Last updated: 2022-05-19

Checks: 5 2

Knit directory: cTWAS_analysis/

This reproducible R Markdown analysis was created with workflowr (version 1.7.0). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


The R Markdown file has unstaged changes. To know which version of the R Markdown file created these results, you’ll want to first commit it to the Git repo. If you’re still working on the analysis, you can ignore this warning. When you’re finished, you can run wflow_publish to commit the R Markdown file and build the HTML.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20211220) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Using absolute paths to the files within your workflowr project makes it difficult for you and others to run your code on a different machine. Change the absolute path(s) below to the suggested relative path(s) to make your code more reproducible.

absolute relative
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/data/ data
/project2/xinhe/shengqian/cTWAS/cTWAS_analysis/code/ctwas_config.R code/ctwas_config.R

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version be614ed. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .ipynb_checkpoints/

Untracked files:
    Untracked:  G_list.RData
    Untracked:  Rplot.png
    Untracked:  SCZ_annotation.xlsx
    Untracked:  analysis/.ipynb_checkpoints/
    Untracked:  code/.ipynb_checkpoints/
    Untracked:  code/AF_out/
    Untracked:  code/Autism_out/
    Untracked:  code/BMI_S_out/
    Untracked:  code/BMI_out/
    Untracked:  code/Glucose_out/
    Untracked:  code/LDL_S_out/
    Untracked:  code/SCZ_2014_EUR_out/
    Untracked:  code/SCZ_2018_S_out/
    Untracked:  code/SCZ_2018_out/
    Untracked:  code/SCZ_2020_Single_out/
    Untracked:  code/SCZ_2020_out/
    Untracked:  code/SCZ_S_out/
    Untracked:  code/SCZ_out/
    Untracked:  code/T2D_out/
    Untracked:  code/ctwas_config.R
    Untracked:  code/mapping.R
    Untracked:  code/out/
    Untracked:  code/process_scz_2018_snps.R
    Untracked:  code/run_AF_analysis.sbatch
    Untracked:  code/run_AF_analysis.sh
    Untracked:  code/run_AF_ctwas_rss_LDR.R
    Untracked:  code/run_Autism_analysis.sbatch
    Untracked:  code/run_Autism_analysis.sh
    Untracked:  code/run_Autism_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_analysis.sbatch
    Untracked:  code/run_BMI_analysis.sh
    Untracked:  code/run_BMI_analysis_S.sbatch
    Untracked:  code/run_BMI_analysis_S.sh
    Untracked:  code/run_BMI_ctwas_rss_LDR.R
    Untracked:  code/run_BMI_ctwas_rss_LDR_S.R
    Untracked:  code/run_Glucose_analysis.sbatch
    Untracked:  code/run_Glucose_analysis.sh
    Untracked:  code/run_Glucose_ctwas_rss_LDR.R
    Untracked:  code/run_LDL_analysis_S.sbatch
    Untracked:  code/run_LDL_analysis_S.sh
    Untracked:  code/run_LDL_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2014_EUR_analysis.sbatch
    Untracked:  code/run_SCZ_2014_EUR_analysis.sh
    Untracked:  code/run_SCZ_2014_EUR_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_analysis.sbatch
    Untracked:  code/run_SCZ_2018_analysis.sh
    Untracked:  code/run_SCZ_2018_analysis_S.sbatch
    Untracked:  code/run_SCZ_2018_analysis_S.sh
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2018_ctwas_rss_LDR_S.R
    Untracked:  code/run_SCZ_2020_Single_analysis.sbatch
    Untracked:  code/run_SCZ_2020_Single_analysis.sh
    Untracked:  code/run_SCZ_2020_Single_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_2020_analysis.sbatch
    Untracked:  code/run_SCZ_2020_analysis.sh
    Untracked:  code/run_SCZ_2020_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_analysis.sbatch
    Untracked:  code/run_SCZ_analysis.sh
    Untracked:  code/run_SCZ_analysis_S.sbatch
    Untracked:  code/run_SCZ_analysis_S.sh
    Untracked:  code/run_SCZ_ctwas_rss_LDR.R
    Untracked:  code/run_SCZ_ctwas_rss_LDR_S.R
    Untracked:  code/run_T2D_analysis.sbatch
    Untracked:  code/run_T2D_analysis.sh
    Untracked:  code/run_T2D_ctwas_rss_LDR.R
    Untracked:  code/wflow_build.R
    Untracked:  code/wflow_build.sbatch
    Untracked:  data/.ipynb_checkpoints/
    Untracked:  data/GO_Terms/
    Untracked:  data/PGC3_SCZ_wave3_public.v2.tsv
    Untracked:  data/SCZ/
    Untracked:  data/SCZ_2014_EUR/
    Untracked:  data/SCZ_2018/
    Untracked:  data/SCZ_2018_S/
    Untracked:  data/SCZ_2020/
    Untracked:  data/SCZ_S/
    Untracked:  data/Supplementary Table 15 - MAGMA.xlsx
    Untracked:  data/Supplementary Table 20 - Prioritised Genes.xlsx
    Untracked:  data/T2D/
    Untracked:  data/UKBB/
    Untracked:  data/UKBB_SNPs_Info.text
    Untracked:  data/gene_OMIM.txt
    Untracked:  data/gene_pip_0.8.txt
    Untracked:  data/mashr_Heart_Atrial_Appendage.db
    Untracked:  data/mashr_sqtl/
    Untracked:  data/scz_2018.RDS
    Untracked:  data/summary_known_genes_annotations.xlsx
    Untracked:  data/untitled.txt
    Untracked:  top_genes_32.txt
    Untracked:  top_genes_37.txt
    Untracked:  top_genes_43.txt
    Untracked:  top_genes_54.txt
    Untracked:  top_genes_81.txt
    Untracked:  z_snp_pos_SCZ.RData
    Untracked:  z_snp_pos_SCZ_2014_EUR.RData
    Untracked:  z_snp_pos_SCZ_2018.RData
    Untracked:  z_snp_pos_SCZ_2020.RData

Unstaged changes:
    Deleted:    analysis/BMI_S_results.Rmd
    Modified:   analysis/SCZ_2018_Brain_Amygdala_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Anterior_cingulate_cortex_BA24_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Caudate_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cerebellum_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Cortex_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Frontal_Cortex_BA9_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hippocampus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Hypothalamus_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Nucleus_accumbens_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Putamen_basal_ganglia_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Spinal_cord_cervical_c-1_S.Rmd
    Modified:   analysis/SCZ_2018_Brain_Substantia_nigra_S.Rmd
    Modified:   analysis/ttt.Rmd

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/SCZ_2018_Brain_Cerebellar_Hemisphere_S.Rmd) and HTML (docs/SCZ_2018_Brain_Cerebellar_Hemisphere_S.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd be614ed sq-96 2022-05-19 update
html be614ed sq-96 2022-05-19 update
Rmd 7d08c9b sq-96 2022-05-18 update
html 7d08c9b sq-96 2022-05-18 update
Rmd 2749be9 sq-96 2022-05-12 update
html 2749be9 sq-96 2022-05-12 update
html 011327d sq-96 2022-05-12 update
Rmd 6c6abbd sq-96 2022-05-12 update

library(reticulate)
use_python("/scratch/midway2/shengqian/miniconda3/envs/PythonForR/bin/python",required=T)

Weight QC

#number of imputed weights
nrow(qclist_all)
[1] 26564
#number of imputed weights by chromosome
table(qclist_all$chr)

   1    2    3    4    5    6    7    8    9   10   11   12   13   14   15   16 
2520 1814 1594  973 1137 1377 1526  911 1106 1166 1579 1419  520  921  928 1179 
  17   18   19   20   21   22 
1880  325 1895  891   51  852 
#number of imputed weights without missing variants
sum(qclist_all$nmiss==0)
[1] 23201
#proportion of imputed weights without missing variants
mean(qclist_all$nmiss==0)
[1] 0.8734
INFO:numexpr.utils:Note: NumExpr detected 56 cores but "NUMEXPR_MAX_THREADS" not set, so enforcing safe limit of 8.
finish

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':

    filter, lag
The following objects are masked from 'package:base':

    intersect, setdiff, setequal, union

Check convergence of parameters

Version Author Date
2749be9 sq-96 2022-05-12
     gene       snp 
0.0103642 0.0002912 
 gene   snp 
12.00 10.12 
[1] 105318
[1]    7860 6309950
    gene      snp 
0.009283 0.176540 
[1] 0.01795 1.05335

Genes with highest PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
        genename region_tag susie_pip   mu2       PVE      z num_intron
5293      R3HDM2      12_36    0.9766 43.83 4.119e-04  6.634          9
6205      SLC8B1      12_68    0.9706 28.59 3.598e-04 -4.047         11
3651      LPCAT4      15_10    0.9325 25.36 2.153e-04  4.892          3
842   BUB1B-PAK6      15_14    0.9242 29.86 2.437e-04 -5.588          2
2038      DPYSL3       5_86    0.7910 21.54 1.280e-04 -4.157          1
2719      GIGYF2      2_137    0.7882 56.96 4.059e-04 -8.128          6
4513       NTRK3      15_41    0.7875 24.09 1.426e-04  4.457          3
1631       CRTAP       3_24    0.7796 20.88 1.215e-04  3.929          2
7078     TSNARE1       8_93    0.7781 34.12 1.701e-04  6.364         10
6263       SMYD2      1_108    0.7713 21.62 1.225e-04 -3.952          2
2396    FAM177A1       14_9    0.7657 24.30 1.707e-04 -4.872         12
1039      CAMKK2      12_74    0.7621 35.78 1.702e-04  4.159          6
751         BDNF      11_19    0.7588 23.84 1.316e-04  4.348          3
7567     ZDHHC20       13_2    0.7584 25.00 1.400e-04 -4.832          3
6353      SPECC1      17_16    0.7548 25.87 1.409e-04 -4.822          2
3097       HSPA9       5_82    0.7412 25.57 1.334e-04  5.633          1
294         AKT3      1_128    0.7158 35.12 1.906e-04  6.266          6
2902      GTF2A1      14_39    0.6708 24.76 1.117e-04  4.550          2
1662 CTB-31O20.2       19_3    0.6660 23.34 9.828e-05  4.456          1
4355      NFATC3      16_36    0.6648 28.83 1.219e-04 -5.480          3
     num_sqtl
5293       11
6205       12
3651        4
842         2
2038        1
2719        6
4513        3
1631        2
7078       10
6263        2
2396       13
1039        8
751         3
7567        4
6353        2
3097        1
294         6
2902        3
1662        1
4355        3

Genes with highest PVE

       genename region_tag susie_pip    mu2       PVE       z num_intron
7339       VARS       6_26    0.3832 628.56 0.0008763 -11.620          2
456        APOM       6_26    0.2790 626.01 0.0007298  11.590          3
837      BTN3A1       6_20    0.6226 145.15 0.0005473  13.091          7
5293     R3HDM2      12_36    0.9766  43.83 0.0004119   6.634          9
2719     GIGYF2      2_137    0.7882  56.96 0.0004059  -8.128          6
6205     SLC8B1      12_68    0.9706  28.59 0.0003598  -4.047         11
842  BUB1B-PAK6      15_14    0.9242  29.86 0.0002437  -5.588          2
3651     LPCAT4      15_10    0.9325  25.36 0.0002153   4.892          3
294        AKT3      1_128    0.7158  35.12 0.0001906   6.266          6
5994      SF3B1      2_117    0.4462  45.85 0.0001751  -7.053          3
2396   FAM177A1       14_9    0.7657  24.30 0.0001707  -4.872         12
7005     TRANK1       3_27    0.6544  38.76 0.0001707  -6.365          6
1039     CAMKK2      12_74    0.7621  35.78 0.0001702   4.159          6
7078    TSNARE1       8_93    0.7781  34.12 0.0001701   6.364         10
4513      NTRK3      15_41    0.7875  24.09 0.0001426   4.457          3
6353     SPECC1      17_16    0.7548  25.87 0.0001409  -4.822          2
7567    ZDHHC20       13_2    0.7584  25.00 0.0001400  -4.832          3
3097      HSPA9       5_82    0.7412  25.57 0.0001334   5.633          1
751        BDNF      11_19    0.7588  23.84 0.0001316   4.348          3
2038     DPYSL3       5_86    0.7910  21.54 0.0001280  -4.157          1
     num_sqtl
7339        2
456         4
837         8
5293       11
2719        6
6205       12
842         2
3651        4
294         6
5994        3
2396       13
7005        6
1039        8
7078       10
4513        3
6353        2
7567        4
3097        1
751         3
2038        1

Comparing z scores and PIPs

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] 0.02176
     genename region_tag susie_pip    mu2       PVE       z num_intron num_sqtl
7606  ZKSCAN3       6_22 2.302e-02 160.21 1.217e-06 -13.135          4        4
837    BTN3A1       6_20 6.226e-01 145.15 5.473e-04  13.091          7        8
4797    PGBD1       6_22 2.270e-02 159.13 1.708e-06 -13.087          5        7
7339     VARS       6_26 3.832e-01 628.56 8.763e-04 -11.620          2        2
456      APOM       6_26 2.790e-01 626.01 7.298e-04  11.590          3        4
1851     DDR1       6_25 1.708e-01 101.78 5.658e-05 -11.175          4        4
964  C6orf136       6_24 6.024e-02  80.18 5.525e-06 -11.031          2        2
2559    FLOT1       6_24 4.864e-02  78.83 1.273e-05  10.981          8        8
838    BTN3A2       6_20 6.427e-02  94.90 4.458e-06 -10.743          5        7
1781  CYP21A2       6_26 5.976e-06 607.99 2.062e-13 -10.513          1        2
699      BAG6       6_26 1.969e-09 500.57 5.529e-20  10.247          9        9
835    BTN2A1       6_20 4.016e-02  84.19 1.707e-06  10.110          7        7
5104     PPT2       6_26 5.412e-12 466.36 1.297e-25  10.061          7        9
2138    EGFL8       6_26 4.301e-12 465.72 8.201e-26  10.036          6        7
5165    PRRT1       6_26 3.762e-12 464.63 6.243e-26 -10.018          1        1
2850    GPSM3       6_26 1.178e-13 416.63 1.098e-28  -9.377          2        2
1176   CCHCR1       6_25 2.559e-02  59.77 5.477e-07  -9.032         11       18
6952     TNXB       6_26 2.108e-13 454.39 1.918e-28   9.001          4        5
3026  HLA-DMA       6_27 9.405e-02  70.57 5.975e-06   8.860          5        6
7849  ZSCAN23       6_22 1.294e-02  46.07 7.324e-08  -8.541          1        1

GO enrichment analysis for genes with PIP>0.5

#number of genes for gene set enrichment
length(genes)
[1] 34
Uploading data to Enrichr... Done.
  Querying GO_Biological_Process_2021... Done.
  Querying GO_Cellular_Component_2021... Done.
  Querying GO_Molecular_Function_2021... Done.
Parsing results... Done.
[1] "GO_Biological_Process_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
                                                                                        Term
1 positive regulation of non-membrane spanning protein tyrosine kinase activity (GO:1903997)
2          regulation of non-membrane spanning protein tyrosine kinase activity (GO:1903995)
  Overlap Adjusted.P.value    Genes
1     2/6          0.01482 BDNF;SRC
2     2/7          0.01482 BDNF;SRC
[1] "GO_Cellular_Component_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)
[1] "GO_Molecular_Function_2021"

Version Author Date
be614ed sq-96 2022-05-19
2749be9 sq-96 2022-05-12
[1] Term             Overlap          Adjusted.P.value Genes           
<0 rows> (or 0-length row.names)

DisGeNET enrichment analysis for genes with PIP>0.5

                                       Description     FDR Ratio  BgRatio
73                              Status Epilepticus 0.01241  3/21  68/9703
110                               Petit mal status 0.01241  3/21  67/9703
118                   Grand Mal Status Epilepticus 0.01241  3/21  67/9703
126             Complex Partial Status Epilepticus 0.01241  3/21  67/9703
166                Status Epilepticus, Subclinical 0.01241  3/21  67/9703
167              Non-Convulsive Status Epilepticus 0.01241  3/21  67/9703
168              Simple Partial Status Epilepticus 0.01241  3/21  67/9703
199 TOBACCO ADDICTION, SUSCEPTIBILITY TO (finding) 0.01241  2/21  12/9703
70                                   Schizophrenia 0.02137  7/21 883/9703
197                   AICARDI-GOUTIERES SYNDROME 3 0.02137  1/21   1/9703

WebGestalt enrichment analysis for genes with PIP>0.5

Warning: replacing previous import 'lifecycle::last_warnings' by
'rlang::last_warnings' when loading 'hms'
Loading the functional categories...
Loading the ID list...
Loading the reference list...
Performing the enrichment analysis...
       description size overlap      FDR       database
1 Bipolar Disorder  136       7 0.003887 disease_GLAD4U
                                           userId
1 BDNF;CAMKK2;GABBR2;NTRK3;SDCCAG8;TRANK1;TSNARE1

PIP Manhattan Plot

Warning: ggrepel: 1 unlabeled data points (too many overlaps). Consider
increasing max.overlaps

Version Author Date
be614ed sq-96 2022-05-19
7d08c9b sq-96 2022-05-18
2749be9 sq-96 2022-05-12

Sensitivity, specificity and precision for silver standard genes

#number of genes in known annotations
print(length(known_annotations))
[1] 130
#number of genes in known annotations with imputed expression
print(sum(known_annotations %in% ctwas_gene_res$genename))
[1] 59
#significance threshold for TWAS
print(sig_thresh)
[1] 4.514
#number of ctwas genes
length(ctwas_genes)
[1] 4
#number of TWAS genes
length(twas_genes)
[1] 171
#show novel genes (ctwas genes with not in TWAS genes)
ctwas_gene_res[ctwas_gene_res$genename %in% novel_genes,report_cols]
     genename region_tag susie_pip   mu2       PVE      z num_intron num_sqtl
6205   SLC8B1      12_68    0.9706 28.59 0.0003598 -4.047         11       12
#sensitivity / recall
print(sensitivity)
   ctwas     TWAS 
0.007692 0.130769 
#specificity
print(specificity)
 ctwas   TWAS 
0.9996 0.9803 
#precision / PPV
print(precision)
  ctwas    TWAS 
0.25000 0.09942 

sessionInfo()
R version 4.1.0 (2021-05-18)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Scientific Linux 7.4 (Nitrogen)

Matrix products: default
BLAS/LAPACK: /software/openblas-0.3.13-el7-x86_64/lib/libopenblas_haswellp-r0.3.13.so

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] readxl_1.4.0      forcats_0.5.1     stringr_1.4.0     purrr_0.3.4      
 [5] readr_1.4.0       tidyr_1.1.3       tidyverse_1.3.1   tibble_3.1.7     
 [9] WebGestaltR_0.4.4 disgenet2r_0.99.2 enrichR_3.0       cowplot_1.1.1    
[13] ggplot2_3.3.5     dplyr_1.0.7       reticulate_1.25   workflowr_1.7.0  

loaded via a namespace (and not attached):
 [1] fs_1.5.0          lubridate_1.7.10  doParallel_1.0.16 httr_1.4.2       
 [5] rprojroot_2.0.2   tools_4.1.0       backports_1.2.1   doRNG_1.8.2      
 [9] bslib_0.2.5.1     utf8_1.2.1        R6_2.5.0          vipor_0.4.5      
[13] DBI_1.1.1         colorspace_2.0-2  withr_2.4.2       ggrastr_1.0.1    
[17] tidyselect_1.1.1  processx_3.5.2    curl_4.3.2        compiler_4.1.0   
[21] git2r_0.28.0      rvest_1.0.0       cli_3.0.0         Cairo_1.5-15     
[25] xml2_1.3.2        labeling_0.4.2    sass_0.4.0        scales_1.1.1     
[29] callr_3.7.0       systemfonts_1.0.4 apcluster_1.4.9   digest_0.6.27    
[33] rmarkdown_2.9     svglite_2.0.0     pkgconfig_2.0.3   htmltools_0.5.1.1
[37] dbplyr_2.1.1      highr_0.9         rlang_1.0.2       rstudioapi_0.13  
[41] jquerylib_0.1.4   farver_2.1.0      generics_0.1.0    jsonlite_1.7.2   
[45] magrittr_2.0.1    Matrix_1.3-3      ggbeeswarm_0.6.0  Rcpp_1.0.7       
[49] munsell_0.5.0     fansi_0.5.0       lifecycle_1.0.0   stringi_1.6.2    
[53] whisker_0.4       yaml_2.2.1        plyr_1.8.6        grid_4.1.0       
[57] ggrepel_0.9.1     parallel_4.1.0    promises_1.2.0.1  crayon_1.4.1     
[61] lattice_0.20-44   haven_2.4.1       hms_1.1.0         knitr_1.33       
[65] ps_1.6.0          pillar_1.7.0      igraph_1.2.6      rjson_0.2.20     
[69] rngtools_1.5      reshape2_1.4.4    codetools_0.2-18  reprex_2.0.0     
[73] glue_1.4.2        evaluate_0.14     getPass_0.2-2     modelr_0.1.8     
[77] data.table_1.14.0 png_0.1-7         vctrs_0.3.8       httpuv_1.6.1     
[81] foreach_1.5.1     cellranger_1.1.0  gtable_0.3.0      assertthat_0.2.1 
[85] xfun_0.24         broom_0.7.8       later_1.2.0       iterators_1.0.13 
[89] beeswarm_0.4.0    ellipsis_0.3.2    here_1.0.1