1
7192         1
7087         1
7194         1
10224        1
1451         2
10062        1
3128         1
8540         1
11533        2
3134         1
1291         2

Sensitivity, specificity and precision for silver standard genes

[1] 72
[1] 27
[1] 4.507014
[1] 18
[1] 47
       genename region_tag susie_pip      mu2          PVE         z num_eqtl
6019      MRPS5       2_57 0.5399310 21.72457 0.0001865065 -3.736842        1
12493 LINC01184       5_78 0.5774450 20.30140 0.0001863979  3.793478        1
10527      GSAP       7_49 0.6504951 24.56257 0.0002540519 -4.185185        1
11158     PARVA       11_9 0.7137719 21.89032 0.0002484369 -3.861836        2
4461     ZNF236      18_45 0.7058864 20.69653 0.0002322934 -4.378049        1
2221      MIER2       19_1 0.5414438 23.95810 0.0002062578  3.683544        1
2227     DNASE2      19_10 0.7083131 19.08862 0.0002149831 -3.744186        1
7604    CFAP221       2_69 0.6764235 20.29448 0.0002182736 -4.049666        2
     ctwas       TWAS 
0.01388889 0.01388889 
    ctwas      TWAS 
0.9977567 0.9939298 
     ctwas       TWAS 
0.05555556 0.02127660 

sessionInfo()
R version 3.6.1 (2019-07-05)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.2.19-el7-x86_64/lib/libopenblas_haswellp-r0.2.19.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] readxl_1.3.1    cowplot_1.0.0   ggplot2_3.3.5   workflowr_1.6.2

loaded via a namespace (and not attached):
 [1] tidyselect_1.1.1  xfun_0.29         purrr_0.3.4       colorspace_2.0-2 
 [5] vctrs_0.3.8       generics_0.1.1    htmltools_0.5.2   yaml_2.2.1       
 [9] utf8_1.2.2        blob_1.2.2        rlang_1.0.1       jquerylib_0.1.4  
[13] later_0.8.0       pillar_1.6.4      glue_1.6.2        withr_2.4.3      
[17] DBI_1.1.2         bit64_4.0.5       lifecycle_1.0.1   stringr_1.4.0    
[21] cellranger_1.1.0  munsell_0.5.0     gtable_0.3.0      evaluate_0.14    
[25] memoise_2.0.1     labeling_0.4.2    knitr_1.36        fastmap_1.1.0    
[29] httpuv_1.5.1      fansi_1.0.2       highr_0.9         Rcpp_1.0.8       
[33] promises_1.0.1    scales_1.1.1      cachem_1.0.6      farver_2.1.0     
[37] fs_1.5.2          bit_4.0.4         digest_0.6.29     stringi_1.7.6    
[41] dplyr_1.0.7       rprojroot_2.0.2   grid_3.6.1        cli_3.1.0        
[45] tools_3.6.1       magrittr_2.0.2    tibble_3.1.6      RSQLite_2.2.8    
[49] crayon_1.5.0      whisker_0.3-2     pkgconfig_2.0.3   ellipsis_0.3.2   
[53] data.table_1.14.2 assertthat_0.2.1  rmarkdown_2.11    R6_2.5.1         
[57] git2r_0.26.1      compiler_3.6.1